The present disclosure refers to an elevator system particularly for high buildings.
As it is known, an elevator system generally comprises an elevator car connected to a counterweight through a hoisting cable. The hoisting cable passes on a sheave or on a sheave system usually placed at the top of the hoistway and that is provided with a motor that, by actuating the sheave or the sheave system, moves upward or downward the elevator car by the hoisting cable. The hoisting cable is usually made by one or more steel ropes or belts.
Generally, the elevator system also comprises a travelling cable for transmitting electric power and data signals to the elevator car. In particular, a travelling cable can transmit the electric power for the service appliances of the elevator car, such as the lighting devices, the displays, the interphone, the air-conditioning system, the ventilation system and so on. As “service appliances” of the elevator car are meant all the appliances not involved in the movement of the elevator car. The travelling cable is usually made of a sheath containing electric conductors, optionally coated by an insulating layer, and/or data carriers like optical fibers.
The travelling cable is usually fixed at one end to the elevator car and at the other one end to an electrical distribution spot placed on one side wall of the hoistway, for example at an intermediate position with respect to the longitudinal length of the hoistway. The travelling cable bends and extends following the movements of the car.
In view of the increasing demand for higher and higher buildings, new challenges are posed in manufacturing elevator systems, in particular relating to the travelling cable.
The travelling cable, especially for an elevator for high building, can give rise to problems due to its swaying.
In an elevator system for high building, the elevator car can move very fast, for example at about 10 m/s. The acceleration and speed of the elevator car can cause the generation of a strong turbulence within the hoistway walls. Such turbulence, but also a building motion (in case, for example of weather challenging conditions or earthquake), can cause the travelling cable—free-hanging between the elevator car and the hoistway walls—to oscillate.
Depending on the cable form (especially when flat) and/or on the cable length, the oscillation (or swaying) can build up to large amplitudes, which can result in the travelling cable entangling with hoistway protrusion and/or suffering wearing phenomena, e.g. by rubbing against the hostway walls.
If the travelling cable rubs against the walls or gets hooked in an element in the hoistway, it will rapidly deteriorate and it will need to be substituted, increasing maintenance costs.
Moreover, since the travelling cable is usually designed to survive for a range of working cycles, the additional rapid deformations given by oscillations may cause fatigue related problems.
For the above reasons, an elevator system, especially for high building, may also needs a system to prevent the swaying of the travelling cable.
CN101549816 discloses a swing damping device for travelling cable wherein the cable is integrally mounted with a flexible hollow tube. A liquid or powder is sealed in the hollow tube and is made to stay at bending U-shaped part of the cable.
In one embodiment, an elevator system comprises an elevator car comprising one or more service appliances; a hoistway in which the elevator car moves; a feed source and a fluid source associated to/in a hoistway wall; and a travelling cable connected to the elevator car and to the hoistway wall. The travelling cable comprises an electric conductor and/or a data carrier operatively connected at a first end to the feed source and at a second end to the service appliances of the elevator car, a protective layer comprising an outer diameter and surrounding the electric conductor and/or data carrier, and a duct connected at a first open end to the fluid source and at a second openable end to the elevator car. The elevator system comprises a sensor system configured for detecting a swaying amplitude of the travelling cable; and a microprocessor associated to the sensor system and to the fluid source, the microprocessor being configured for receiving the swaying amplitude data from the sensor system and for operating the fluid source when the swaying amplitude exceeds a predetermined threshold.
In another embodiment, an elevator system comprises a travelling cable connected to an elevator car and to a hoistway wall. The travelling cable comprises an electric conductor and/or a data carrier operatively connected at a first end to a feed source and at a second end to service appliances of the elevator car, a protective layer comprising an outer diameter and surrounding the electric conductor and/or data carrier, and a duct connected at a first open end to a fluid source and at a second openable end to the elevator car. The elevator system comprises a sensor system configured for detecting swaying amplitude of the travelling cable; and a microprocessor associated to the sensor system and to the fluid source, the microprocessor being configured for receiving swaying amplitude data from the sensor system and for operating the fluid source when the swaying amplitude exceeds a predetermined threshold.
