This application claims priority to European Patent Application No. EP16174565.8 filed on Jun. 15, 2016, the entire contents of which are incorporated herein by reference.
The invention relates to an elevator comprising guide rails extending along a height of a shaft, a car and/or a counterweight moving upwards and downwards in the shaft and being glidingly supported on the guide rails. A stop block is attached to at least one guide rail in order to prevent movement of the car and/or the counterweight beyond the level of the stop block.
An elevator comprises typically a car, an elevator shaft, a machine room, lifting machinery, ropes, and a counter weight. The elevator car may be positioned within a sling that supports the car. The lifting machinery may be positioned in the machine room and may comprise a drive, an electric motor, a drive pulley, and a machinery brake. The lifting machinery may move the car in a vertical direction upwards and downwards in the vertically extending elevator shaft. The ropes may connect the sling and thereby also the car via the drive pulley to the counter weight. The sling may further be supported with gliding means on guide rails extending along the height of the shaft. The guide rails may be supported with fastening brackets on the side wall structures of the shaft. The gliding means may engage with the guide rails and keep the car in position in the horizontal plane when the car moves upwards and downwards in the elevator shaft. The counter weight may be supported in a corresponding way on guide rails supported on the wall structure of the shaft. The elevator car may transport people and/or goods between the landings in the building. The elevator shaft may be formed so that the wall structure is formed of solid walls or so that the wall structure is formed of an open steel structure. The lower portion of the shaft may form a pit.
Stop arrangements may be used for restricting the movement of the car beyond a certain level in the shaft. The following prior art applications disclose some examples of stop arrangements.
US patent application 2005/0279586 discloses shaft pit equipment for an elevator. The shaft pit arrangement connects a guide rail and a buffer support with a plate that produces a stiff unit of the buffer support and the guide rail. The plate has a rectangular recess that fits on the narrow side of the guide rail. The plate can be pushed onto a free limb of the guide rail. The recess has on both sides of the free limb an offset that serves for conducting away the lubrication oil, wherein the lubrication oil passes into a lubrication oil connector below the plate. In addition, the plate has in the rail region a bent-over portion at which a screw is arranged.
U.S. Pat. No. 8,453,800 discloses an elevator and stop block arrangement for an elevator. The elevator comprises an elevator car, car guide rails on one side of the elevator car, an elevator shaft, at least one stop block attached to the car guide rail, at least two movable stop blocks attached to the car. The at least two movable stop blocks can be turned around a pivot point between two positions. The movable stop blocks are in a first position aligned with the at least one stop block so that the car stops against the at least one stop block. The movable stop blocks are in the second position turned away from the at least one stop block so that the car can pass beyond the at least one stop block.
An object of the present invention is an elevator with an improved stop arrangement.
The elevator according to the invention is defined in claim 1.
The elevator comprises guide rails extending along a height of a shaft, a car and/or a counterweight moving upwards and downwards in the shaft and being glidingly supported on the guide rails, a stop block being attached to at least one guide rail in order to prevent movement of the car and/or the counterweight beyond the level of the stop block. The stop block comprises a buffer attached to a bottom plate, the buffer comprising a slot receiving a guide portion of the guide rail, whereby the guide portion of the guide rail becomes enclosed within the buffer, the bottom plate supporting the buffer on the guide rail.
The use of a stop block comprising a buffer and a bottom plate as defined in claim 1 results in a compact and efficient stop block arrangement.
The space between the car guide rails remains free in the pit as no separate support bars for buffers are needed in said space. The safety regulations require that when the car is at its lowest position, at least one clear space where a refuge space can be accommodated, shall be provided on the pit floor. The increased free space under the car makes it easy to arrange the refuge space under the car.
The buffer is attached directly to the guide rails which eliminates the need of separate support arrangements for the buffers. There is thus no need to attach separate support bars to the floor of the pit, which means that there is no need to brake the water isolation of the floor of the pit.
The vertical forces acting on the buffer can be directed to the floor of the pit via the guide rails.
The position of the buffers on the guide rail results in smaller lateral forces acting on the car during a stop against the buffers. It might thus be possible to use smaller guide rails.
The emergency clutch and the gliding means are positioned in the vicinity of the guide rails. This means that the car comprises stiff frame structures in the vicinity of the guide rails. The counter plate of the buffer can thus easily be attached to these stiff frame constructions in the car in the vicinity of the guide rails.
The free space is limited in the pit in an elevator having the lifting machinery positioned in a lifting station at the bottom of the pit. The buffer of the car guide rail situated on same side of the shaft as the lifting station may be supported on the same bracket as the car guide rail.
