In the field of elevators, within a building elevator cars can service a designated zone or group of floors with each floor having a corresponding landing. Furthermore, within a building there can be multiple zones. For example, a building could have thirty floors and six elevators. A first zone could be defined as floors 1 through 15 and a second zone could be defined as floors 1 and 16-30. Of the six elevators, three could be designated to service the first zone and the other three could be designated to service the second zone. It can be desirable to have flexibility in assigning and dispatching elevator cars to landings within a building to improve efficiency and reduce elevator wait times for passengers. While there may be devices and methods that control elevator dispatching, it is believed that no one prior to the inventor(s) has made or used an invention as described herein.
It is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements.
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the invention may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention; it being understood, however, that this invention is not limited to the precise arrangements shown.
The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
Drives (22) are coupled with a controller (30) that is operable to control drives (22) to dispatch elevator cars (2, 4, 6, 8, 12, 14) to the various landings, as shown in
In the present example, elevator dispatching system (10) is of a destination dispatching type. In this type of dispatching system, call button (24), and optionally call buttons (26), comprise selectable features where a passenger inputs their desired destination. The input of the desired destination triggers the call for the elevator as well as informs the system of the passenger's desired destination. With a destination dispatch type system, call buttons (24, 26) are not required to be physical buttons, but can be, for example, a touch-screen with selectable features corresponding to each floor. In other destination dispatch examples, call buttons (24, 26) could comprise a plurality of buttons that correspond to each floor.
In the present example, observation deck (OD) is open to public passengers such that the public passengers travel from first floor (F1) directly to observation deck (OD), but not other floors. In this example, a first zone is thus defined as the first floor (F1) plus the observation deck (OD). Second floor (F2) through and including top floor (TF) are restricted to building passengers such that building passengers travel from first floor (F1) to various floors including and between second floor (F2) and top floor (TF), but not observation deck (OD). So, in this example, a second zone is defined as the first floor (F1) though and including the top floor (TF). It should be understood herein that the term “building passengers” is intended to include those passengers not traveling to the observation deck (OD), while the term “public passengers” is intended to include those passengers traveling to the observation deck.
While each elevator car (2, 4, 6, 8, 12, 14) is capable of serving any floor or the observation deck (OD), elevator cars (2, 4, 6, 8, 12, 14) are grouped, divided, or designated to service either public passengers travelling between first floor (F1) and observation deck (OD) or building passengers travelling between any floor with the exception of the observation deck (OD). It should be understood herein that the term “between” is intended to be inclusive; thus between first floor (F1) and top floor (TF) would include first floor (F1), top floor (TF), and any floor above first floor (F1) and below top floor (TF). Thus elevators (2, 4, 6, 8, 12, 14) are split to service two zones. For instance, in one example, elevator cars (12, 14) are designated for public passengers travelling to observation deck (OD) (or a first zone), while elevator cars (2, 4, 6, 8) are designated for building passengers not traveling to observation deck (OD) (or a second zone).
While elevator cars (2, 4, 6, 8) are designated to the landings between first floor (F1) and top floor (TF) (the second zone) and elevator cars (12, 14) are designated to service first floor (F1) and observation deck (OD) (the first zone), it is desirable under certain conditions to reallocate at least one elevator car (2, 4, 6, 8, 12, 14) such that the at least one elevator car (2, 4, 6, 8, 12, 14) is dispatched to a landing outside of its designated zone of landings. In other words, it can be desirable to reallocate an elevator car designated for the first zone to the second zone and vice versa. For example, an elevator car (2, 4, 6, 8) from the second zone can be reallocated and dispatched to the first zone to service observation deck (OD) instead of the landings of the second zone. Alternatively, an elevator car (12, 14) from the first zone can be reallocated and dispatched to the second zone to service landings between first floor (F1) and top floor (TF) instead of landings of the first zone. Such a reallocation or swing in the dispatching of elevator cars (2, 4, 6, 8, 12, 14) can decrease the amount of time a passenger waits for an elevator car (2, 4, 6, 8, 12, 14) to arrive at the desired landing in response to activating a call button (24, 26). Accordingly, controller (30) includes an algorithm having parameters and steps to reallocate one or more elevator cars (2, 4, 6, 8, 12, 14) between zones, and further to move a reallocated elevator car (2, 4, 6, 8, 12, 14) back to its initial zone under certain conditions.
