This application is a U.S. National Stage application of PCT/EP2015/055974, filed Mar. 20, 2015, which claims priority to European Application No. 14382104.9, filed Mar. 26, 2014, the contents of all of which are hereby incorporated by reference in their entirety.
The present disclosure relates to elevator systems and wind turbines comprising such elevator systems.
Modern wind turbines are commonly used to supply electricity into the electrical grid. Wind turbines generally comprise a rotor with a rotor hub and a plurality of blades. The rotor is set into rotation under the influence of the wind on the blades. The rotation of the rotor shaft drives the generator rotor either directly (“directly driven”) or through the use of a gearbox. The operation of the generator produces the electricity to be supplied into the electrical grid.
When maintenance works are required inside wind turbines, hoists are often used in the form of elevator-like structures where a lift platform or a cabin for the transportation of people and/or equipment is hoisted up and/or down within the wind turbine tower. Wind turbines are often provided with working platforms arranged at various heights along the height of the tower with the purpose of allowing workers to leave the cabin and inspect or repair equipment where intended. These sorts of elevator systems are also known in other applications, such as e.g. factories, construction sites, and all sorts of towers.
Elevator systems, in general, include an elevator car being suspended within a hoistway by ropes, cables or belts. In some systems, e.g. some electric elevators, a counterweight may be provided, depending on e.g. the available space. Other systems such as hydraulic elevators normally do not comprise a counterweight. Typically, elevator systems include a moving or travelling cable for supplying electric power to the elevator cabin and/or for signal communication between components associated with the elevator car/cabin and a control panel provided in a fixed location relative to the hoistway.
Elevator systems of the type that are “ladder-guided” or “cable-guided” normally comprise traction and/or safety wire ropes that run free in a direction parallel to the movement of the elevator car.
In use, there may be circumstances in which the traction and/or safety wire ropes may begin to move and sway within an elevator hoistway or the wire ropes can become tangled up in themselves. This is most prominent in high slender structures, such as e.g. tower of larger (MW class) wind turbines, in which the tower may oscillate significantly. In these cases, the traction and/or safety wire ropes can also strike the working platforms, platform fences or tower flanges provided inside the hoistway. Even in some circumstances, e.g. inside a tower of larger wind turbines, the traction and/or safety wire ropes may come in contact with or potentially get entangled with the power cables from the wind turbine generator.
Other circumstances in which the traction and safety wire ropes may come in contact with other components may occur in wind turbine towers in which an elevator path may be curved, e.g. because at the base there is an electronic compartment on one side or because the available space for housing the elevator and e.g. the ladder, requires a change in the orientation of the elevator. Since the traction and safety wire ropes run free, they seek to straighten out. This may result in them striking or interfering with the working platforms, tower flanges or a ladder provided at the hoistway inner surface.
Further circumstances that result in the traction and safety wire ropes touching parts within a tower relate to the shape of the towers. In some cases, a major or minor tapering of the tower is required e.g. due to a change of the material from which the tower is built. For example, a bottom portion of a tower may be made from concrete and an upper portion of the tower may be made from steel. In these situations the distance of the wire ropes to the inner walls of the tower may vary from one section to the other and the orientation of the elevator may need to be changed. Again, as the traction and safety wire ropes seek to straighten out, this may result in the wire ropes striking the working platforms or tower flanges provided on the inner surface of the hoistway.
As mentioned above, in such tall structures, in general, elevator ropes and cables, which may include hoist ropes, compensation ropes, governor ropes, and travelling cables, may vibrate in harmony with the wind induced sway of the structure and other dynamic factors affecting the structure. Particularly in wind turbines, several loads such as for example aerodynamic forces associated with the wind, rotor rotation, etc. may act on the structure. These loads may further be increased in offshore wind turbines by the forces exerted by waves, currents and tides in case of offshore structures.
The aforementioned loads can produce vibrations and sway of the ropes and cables which may cause fatigue and wear, excessive noise, and the increased possibility of tangling thus potentially shortening the lifetime of the ropes and cables and complicating normal operation of the elevator system.