In another embodiment, a method for operating an elevator system comprises providing an elevator car in a hoistway having at least one wall; providing a feed source and a fluid source associated to/in a hoistway wall; and providing a travelling cable connected to the elevator car and to the hoistway wall. The travelling cable comprises: an electric conductor and/or data carrier operatively connected at a first end to the feed source and at a second end to a service appliance of the elevator car, a protective layer surrounding the electric conductor and/or data carrier, and a duct connected at a first open end to the fluid source and at a second openable end to the elevator car. The method further includes providing a sensor system associated to the elevator car and/or to the hoistway; providing a microprocessor associated to the sensor system and to the fluid source; setting a threshold for a swaying amplitude of the travelling cable; detecting, by the sensor system, the swaying amplitude of the travelling cable during the operation of the elevator system; sending data relating the swaying amplitude detected at the sensor system to the microprocessor; and at the crossing of the threshold, operating the fluid source to pressurize the duct of the travelling cable until the swaying amplitude of the travelling cable returns below the threshold, wherein swaying of the travelling cable is damped by the operating.
Further characteristics will be apparent from the detailed description given hereinafter with reference to the accompanying drawings, in which:
The Applicant has faced the problem of limiting the possible swaying of the travelling cable in elevator system, especially for very high buildings.
The Applicant found that the travelling cable swaying can be damped by changing the flexibility of the travelling cable, in particular by stiffening the travelling cable in response to a selected swaying amplitude.
Then, the Applicant realized to provide a duct in the travelling cable and to connect the duct to a fluid source to be operated to pressurize the duct, thus stiffening the travelling cable.
The pressurization of the cable duct changes the oscillatory properties of the travelling cable and in particular damps the excited oscillation modes that causes the swaying of the travelling cable beyond the acceptability limits.
Moreover, the Applicant has thought to provide the elevator system with a sensing system capable of detecting the swaying of the travelling cable; in this way, it is possible to control the fluid source operation and, accordingly, the stiffness and the swaying degree of the trailing cable on the basis of the detection of the sensing system.
According to a first embodiment, the present disclosure relates to an elevator system comprising: an elevator car comprising one or more service appliances; a hoistway in which the elevator car moves; a feed source and a fluid source associated to/in a hoistway wall; a travelling cable connected to the elevator car and to the hoistway wall, wherein the travelling cable comprises: an electric conductor and/or a data carrier operatively connected at a first end to the feed source and at a second end to the a service appliance of the elevator car; a protective layer having an outer diameter and surrounding the electric conductor and/or data carrier; and a duct connected at a first open end to the fluid source and at a second openable end to the elevator car; a sensor system configured for detecting swaying amplitude of the travelling cable; and a processing and control unit associated to the sensor system and to the fluid source, the processing and control unit being configured for receiving swaying amplitude data from the sensor system and for operating the fluid source when the swaying amplitude exceeds a predetermined threshold.
For the purpose of the present description and claims, as “feed source” is meant a source providing electric current and/or data.
In a second aspect, the present disclosure relates to a method for damping the swaying amplitude of a travelling cable in an elevator system, the method comprising: providing an elevator car in a hoistway having at least one wall; providing a feed source and a fluid source associated to/in a hoistway wall; providing a travelling cable connected to the elevator car and to the hoistway wall, wherein the travelling cable comprises: an electric conductor and/or data carrier operatively connected at a first end to the feed source and at a second end to a service appliance of the elevator car; a protective layer surrounding the electric conductor and/or data carrier; and a duct connected at a first open end to the fluid source and at a second openable end to the elevator car; providing a sensor system associated to the elevator car and/or to the hoistway; providing a processing and control unit associated to the sensor system and to the fluid source; setting a threshold of the travelling cable swaying amplitude; detecting the swaying amplitude of the travelling cable by the sensor system; sending swaying amplitude data from the sensor system to the processing and control unit; at the crossing of the threshold, operating the fluid source to pressurize the duct of the travelling cable until the travelling cable swaying amplitude returns below the threshold.
In the elevator system of the present disclosure, the data carrier comprised in the travelling cable can be a copper pair and/or an optical fiber (an optical waveguide surrounded by one or more protective layers).
In the elevator system of the present disclosure, the travelling cable can comprise one or more ducts.