Safety regulations require that when the car is at the lowest position, there must be a minimum free vertical distance between the bottom of the pit and the lowest parts of the car. This minimum free vertical distance is 0.50 m. This minimum free vertical distance may be reduced for car frame parts, safety gears, guide shoes and pawl devices, within a maximum horizontal distance from the guide rails. The minimum value for this free vertical distance is 0.1 m for car parts within a maximum horizontal distance of 0.15 m from the guide rails. This free vertical distance increases linearly from 0.1 m to 0.3 m when the maximum horizontal distance increases from 0.15 to 0.3 m and again linearly from 0.3 m to 0.5 m when the maximum horizontal distance increases from 0.3 to 0.5 m. The free vertical distance is, however, not needed between the counter plate in the car and the buffer. The lowest parts of the car near the guide rail will in the invention be the counter plate attached to the car and seating against the upper surface of the buffer when the car hits the buffer. The pit can thus be lower because the minimum free vertical distance of 0.1 m is no longer needed.
The collection of lubrication medium may be integrated into the stop block arrangement.
The invention will in the following be described in greater detail by means of preferred embodiments with reference to the attached drawings, in which
The lifting machinery 60 positioned in the machine room 30 may comprise a drive 61, an electric motor 62, a drive pulley 63, and a machinery brake 64. The lifting machinery 60 moves the car 10 in a vertical direction Z upwards and downwards in the vertically extending elevator shaft 20. The machinery brake 64 stops the rotation of the drive pulley 63 and thereby the movement of the elevator car 10.
The sling 11 is connected by the ropes 42 via the drive pulley 63 to the counter weight 41. The sling 11 is further supported with gliding means 27 at guide rails 25 extending in the vertical direction in the shaft 20. The gliding means 27 can comprise rolls rolling on the guide rails 25 or gliding shoes gliding on the guide rails 25 when the car 10 is moving upwards and downwards in the elevator shaft 20. The guide rails 25 are attached with fastening brackets 26 to the side wall structures 21 in the elevator shaft 20. The gliding means 27 keep the car 10 in position in the horizontal plane when the car 10 moves upwards and downwards in the elevator shaft 20. The counter weight 41 is supported in a corresponding way on guide rails that are attached to the wall structure 21 of the shaft 20.
The car 10 transports people and/or goods between the landings in the building. The elevator shaft 20 can be formed so that the wall structure 21 is formed of solid walls or so that the wall structure 21 is formed of an open steel structure.
The transmission means 42, 43 may comprise an upper suspension rope 42 and a lower traction belt 43. The upper suspension rope 42 passes from a top of the car 10 over upper deflection pulleys 53, 54 to a top of the counter weight 41. The lower traction belt 43 passes from a bottom of the car 10 over the drive pulley 63 and over lower deflection pulleys 51, 52 to a bottom of the counter weight 41. The lower traction belt 43 may comprise a cogging mating with a corresponding cogging in the drive pulley 63 and the lower deflection pulley 52. The car 10 and the counter weight 41 are connected with the suspension rope 42 and the traction belt 43 so that a closed loop is formed. The lower deflection pulley 51 is positioned above the drive pulley 63 and ensures that the wrap angle of the traction belt 43 around the drive pulley 63 is big enough, advantageously in the order of 90 to 180 degrees.
The lifting machinery 60 may be attached on pivot arms, whereby turning of the lifting machinery 60 around the pivot points moves the drive pulley 63 and thereby affects the tension of the suspension rope 42 and the traction belt 43.
The car 10 and the counter weight 41 are moved in synchronism in opposite directions in the vertically Z extending elevator shaft 20. Rotation of the drive pulley 63 clockwise results in that the car 10 moves upwards and the counter weight 41 moves downwards and vice a versa. The machinery brake 64 stops the rotation of the drive pulley 63 and thereby the movement of the elevator car 10.
The sling 11 may in the same way as in the first embodiment be supported with gliding means 27 on guide rails 25 being attached with brackets 26 to the side walls 21 of the shaft 20.
A horizontal cross section of the guide rail 25 has the shape of a letter T. The T has a base portion 25A and a guide portion 25B extending outwards from the base portion 25A. The base portion 25A of the T is attached with brackets 26 to a wall 21 in the shaft 20. The guide portion 25B has a generally rectangular shape with two opposite side surfaces 25B1, 25B2 and a front surface 25B3 forming guide surfaces for the gliding means 27.
The stop block 100 comprises a buffer 110 and a bottom plate 120. A lower end of the buffer 110 is attached to the bottom plate 120.
A horizontal cross section of the buffer 110 may have a shape of a circle with a cut off segment. The cut off segment leaves a plane surface between an upper end and a lower end of the buffer 110. A slot 111 extends into the buffer 110 from a middle point of the plane surface dividing the plane surface into two plane surfaces 112, 113. A solid neck is left between a bottom of the slot 111 and a curved outer surface 116 of the buffer 110. The slot 111 receives the guide portion 25B of the guide rail 25. The guide portion 25B of the guide rail 25 becomes thus enclosed within the buffer 110.
A horizontal cross section of the buffer 110 may on the other hand have a shape of a rectangle with rounded corners. A slot 111 extends into the buffer 110 from a middle point of a first side surface of the rectangle dividing the first side surface into two separate side surfaces. A solid neck is left between a bottom of the slot 111 and a second side surface opposite to the first side surface of the buffer 110. The slot 111 receives the guide portion 25B of the guide rail 25. The guide portion 25B of the guide rail 25 becomes thus enclosed within the buffer 110.