In selecting or assigning an elevator car (2, 4, 6, 8, 12, 14) to respond to or answer a call, controller (30) uses parameters of process (50), as shown in
For instance, where a passenger activates call button (24) at first floor (F1) and selects to travel to top floor (TF), controller (30) selects an elevator car (2, 4, 6, 8, 12, 14) to dispatch to first floor (F1) by first determining whether a maximum ETA is exceeded (41) if the current elevators allocated to service the first zone answer the call. In one example, a maximum ETA is set to 90 seconds such that the threshold is 90 seconds, but other durations can be used in other examples. Accordingly, if the passenger is travelling between first floor (F1) and top floor (TF), controller (30) determines whether a second zone designed elevator car (2, 4, 6, 8) is able to reach first floor (F1) within the ETA, or 90 seconds in this example. If the maximum ETA is not exceeded, controller (30) does not reallocate any first zone elevator cars (12, 14) and dispatches a second zone designated elevator car (2, 4, 6, 8) to first floor (F1) to service the building passenger. Similarly, if the passenger is travelling to observation deck (OD) from first floor (F1), controller (30) determines whether a first zone designed elevator car (12, 14) is able to reach first floor (F1) within the ETA, or 90 seconds. If the maximum ETA is not exceeded, controller (30) does not reallocate any second zone elevator cars (2, 4, 6, 8) and dispatches a first zone designated elevator car (12, 14) to first floor (F1) to service the public passenger.
In the example where the passenger is a building passenger traveling between first floor (F1) and top floor (TF), if the maximum ETA is exceeded by the second zone designated elevator cars (2, 4, 6, 8), controller (30) then determines whether a maximum number of elevator cars permitted to be reallocated is exceeded (42). In the present example, the maximum number of elevator cars permitted to be reallocated can be set to two; in other versions other values can be used—for example, between no elevator cars to all of the elevator cars. If the maximum number of swing elevator cars is exceeded, controller (30) does not request a swing elevator car (44) and dispatches one of the elevator cars presently allocated to that zone. If the maximum number of swing elevator cars is not exceeded, controller (30) requests a swing elevator car (43). For instance, controller (30) swings or reallocates a first zone designated elevator car (12, 14) to the second zone designated elevator car group. In another example where the passenger is a public passenger traveling to the observation deck (OD), controller (30) would swing or reallocate a second zone designated elevator car (2, 4, 6, 8) to the first zone designated elevator car group.
If an elevator car (2, 4, 6, 8, 12, 14) is reallocated, then process (50) returns to the step of determining if the maximum ETA has been exceeded (41) based on the updated allocation which now includes the additional elevator car. Process (50) then repeats until either the maximum ETA is not exceeded (41), or the maximum ETA is exceeded (41) but the maximum number of elevator cars permitted for reallocation or swing (42) is also exceeded. If either one of these conditions are met then controller (30) will not reallocate an elevator car or request a swing elevator car (44), and controller (30) will assign and dispatch one of the elevator cars presently allocated to that zone (45). This ultimate assignment may be based on other parameters that will be apparent to those of ordinary skill in the art in view of the teachings herein.
In some versions of system (10) and process (50), if controller (30) makes a reallocation or swing, and then one of the above assign and dispatch conditions are met, controller (30) will assign and dispatch to the call the elevator car that was reallocated or swung into the zone. In some other versions, it is not necessary or required that the elevator car that was reallocated or swung into the zone is assigned and dispatched to serve the call that prompted the reallocation or swing. Instead, another one of the elevator cars that previously was part of the zone could serve the call that prompted or triggered the reallocation or swing while the car that was reallocated or swung could be assigned and dispatched to serve other calls within the zone. Other ways to assign and dispatch elevator cars to the calls will be apparent to those of ordinary skill in the art in view of the teachings herein.
Building upon the example above, elevator cars (12, 14) have a default allocation to a first zone defined by a first floor (F1) and observation deck (OD), and elevator cars (2, 4, 6, 8) have a default allocation to a second zone defined between first floor (F1) and top floor (TF). Because of high traffic from building passengers traveling in the second zone, elevator car (12) has been reallocated based on process (50) from the first zone to the second zone. Under process (70), controller (30) determines whether system (10) is operating in a default mode of allocation or in a swing mode of allocation (61). If operating in default mode then no allocation changes are made (65). In the present example however, system (10) is operating in swing mode because of the prior reallocation of elevator car (12) to the second zone.
After establishing that system (10) is operating in swing mode, controller (30) then determines if there are any parked elevator cars (2, 4, 6, 8, 12) within the second zone operating above its default allocation (62). If there are no such parked elevator cars (2, 4, 6, 8, 12) then no allocation changes are made (65). In the present example however, assume elevator car (4) is parked.
After establishing that system (10) is operating in swing mode (61) and that there is one or more parked cars within the zone operating above its default allocation (62), controller (30) then determines if a minimum time has elapsed or passed for receiving no calls for an elevator car within the zone operating above its default allocation (63). If this minimum amount of time is not exceeded, controller (30) keeps the allocation the same (65). If this minimum amount of time has been exceeded, controller (30) returns an elevator car—elevator car (12) in the present example—back to its originally designated zone or default allocation (64). In some versions of process (70) when controller (30) switches an elevator car under process (70), the elevator car that is switched is the one of the elevator cars that was originally reallocated or swung into the zone in question based on process (50). In such a version, this means that it is not necessarily the parked elevator car that is the elevator car moved back toward the default allocation. In some other versions of process (70) the elevator car that is switched is one of the elevator cars other than one that was originally reallocated or swung into the zone in question based on process (50). Again, the elevator car that is parked is not necessarily the elevator car that is moved back toward the default allocation, although in some instances it can be.