In an embodiment, the protective layer of the travelling cable surrounds the duct, too, which is in form of a tube.
In an alternative embodiment, the travelling cable comprises a jacket surrounding the protective layer and the duct, which is in form of a tube.
These embodiments ease the connection of the travelling cable to the feed source and to the fluid source.
In a further embodiment, the travelling cable comprises a jacket and a gap between the jacket inner diameter and the outer diameter of the protective layer, such gap being the duct.
In this case the change of the flexibility of the travelling cable due to the pressurization of the duct is very fast since the duct has a cross-section enveloping the cross-section of the protective layer.
In the elevator system of the present disclosure, the first end of the travelling cable connecting the electric conductor and/or data carrier to the feed source is adjacent, though operatively separated, to the first open end of the duct connected to the fluid source. Analogously, the second end of the travelling cable operatively connected to a service appliance of the elevator car is adjacent, though operatively separated, to the second openable end of the duct.
In an embodiment, the sensor system comprises a sensing tool in form, for example, of an optical fiber shape sensor provided in the travelling cable, for example within the protective layer, and operatively connected to an optical equipment associated to/in the elevator car or the hoistway wall in order to detect deformation of the travelling cable. This configuration of the sensor system is more easy to install since the sensing tool is directly included into the travelling cable and therefore it takes just to install an optical equipment, for example in the hostway wall. In an embodiment, the optical equipment is installed at a position in the vicinity of the fluid source and of the feed source.
In an embodiment, the fluid source and the power source are installed at about halfway the elevator car run.
According to this embodiment, the processing and control unit is connected to the optical equipment and in this embodiment, the processing and control unit is programmed to operate (or not) the fluid source on the basis of deformations (like torsion, elongation, etc.) of the travelling cable caused by the swaying amplitude and detected by the optical fiber shape sensor and the optical equipment.
In an alternative embodiment, the sensor system comprises a position monitoring system with one or more cameras associated to the elevator car or to the hoistway. The cameras are positioned to detect the displacement of the travelling cable in a plane transverse to the longitudinal axis of the hoistway.
In this case, the processing and control unit is programmed to process the images acquired by the camera/s for determining the crossing of the threshold of the swaying amplitude and for operating (or not) the fluid source accordingly.
In a further alternative embodiment the sensor system comprises a laser based monitoring system comprising a plurality of laser telemeters associated to the elevator car and/or the hoistway, for example in the hoistway bottom.
In an embodiment, the plurality of laser telemeters is positioned in a substantially circular array in/on the elevator car outer bottom facing the hostway floor or in/on the hostway floor within the orthogonal projection of the elevator car. Laser telemeters are to be positioned so as to avoid intercepting the normal course of the trailing cable from the first end towards the second end, and any swaying amplitude below the predetermined threshold.
In this case the processing and control unit is programmed to determine the swaying amplitude on the basis of the displacement of the travelling cable detected by the laser telemeters.
In this way, the detection of the swaying amplitude can be very accurate.
In an embodiment, the elevator system comprises an auxiliary fluid source associated to/in the elevator car and operatively connected to the second openable end of the travelling cable duct and to the processing and control unit, the latter being configured for operating the auxiliary fluid source in order to pressurize the duct by means of the combined action of the fluid sources.
For the purpose of the present description and of the claims that follow, except where otherwise indicated, all numbers expressing amounts, quantities, percentages, and so forth, are to be understood as being modified in all instances by the term “about”. Also, all ranges include any combination of the maximum and minimum points disclosed and include any intermediate ranges therein, which may or may not be specifically enumerated herein.
Also, the terms “a” and “an” are employed to describe elements and components of the disclosure. This is done merely for convenience and to give a general sense of the disclosure. This description should be read to include one or at least one, and the singular also includes the plural unless it is obvious that it is meant otherwise.
An elevator system 100 according to the present disclosure is shown in
The elevator system 100 comprises an elevator car 110, a hoistway 200 in which the elevator car 110 can move, a counterweight 120, a hoisting cable 130 connecting the elevator car 110 to the counterweight 120 and a travelling cable 300 connected to the elevator car 110 and to a hoistway wall 210.
