Elevator systems are in widespread use for carrying passengers between various levels in buildings. Various factors affect elevator system operation at different times. For example, building sway conditions may introduce lateral movement of the roping of a traction-based elevator system. A variety of proposals have been made to control an elevator system in a way that should address such sway conditions.
One drawback associated with previous approaches is that the sensor devices that detect sway conditions tend to be expensive and provide limited information. Another issue associated with previous approaches is that they are not well-suited to address the more significant and potentially variable sway conditions that may be present in high rise and ultra-high rise buildings.
An illustrative example method of controlling an elevator situated in a hoistway of a building includes detecting sway of the building, determining characteristics of the detected sway including a plurality of frequencies and associated periods of the sway, determining an expected sway of an elongated member of the elevator system based on the determined characteristics, and controlling at least one of position and movement of an elevator car in the hoistway based on the expected sway.
In an example embodiment having one or more features of the method of the previous paragraph, determining the characteristics comprises determining building sway movement along at least two axes.
In an example embodiment having one or more features of the method of either of the previous paragraphs, detecting the sway of the building comprises detecting the sway using a detector that provides an output indicating an amount of movement along each of at least two axes.
In an example embodiment having one or more features of the method of any of the previous paragraphs, the detector comprises a MEMs accelerometer.
In an example embodiment having one or more features of the method of any of the previous paragraphs, the building has a plurality of major axes, detecting the sway of the building comprises detecting movement along the major axes, respectively, and the determined characteristics include which of the major axes includes the detected sway.
An example embodiment having one or more features of the method of any of the previous paragraphs includes determining at least one critical zone in the hoistway based on the determined characteristics and controlling the at least one of position and movement of the elevator car is based on a location of the critical zone.
In an example embodiment having one or more features of the method of any of the previous paragraphs, determining the at least one critical zone comprises determining sway periods of the expected sway.
An example embodiment having one or more features of the method of any of the previous paragraphs includes determining a relationship between the characteristics of the sway of the building and a configuration of components of the elevator system and controlling the at least one of position and movement of the elevator car is based on the determined relationship.
In an example embodiment having one or more features of the method of any of the previous paragraphs, controlling the at least one of position and movement of the elevator car includes a first control strategy when the determined characteristics comprise a first set of characteristics or a second control strategy when the determined characteristics comprise a second set of characteristics. The first set of characteristics is different than the second set of characteristics and the first control strategy is different than the second control strategy.
An illustrative example control system for an elevator system in a hoistway of a building includes a controller configured to receive an indication of building sway and determine a plurality of characteristics of the detected sway including frequencies and corresponding periods of the sway. The controller determines an expected sway of at least one elongated member of the elevator system based on the characteristics. The controller controls at least one of position and movement of an elevator car in the hoistway based on the expected sway.
In an example embodiment having one or more features of the system of the previous paragraph, the characteristics include building sway movement along at least two axes.
An example embodiment having one or more features of the system of either of the previous paragraphs includes at least one detector that provides the indication of building sway and the at least one detector comprises a MEMs accelerometer.
In an example embodiment having one or more features of the system of any of the previous paragraphs, the building has a plurality of major axes, the detector is situated to detect building movement along the major axes, respectively, and the controller controls the at least one of position and movement of the elevator car based on which of the major axes includes the detected sway.
In an example embodiment having one or more features of the system of any of the previous paragraphs, the controller determines at least one critical zone in the hoistway based on the expected sway, and controls the at least one of position and movement of the elevator car based on a location of the critical zone.
In an example embodiment having one or more features of the system of any of the previous paragraphs, the controller determines the at least one critical zone by determining a plurality of periods of the expected sway.
In an example embodiment having one or more features of the system of any of the previous paragraphs, the controller determines a relationship between the characteristics of the detected sway of the building and an orientation of elevator system components in the hoistway. The controller controls the at least one of position and movement of the elevator car based on the determined relationship.
In an example embodiment having one or more features of the system of any of the previous paragraphs, the controller controls the at least one of position and movement of the elevator car using a first control strategy when a direction of the sway of the building is in a first direction or a second control strategy when the direction of the sway of the building is in a second direction. The first direction is different than the second direction and the first control strategy is different than the second control strategy.
The various features and advantages of an example embodiment will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
Selected portions of an elevator system 20 are schematically illustrated in
The example elevator system 20 is a traction-based system in which a controller 30 controls operation of a machine 32 to cause selected movement of a load-bearing roping assembly 34, which includes round ropes or flat belts for example.
At least one detector 40 is situated on or in the building 28 to detect sway of the building 28. The detector 40 is configured to detect movement of the building 28 along multiple axes, such as those schematically shown at 42, 44 and 46. In some embodiments, the detector 40 is situated to detect movement along the major axes of the building 28. Although a single detector 40 is illustrated for discussion purposes, some buildings 28 will include more than one detector.