There is thus a need for reliable and effective elevator systems which reduce or eliminate at least some of the afore-mentioned drawbacks.
According to a first aspect, an elevator system is provided. The elevator system comprises an elevator cabin, and a traction wire rope for driving the elevator cabin and/or a safety wire rope. The elevator system further comprises an upper transverse element provided above the elevator cabin and adapted to be guided along the traction wire rope and/or the safety wire rope, and a support structure, which is adapted to support the upper transverse element and substantially impede its movement in a downwards direction and in a horizontal direction, and to allow movement of the upper transverse element in an upwards direction.
According to this aspect the upper transverse element resting on a support structure provides a spacer for the wires (traction and/or safety wire ropes) with respect to other components such as the ladder, working platforms, tower flanges or even the inner wall of a hoistway. Such a support structure may be provided at some point along the hoistway. Throughout the present description and claims, hoistway is to be understood as the space for the travel of an elevator. Hoistway herein thus covers any open or closed space suitable for the travel of an elevator.
Furthermore, since the support structure provides the upper transverse element with a degree of freedom in the upwards direction while substantially limiting downwards and horizontal movements of the upper transverse element, the support structure allows normal operation of the elevator cabin. This means that the upper transverse element does not impede normal operation of the elevator cabin, or what is the same, the cabin can go up and down throughout the hoistway and the upper transverse element does not hamper its career in any direction. This can be achieved because, in use, when the cabin is going upwards and reaches a position of a support structure, i.e. a position in which an upper transverse element rests, the elevator cabin pushes the upper transverse element from below thus dragging it with the cabin in an upwards movement. And when, the cabin is going downwards and reaches the position of a support structure, the upper transverse element is left supported by the support structure while the elevator cabin continues it downwards path. In this case, especially when the cabin is at a lower position with respect to the support structure, the upper transverse element aids stabilizing the traction and/or security wire ropes even when loads producing vibrations and sway of the wire ropes are acting. Tangling up of the wire ropes in them can also thus be avoided or substantially reduced with the provision of this transverse element. The wire ropes are thus subjected to less stress therefore extending its lifetime.
In summary, a system substantially as hereinbefore described restricts movements of the traction and/or security wire ropes housed inside the hoistway thus avoiding, or at least reducing, the striking of these wires with other components arranged in the hoistway such as working platforms, platform fences, the ladder or even the inner wall of the hoistway. Also, in those cases in which e.g. a distance between the ladder and the wires is not enough to allow safe climbing of users, the upper transverse element can provide the required distance between the ladder and the wires, i.e. it may act as a spacer. An upper transverse element substantially as hereinbefore described further aids reducing entangling of the wires with themselves.
Furthermore, the provision of the upper transverse element substantially as hereinbefore described is relatively simple to implement. It can therefore be easily retrofitted into existing elevator installations having traction and/or security wire ropes. In some examples, the upper transverse element may be built in two or more portions formed such that they are put together around the traction and/or security wire ropes. In these cases, mounting an upper transverse element in existing elevator installations having traction and/or security wire ropes may be done by simply joining together the two or more portions around the traction and/or security wire ropes. Dismantling of the traction and/or security wire ropes could thus even be avoided.
In some examples, the upper transverse element may have a size in at least a direction transverse to elevator cabin up and down movement that is adapted to be larger than that of the elevator cabin in that direction. This way, when the elevator cabin goes downwards the upper transverse element can rest in the support structure that may be provided along the hoistway and the support structure does not interfere with elevator cabin movement. The support structure may be provided anywhere along the elevator path. In alternative examples, the support structure may be foldable or retractable in order to allow movement of the elevator cabin.
In some examples, the elevator cabin may comprise a buffer element arranged on top of the elevator cabin and adapted to contact the upper transverse element. A buffer element provided on top of the elevator cabin ensures a smooth contact of the cabin with the upper transverse element when the cabin is moving upwards. This reduces impacts received by the elevator cabin.