As a result of controller (30) swinging elevator cars (2, 4, 6, 8, 12, 14) to assign and dispatch to landings or zones outside of the designated landings or zones, elevator cars (2, 4, 6, 8, 12, 14) in system (10) arrive to service passenger calls in a decreased amount of time to lower passenger wait times. For instance, in one example where just a single elevator car was added to a group of a zone to assist with traffic a 14.1 second improvement was observed in the average time to destination; a 7.9 second improvement was observed in dispatch interval time from the lobby; and an 8.8 second improvement was observed on the average wait time experienced by passengers.
Although the present example describes elevator cars (2, 4, 6, 8) as being designated for the building passengers and elevator cars (12, 14) as being designated for the public passengers, controller (30) can designate any elevator car (2, 4, 6, 8, 12, 14) to service either building passengers and/or public passengers. In some versions, a specific elevator car (2, 4, 6, 8, 12, 14) and/or amount of elevator cars (2, 4, 6, 8, 12, 14) are permanently assigned to designated landings such that elevator cars (2, 4, 6, 8, 12, 14) are unable to switch outside of the designated landings. In some other versions, a specific elevator car (2, 4, 6, 8, 12, 14) and/or amount of elevator cars (2, 4, 6, 8, 12, 14) are assigned to be switching elevator cars such that only the assigned elevator cars (2, 4, 6, 8, 12, 14) are able to switch outside of its designated landings. For instance, elevator cars (2, 4) can be designated to only service the public passengers, elevator cars (12, 14) can be designated to only service building passengers, and/or elevator cars (6, 8) can be designated to switch between building and public passengers. Also, the parameters in process (50) are adjustable. For example, a user can adjust the values for the maximum ETA, the number of swing elevator cars, and/or the minimum amount of time that an elevator car receives no calls.
In some versions, the building does not have an observation deck (OD) or public passengers that access only a single floor. Instead, the building contains multiple zones with elevator cars that service the passengers to floors within the respective zones. For example, the building can have a high-rise zone, a mid-rise zone, and/or a low-rise zone, each accessible from a lobby floor. Controller (30) can designate and switch elevator cars between various landings and/or zones within the building using processes (50, 70).
In some instances, observation deck (OD) has restricted hours of access compared to the landings between first floor (F1) and top floor (TF). Knowing the time of day, controller (30) can therefore be configured to control swing operation to under more stringent parameters during times where it is known that elevator cars for another zone will not be used. For instance, during times when observation deck (OD) is closed and, elevator cars (12, 14), for example, are available. As such, controller (30) can be configured such that the maximum ETA parameter is set lower during this time to trigger swing operation such that passenger service is further improved by reducing wait times. Once observation deck (OD) is open, the maximum ETA parameter can be automatically reset to a default or another setting. Other suitable configurations for controller (30) and/or processes (50, 70) will be apparent to one with ordinary skill in the art in view of the teachings herein.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometries, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of any claims that may be presented and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
Number | Name | Date | Kind |
---|---|---|---|
3857465 | Iwasaka et al. | Dec 1974 | A |
5024295 | Thangavelu | Jun 1991 | A |
5092430 | Goto | Mar 1992 | A |
5168133 | Bahjat et al. | Dec 1992 | A |
5272287 | Meguerdichian | Dec 1993 | A |
5300739 | Bittar | Apr 1994 | A |
5317114 | Pullela | May 1994 | A |
5460245 | Bittar | Oct 1995 | A |
5480005 | Bittar | Jan 1996 | A |
5511634 | Bahjat et al. | Apr 1996 | A |
5616896 | Kontturi et al. | Apr 1997 | A |
5625176 | Davis et al. | Apr 1997 | A |
5663538 | Sakita | Sep 1997 | A |
5719360 | Davis et al. | Feb 1998 | A |
5808247 | Thangavelu | Sep 1998 | A |
5969304 | Barker et al. | Oct 1999 | A |
6237721 | Siikonen | May 2001 | B1 |
6991068 | Siikonen | Jan 2006 | B2 |
7392883 | Hikita | Jul 2008 | B2 |
7487861 | LaBarre | Feb 2009 | B2 |
7841450 | Smith | Nov 2010 | B2 |
8151943 | de Groot | Apr 2012 | B2 |
8205722 | Suihkonen | Jun 2012 | B2 |
8960374 | Nakagawa | Feb 2015 | B2 |
20090057068 | Lin et al. | Mar 2009 | A1 |
20090133967 | Smith et al. | May 2009 | A1 |
20120090922 | Elomaa et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
0 662 442 | Jul 1995 | EP |
2313453 | Nov 1997 | GB |
Entry |
---|
International Search Report and Written Opinion dated Mar. 30, 2015 for Application No. PCT/US2015/011727. |
Touch to Go Technologies, elevator touchscreen systems, MAD Elevator Fixtures, elevator touchscreen systems. 2013 product catalog, released Apr. 3, 2013. |
Number | Date | Country | |
---|---|---|---|
20150203327 A1 | Jul 2015 | US |