The example detector 40 comprises an accelerometer. Some embodiments include a MEMs accelerometer. One feature of such a detector is that it is much less expensive than pendulum-type sway detectors. Additionally, the small size of the detector 40 allows it to be more easily incorporated into a variety of locations within a building or a hoistway.
The detector 40 provides an indication of building movement to the controller 30. The detector 40 provides an indication of an amplitude of the movement, a frequency of the movement and a direction of the movement. In some examples, any movement along each of the three axes 42, 44 and 46 is included with each indication from the detector 40 provided to the controller 30.
The indications from the detector 40 provide the controller 30 with information regarding sway of the building 28. The controller 30 includes a processor or other computing device and memory and is configured to utilize information from the detector 40 for determining characteristics of the sway of the building 28. The controlling at least one of position and movement of the elevator system 20. In most examples, the controller 30 utilizes position or movement information regarding the elevator car 22 for such control. The controller 30 is configured to use information regarding characteristics of the detected sway of the building 28 to select an appropriate control strategy for controlling the position or movement of the elevator. Different building sway conditions will have different effects on the components of the elevator system 20 and, in particular, the elongated members. The controller 30 utilizes information regarding the characteristics of the sway to address the corresponding expected effects on the elevator system 20.
When determining the characteristics of the sway of the building 28, the controller 30 identifies the potential existence of multiple tones in the sway in any single axes. In this example, the “cantilever” modes in the building 28 are of concern and there will generally be two frequencies. The detector 40 is likely not perfectly aligned with the major axes of the building 28 and in each channel there will likely be at least two frequencies.
Part of determining the characteristics of the sway of the building 28 in the example embodiment includes Digital Signal Processing logic. The raw acceleration data along each axis provided by the detector 40 is filtered using a bandpass filter to isolate building motion in the frequency range of interest for building sway detection. An example frequency range is 0.05-1.00 Hz frequency, which has corresponding periods from 1-20 seconds. Such a frequency range avoids being sensitive to high frequency vibration inputs from mechanical components in the building 28, such as the elevator machine 32. This example includes using a moving running average of the sensed accelerations in the two axes to smooth vibrations and to ensure detected building sway conditions are not just one-time or isolated events but are persistent enough to present concerns with sway of the elongated members of the elevator system 20.
At 56, the controller 30 determines an expected sway of the elongated members based on the characteristics of the sway of the building 28. Given information regarding the building design and building sway modes and information regarding the configuration or features of the elevator system components, it is possible to establish relationships between sets of characteristics of the sway of the building 28 and resulting sway of the elevator system elongated members. Some example embodiments include predetermining such relationships using known analytical techniques. The controller 30 uses such relationships to determine expected sway of the elongated members of the elevator system 20.
The expected sways of the elongated members for various sets of characteristics will have multiple frequencies, respectively. The frequencies and corresponding periods of the currently expected sway provide information regarding how the elevator system should be controlled to avoid certain types of elongated member sway. For example, it is desirable to determine which arrangements or conditions of the elevator system components are likely to result in elongated member sway at or near a resonant frequency. The controller 30 uses a control strategy determined based on the expected elongated member sway to avoid such sway conditions.
One example way to avoid such sway conditions includes identifying at least one critical zone within the hoistway 26. A critical zone may be, for example, a portion of the hoistway 26 where the elevator car 22 should not be situated during the sway condition because the corresponding configuration of the load bearing roping assembly 34 or compensation roping assembly 36 may allow the elongated members to experience significant lateral movement within the hoistway 26, which should be avoided. A critical zone may include a parking position for the elevator car 22 that puts the natural sway frequency of the elongated members within 10% of one of the known building sway frequencies. With the elevator car 22 in such locations, the elongated member sway is nearly resonant with the building sway.
The control strategy determined by the controller 30 may include controlling at least one of the position and movement of the elevator car 22 to avoid spending any significant time at or near an identified critical zone during sway events so as to minimize rope sway.
In some embodiments, the controller 30 determines a control strategy from a plurality of possible control strategies based on the determined characteristics of the building sway. For example, the controller 30 has information within memory regarding different relationships between elevator system features and different sets of building sway characteristics. The controller 30 is configured to use such relationships for selecting appropriate control strategy features to ensure a desired elevator system condition or performance during the sway conditions. For example, if the sway involves building movement in a side-to-side or lateral direction relative to the hoistway 26 and the elevator system components in that hoistway, that type of sway will tend to have a different effect than sway in a fore-aft or back-and-forth direction relative to the hoistway 26. With the information regarding the direction of building sway, the controller 30 is able to determine the appropriate control strategy for that sway condition.