In some examples, the elevator system may further comprise a travelling cable for supplying energy to the elevator cabin and a pulley system movably suspended on the travelling cable. In some of these cases, the pulley system may further be adapted to be guided along the traction and/or security wire ropes and may comprise a lower transverse element having one end attached to the pulley system and the other end adapted to be slidably arranged with respect to rigid guiding elements adapted to guide the elevator cabin such as a ladder, a pair of taut cables or similar.
In these examples, since the pulley system is movably suspended from the travelling cable, in use, the pulley system can self-travel along the travelling cable. Such a motion of the pulley system on the travelling cable straightens the travelling cable at all possible positions. Furthermore, the provision of a lower transverse element having one end attached to the pulley system and the other end slidably arranged with respect to the rigid guiding elements adapted to guide the elevator cabin, together with the motion of the pulley system along the travelling cable entails a slide of the lower transverse element along such rigid guiding elements. Thus, the lower transverse elements act as a spacer between the pulley system and the rigid guiding elements that guide the elevator and as the pulley system is further adapted to be guided by the traction and/or security wire ropes, the lower transverse element substantially stabilizes the traction and/or security wire ropes and the travelling cable position even when loads producing vibrations and sway of the wires are acting. Tangling up of the wires can also thus further be avoided or substantially reduced with the provision of such spacers, i.e. lower transverse elements. The wires are thus subjected to less stress therefore extending their lifetime.
Throughout the present disclosure, pulley is to be understood as covering any form of wheel or roller that guides or redirects a cable or wire rope along its circumference. Pulley herein thus covers e.g. sheaves with a specific groove around its circumference between two flanges, but also any other form of cable guiding wheel.
The elevator systems substantially as hereinbefore described may be adapted or configured for a particular application, such as e.g. a wind turbine tower.
In accordance with another aspect, a wind turbine comprising an elevator system substantially as hereinbefore described arranged within a wind turbine tower is provided.
Non-limiting examples of the present disclosure will be described in the following, with reference to the appended drawings, in which:
The elevator cabin 1 may be guided by a ladder 11 arranged on an inner surface of the hoistway (not shown) of the elevator system, for example an inner surface of a wind turbine tower. In this example, at least two pairs of runners 111 (only one visible in
In alternative examples, the upper transverse bar may further be adapted to be guided by the ladder e.g. by having a suitable shape or support at its ends. These ends may thus be adapted to be slidably mounted with respect to the ladder.
In alternative examples, the elevator cabin may be guided by or around other rigid guiding elements such as a guide rail arranged on the inner surface of the hoistway or a pair of taut cables running e.g. laterally from the elevator cabin. Combinations of these examples may also be foreseen. In these examples, the upper transverse bar may further be guided by the rigid guiding elements adapted to guide the elevator cabin. In that sense its ends may be adapted to be slidably mounted with respect to the rigid guiding elements adapted to guide the elevator cabin.
An upper transverse bar 20 adapted to be guided along the traction wire rope 7 and safety wire rope 8 may be provided above the elevator cabin 1. And the elevator cabin 1 may comprise a further bar 16 mounted at its top and adapted to contact the upper transverse bar 20 from below. The bar 16 of the elevator cabin 1 may further comprise springs 161 or any other resilient element providing damping properties so as to work as a bumper guard for the cabin 1. In alternative examples, instead of a bumper guard provided in the elevator cabin, springs or other resilient elements may be directly provided in a bottom side of the upper transverse bar in order to dampen impacts from the cabin. In further examples, a top part of the cabin and a bottom side of the upper transverse bar may both comprise springs or resilient elements.
An effect of bumper guards or another damping element on the elevator cabin and/or on the upper transverse bar is that an impact with corresponding possible damage may be avoided. Another effect is that since the encounter between elevator cabin and upper transverse bar is softened, it does not trigger an automatic stop of the elevator cabin. Such an automatic stop may take place when a real collision takes place.