In particular, the hoisting cable 130 passes on a sheave or sheave system 140 usually placed at the top of the hoistway 200. The sheave or sheave system 140 is operatively connected to a motor 150 actuating the sheave or sheave system 140 to make moving the elevator car 110 upward or downward by the hoisting cable 130.
The motor 150 is operatively connected to a controller 160 configured to actuate the motor 150 according to a command signal generated by a user, for example by pushing the call button for the elevator car 110.
The elevator car 110 can comprise one or more electrical service appliances, like, for example, one or more lighting devices, one or more displays, the interphone, the air-conditioning system, the ventilation system and so on.
A feed source 170 and a fluid source 180 are associated to/in the hoistway wall 210. In particular, they are positioned close to each other at the connection point of the travelling cable 300.
The feed source 170 can be suitable for supplying electric power for the one or more electrical service appliances of the elevator car 110. For example, the feed source 170 is suitable for supplying an electric power amounting to 1 kW, or 3 kW, or 8 kW. In addition or alternatively, the feed source 170 can provide data, like temperature value for adjusting the air-con, and technical info for the operation of the elevator car.
The fluid source 180 can be a pump connected to a tank containing a liquid or to the water supply system, or a compressor.
As from
The duct 320 is operatively connected at a first open end to the fluid source 180 and at a second openable end to the elevator car 110.
In the travelling cable 300 of
In the travelling cable 300 of
While in the embodiments of
With reference to
As from
The elevator system 100 further comprises a sensor system associated to the elevator car 110 and/or to the hoistway 200; such a sensor system is configured for detecting swaying of the travelling cable 300.
According to the embodiment illustrated in
The optical equipment 420 is, for example, an optical spectrum analyzer.
The sensing tool in form of an optical fiber shape sensor is an optical fiber that presents along its longitudinal axis a Bragg-grating structure. Such a sensing tool allows to detect the deformation of the travelling cable in which is included, and consequently to estimate the amplitude of the travelling cable swaying.
Alternatively, as illustrated in
In a further alternative embodiment, illustrated in
As from
As “swaying amplitude” it is meant the distance on a plane transverse to the longitudinal axis of the hoistway between the orthogonal projection of the connection point of the travelling cable 300 to the elevator car 110 and the orthogonal projection of the bending point of the travelling cable 300.
The processing and control unit 500 is, in particular, programmed to receive and to process the detections of the sensor system components 410, 420, 430, 440 so as to obtain the value of the amplitude of the travelling cable swaying.
In particular, in the embodiment of
In the embodiment of
In the embodiment of
In any case, the predetermined threshold, as well as the control strategy of the fluid source 180 and eventually of the auxiliary fluid source 190, can be set by a user through a terminal before or after the commissioning of the elevator system.
Number | Date | Country | Kind |
---|---|---|---|
102019000001257 | Jan 2019 | IT | national |
This application is a continuation of U.S. application Ser. No. 16/775,043, filed on Jan. 28, 2020, which application claims the benefit of Italian Patent Application No. 102019000001257 filed on Jan. 29, 2019, which applications are hereby incorporated herein by their reference.
Number | Name | Date | Kind |
---|---|---|---|
4072213 | Salmon | Feb 1978 | A |
5861084 | Barker | Jan 1999 | A |
7793763 | Zhu | Sep 2010 | B2 |
20030173556 | Watson | Sep 2003 | A1 |
20120097487 | Winey | Apr 2012 | A1 |
20120125720 | Roberts | May 2012 | A1 |
20140345978 | Alasentie et al. | Nov 2014 | A1 |
20140353091 | Fauconnet et al. | Dec 2014 | A1 |
20170260025 | Benosman et al. | Sep 2017 | A1 |
20180265327 | Benosman | Sep 2018 | A1 |
20190119070 | Kang | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
101549816 | Oct 2009 | CN |
102471021 | May 2012 | CN |
63120312 | Aug 1988 | JP |
05186164 | Jul 1993 | JP |
H05186164 | Jul 1993 | JP |
2009126618 | Jun 2009 | JP |
2017160050 | Sep 2017 | JP |
Number | Date | Country | |
---|---|---|---|
20240017963 A1 | Jan 2024 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16775043 | Jan 2020 | US |
Child | 18352814 | US |