The building will experience different types or amounts of sway in different directions. Wind patterns, for example, will be different depending on the location and orientation of the building 28. The direction information from the detector is associated with predetermined expected sway behavior in some embodiments.
In some examples, the detector 40 detects building movement along at least one of the major axes of the building. The control strategy selected by the controller 30 depends, at least in part, on the axis or axes along which the building movement occurs. The building sway period tends to vary depending on the direction of building movement and which of the building axes such movement is along. The controller 30 in the illustrated example is configured to utilize such information for selecting an appropriate control strategy.
The information that the controller 30 has regarding different building sway conditions may be predetermined or determined empirically over time. The effects of the different types of sway or different characteristics of sway on the elevator system 20 and its components may also be predetermined or established empirically over time. The manner in which that information is determined is outside the scope of this disclosure.
At 60, the controller 30 controls at least one of the position or movement of the elevator using the determined control strategy to address the sway conditions indicated by the detector 40.
Elevator system control consistent with the disclosed example embodiment provides more specific and effective control over the position, movement or both of the elevator based upon characteristics of a sway condition. Such response to particular characteristics of building sway, such as the period and direction, improves the ability to maintain a desired condition of elevator system components and achieve a desired elevator system performance.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.
This application is a continuation of U.S. patent application Ser. No. 16/270,009, filed on Feb. 7, 2019.
Number | Name | Date | Kind |
---|---|---|---|
7784590 | Watanabe et al. | Aug 2010 | B2 |
8297412 | Roberts et al. | Oct 2012 | B2 |
8579089 | Hakala et al. | Nov 2013 | B2 |
8939262 | Schienda et al. | Jan 2015 | B2 |
9546073 | Roberts et al. | Jan 2017 | B2 |
20100065381 | Roberts et al. | Mar 2010 | A1 |
20100213013 | Urata | Aug 2010 | A1 |
20130133983 | Mangini et al. | May 2013 | A1 |
20130173206 | Benosman | Jul 2013 | A1 |
20130121374 | Halaka et al. | Aug 2013 | A1 |
20130213742 | Hakala et al. | Aug 2013 | A1 |
20130275081 | Benosman | Oct 2013 | A1 |
20140069747 | Benosman | Mar 2014 | A1 |
20140124300 | Benosman | May 2014 | A1 |
20150008075 | Benosman | Jan 2015 | A1 |
20150027814 | Benosman | Jan 2015 | A1 |
20150166304 | Roberts et al. | Jun 2015 | A1 |
20170210597 | Seki | Jul 2017 | A1 |
20170260025 | Benosman et al. | Sep 2017 | A1 |
20170341904 | Kitajima | Nov 2017 | A1 |
20180016117 | Palazoola et al. | Jan 2018 | A1 |
20180106696 | McClure et al. | Apr 2018 | A1 |
20190177126 | Murata | Jun 2019 | A1 |
20190292015 | Scoville et al. | Sep 2019 | A1 |
20200239274 | Gurvich | Jul 2020 | A1 |
20200239278 | Murata | Jul 2020 | A1 |
20200255260 | Roberts et al. | Aug 2020 | A1 |
20200299101 | Puranen et al. | Sep 2020 | A1 |
20200407191 | Roberts | Dec 2020 | A1 |
20210094793 | Saito et al. | Apr 2021 | A1 |
20210221645 | Kwon | Jul 2021 | A1 |
20210339982 | Kwon et al. | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
101563285 | Oct 2009 | CN |
202177637 | Mar 2012 | CN |
103359570 | Sep 2015 | CN |
105293238 | Feb 2016 | CN |
106573753 | Sep 2019 | CN |
3693315 | Aug 2020 | EP |
123182 | Dec 2012 | FI |
S61114982 | Jun 1986 | JP |
2004250217 | Sep 2004 | JP |
2008044701 | Feb 2008 | JP |
2009220995 | Oct 2009 | JP |
2013500222 | Jan 2013 | JP |
2016108125 | Jun 2016 | JP |
10201500516 | Aug 2015 | SG |
2007067491 | Jun 2007 | WO |
WO-2007099619 | Sep 2007 | WO |
WO-2008079145 | Jul 2008 | WO |
WO-2009116986 | Sep 2009 | WO |
WO-2012117479 | Sep 2012 | WO |
2013084154 | Jun 2013 | WO |
WO-2016018786 | Feb 2016 | WO |
WO-2020157822 | Aug 2020 | WO |
Entry |
---|
Extended European Search Report for Application No. EP 19 21 5773 dated Jul. 10, 2020. |
Japanese Patent Application No. JP 2019-235617, Notice of Reasons for Rejection dated Dec. 7, 2021. |
Number | Date | Country | |
---|---|---|---|
20220267118 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16270009 | Feb 2019 | US |
Child | 17683655 | US |