In alternative examples, other ways of adapting the upper transverse bar to be guided along the traction and/or safety wire ropes may also be foreseen, e.g. the provision of rollers or runners slidably arranged with respect to the wire ropes and attached to the bar or the provision of eyelets fixed to the bar.
In some examples, the orifices 21 may be provided with pneumatic clamps or similar adapted to close the orifice towards the traction and/or safety wire ropes depending on circumstances, e.g. when the elevator cabin 1 is in standstill.
A pair of brackets 22 may be provided on a platform fence 15 provided along the hoistway. Each bracket 22 may comprise e.g. a lower base and three lateral walls such that the bracket 22 may be adapted to support the upper transverse bar 20 and substantially impede downwards and horizontal movement of the bar 20 and allow upwards movement of the bar 20.
In alternative examples, the brackets may be provided directly in working platforms or in tower flanges provided along the hoistway.
In some examples, the brackets may comprise active parts such as hydraulic or pneumatic clamps so as to close the support once the bar is resting on the brackets lower base. In these cases, the bar can be safely housed within the brackets e.g. when the elevator cabin is at a position below that of the brackets and/or moving downwards. This ensures a correct positioning of the bar in the brackets (support structure) which is desirable especially in high slender structures, such as e.g. tower of larger wind turbines, in which the tower may oscillate significantly. In alternative examples, instead of active parts provided in the brackets (support structure), the active parts may be directly provided in the upper transverse element. In further examples, the support structure and the upper transverse element may both comprise active parts.
In some examples, the upper transverse bar may have a size in at least a direction transverse to elevator cabin up and down movement (arrow A) that is adapted to be larger than that of the elevator cabin in that direction. This may be done by simply providing a larger bar. In further examples, end portions of the upper transverse bar in the direction in which it is adapted to be larger than the elevator cabin may comprise extensions. In still further examples, the end portions may be foldable, removable or retractable. Furthermore the brackets may protrude from the inner hoistway surface a distance such that movement of the cabin in between two brackets of the pair is allowed. This way, when the elevator cabin is moving upwards and reaches e.g. the upper transverse bar it can push the bar and continue its upwards career and when the cabin is moving downwards and reaches the height at which the brackets are mounted, the bar can rest in the brackets and the cabin can continue its downwards career. This means that the brackets are dimensioned such that they do not interfere with elevator cabin up and down movement.
In the example of
In some examples, the position of each pair of brackets may be such that each pair of brackets 22′ and 22″ coincides e.g. with a working platform. In others, the position of each pair of brackets is such that when the elevator cabin is in a position closer to the ground level GL the bars 20′ and 20″ supported by the brackets 22′ and 22″ act as spacers for the traction 7 and safety 8 wire ropes along the height of the hoistway. The height along the hoistway at which each pair of brackets may be provided may depend on the total height of the hoistway and e.g. the inclination of its inner wall.
In the example of
In further examples, more upper transverse elements, each with a respective support structure provided along the hoistway, may be provided. Support structures may be provided anywhere in the path of the elevator cabin, and in particular somewhere in the upper half of the path. Each upper transverse element and each bracket may be made substantially as hereinbefore described. When more than one upper transverse elements are provided, the size of the elements may increase from the transverse element provided closer to ground level GL as explained above in connection with
In the example of
Two lower transverse arms 6 may each extend laterally from the pulley system 18. Each lower transverse arm 6 may extend substantially perpendicular to an up and down movement of the elevator cabin 1. Each lower transverse arm 6 may comprise free ends 61 comprising each a pair of wheels or runners 62 for slidably arranging the pulley system 18 with respect to the ladder 11. In alternative examples only one transverse arm may be provided. An aspect of using a single transverse arm is that it may be less costly.
In some examples, the transverse arms may be made with the pulley system as an integral piece or they may be welded to the pulley system. In other cases, they may be fixed to the pulley system by e.g. screws or bolts.
The elevator cabin 1 may further be provided with feet 9 made for example of rubber, providing a distance between a bottom portion of the elevator cabin and a bottom platform floor when the elevator cabin reaches the bottom platform floor.
The pulley system 18 may further comprise at least one flange 52 having two holes 53 for guiding traction and/or safety wire ropes of the elevator system. In alternative embodiments other number of holes may be provided. In some cases the flange 52 may be integrally formed with the pulley system 18. In others, it may be welded or it may be fixed with screws.
Although only a number of examples have been disclosed herein, other alternatives, modifications, uses and/or equivalents thereof are possible. Furthermore, all possible combinations of the described examples are also covered. Thus, the scope of the present disclosure should not be limited by particular examples, but should be determined only by a fair reading of the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
14382104 | Mar 2014 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/055974 | 3/20/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/144593 | 10/1/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
249076 | Moulton | Nov 1881 | A |
623079 | Ellingwood | Apr 1899 | A |
1386253 | Heyl | Aug 1921 | A |
3666051 | Davis | May 1972 | A |
3866718 | Hiergeist | Feb 1975 | A |
4072213 | Salmon | Feb 1978 | A |
4117908 | Nara | Oct 1978 | A |
5427327 | Anderson et al. | Jun 1995 | A |
6047792 | Jin | Apr 2000 | A |
8047335 | Fargo | Nov 2011 | B2 |
10099895 | Miseur | Oct 2018 | B2 |
20110248506 | Ruiz Urien et al. | Oct 2011 | A1 |
20110266096 | Nies | Nov 2011 | A1 |
20170369281 | Miseur | Dec 2017 | A1 |
20180327226 | Miyajima | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
202272600 | Jun 2012 | CN |
10 2011 100 770 | Mar 2012 | DE |
102011100770 | Mar 2012 | DE |
2457863 | May 2012 | EP |
11209031 | Aug 1999 | JP |
2007284222 | Nov 2007 | JP |
2009-18899 | Jan 2009 | JP |
2012052583 | Apr 2012 | WO |
Entry |
---|
Prof. Pott, LL.M., Notice of Opposition dated Feb. 8, 2019, EP Patent No. EP 2923988 B1, 15 pages (including English translation). |
Carpmaels & Ransford, Statement of Grounds of Opposition, EP Patent No. EP 2923988, pp. 1-16. |
Avanti Wind Systems, Avanti Wind Systems in service agreement for 500 turbine tow, Renewable Energy Magazine, Jan. 30, 2019, pp. 1-2. |
American Society of Mechanical Engineers, Part 5 Special Application Elevators, ASME A17.1-2013/CSAB44-13, pp. 169 and 216. |
Kathie Zipp, “Long overdue: A national standard for wind tower service lifts”, Mar. 5, 2012, https://www.windpowerengineering/.com/operations-maintenance/safety/long-overdue-a-national-standard-for-wind-tower-service-lifts/, accessed Feb. 7, 2019, pp. 1-8. |
Wayne Wallace, “Retightening Wind Turbine Flange Splice Bolts Inherent Problems with Installation and Retightening Using Torque Values”, reprinted from Distributor's Link Magazine, 2009, pp. 1-3. |
European Search Report dated Dec. 12, 2013, EP Application No. 13382291.6, pp. 1-5. |
Hailo, Hailo Servicelifts, Sep. 2010, pp. 1-14. |
American Society of Mechanical Engineers, Safety Code for Elevators and Escalators, Oct. 21, 2013, 2 pages. |
Erich Hau, Wind Turbines, Fundamentals, Technologies, Application, Economics, 2nd edition, 3 pages. |
Oxford University Press, The Concise Oxford Dictionary, Ninth Edition, 1995, 3 pages. |
Power Climber, Installation Manual, Turbine Service Platform, Type: Sherpa-SD1 (Sliding Door—Edition 2) for Hybrid Tower, Jan. 5, 2012, pp. 1-32. |
Tüv Cert, EG-Baumusterprüfung, Mar. 27, 2008, Goracon, GW-250-01-LA, 30 pages (no translation provided). |
Number | Date | Country | |
---|---|---|---|
20170113901 A1 | Apr 2017 | US |