The slot 111 in the buffer 110 may have a funnel shape so that the upper end of the slot 111 is wider compared to the lower end of the slot 111. The lower end of the slot 111 may be dimensioned so that it fits tightly on the side surfaces 25B1, 25B2 of the guide portion 25B of the guide rail 25. A channel 115 in the form of a tube may be provided at the lower end of the slot 111. The channel 115 may be situated at the bottom of the slot 111. The front surface 25B3 of the guide portion 25B of the guide rail 25 extends to a distance from the bottom of the slot 111. The lubrication medium used in the gliding means 27 flows downward on the guide rail 25 and further into the slot 111 in the buffer 110. The lubrication medium may be directed within the slot 111 into the channel 115 at the lower end of the slot 111.
The funnel shape of the slot 111 in the buffer 110 is advantageous as it leaves room for the buffer 110 to expand within the slot 111 when the car 10 hits the buffer 110.
The front surfaces 112, 113 of the buffer 110 at each side of the slot 111 may be at a distance from the base portion 25A of the guide rail 25. The front surfaces 112, 113 of the buffer 110 at each side of the slot 111 may further be inclined so that the distance from the inner edges of said front surfaces 112, 113 to the base portion 25A of the guide rail 25 is smaller than the distance from the outer edges of said front surfaces 112, 113. This is advantageous as it leaves room for the buffer 110 to expand within the space between the base portion 25A of the guide rail 25 and the front surfaces 112, 113 of the buffer 110 when the car 10 hits the buffer 110.
The buffer 110 may be made of polyurethane.
The bottom plate 120 comprises two bottom plate portions 121, 122. Each bottom plate portion 121, 122 has the shape of an inverted L comprising a vertical branch 121A, 122A and a horizontal branch 121B, 122B. The vertical branch 121A of the first bottom plate portion 121 is seated against a first side surface of the guide portion 25B of the guide rail 25. The vertical branch 122A of the second bottom portion 122 is seated against an opposite second side surface of the guide portion 25B of the guide rail 25. The horizontal branch 121B, 122B of each bottom plate portion 121, 122 extends outwards from the respective side surface of the guide portion 25B of the guide rail 25. The horizontal branch 121B, 122B of each bottom plate portion 121, 122 supports the buffer 110. The vertical branches 121A, 122A of each bottom plate portion 121, 122 and the guide portion 25B of the guide rail 25 are provided with holes. Horizontally directed bolts 130 pass through to the holes in the vertical branches 121A, 122A of each bottom plate portion 121, 122 and in the guide portion 25B of the guide rail 25. The outer ends of the bolts 130 are provided with nuts 131. Tightening of the nuts 131 secures the bottom plate 120 to the guide rail 25.
There vertical branches 121A, 122A of each bottom plate portion 121, 122 are thus at a horizontal distance from each other. Said horizontal distance may be adapted to the thickness of the guide portion 25B of the guide rail 25.
The bottom plate portions 121, 122 may extend beyond the buffer 110. The front edge of the bottom plate portions 121, 122 may extend to the surface of the bottom portion 25B of the guide rail 25. The buffer 110 is attached to the bottom plate portions 121, 122 so that the front surfaces 112, 113 of the buffer 110 are at a distance from the front edges of the bottom plate portions 121A, 122A.
The bottom plate 120 may be made of metal.
The bottom plate 120 may be attached to the buffer 110 during the casting of the buffer 110. Glue may be used in order to ensure the attachment of the two portions 121, 122 of the bottom plate 120 to the buffer 110.
The bottom plate 120 in the figures comprises two bottom plate portions 121, 122, whereby each bottom plate portion 121, 122 comprises two branches 121A, 121B, 122A, 122B. This is an advantageous embodiment of the bottom plate 120, but the bottom plate 120 is not restricted to this embodiment. The bottom plate 120 in
The form of the buffer 110 is not restricted to the form shown in the figures. A horizontal cross section of the buffer 110 may be circular or curved with a cut off segment, elliptical with a cut off segment, rectangular with or without rounded corners, trapezoidal with or without rounded corners, polygonal with or without rounded corners. An essential feature of the buffer 110 is the slot 111 receiving the guide portion 25B of the guide rail 25. The buffer 110 surrounds the three guide surfaces of the guide portion 25B of the guide rail 25. The guide portion 25B of the guide rail 25 becomes enclosed within the buffer 110.
The use of the invention is not limited to the elevators disclosed in the figures, but the invention can be used in any type of elevator e.g. also in elevators lacking a machine room and/or a counterweight. The counterweight could be positioned on either side wall or on both side walls or on the back wall of the elevator shaft. The drive, the motor, the drive pulley, and the machine brake could be positioned in the machine room or somewhere in the elevator shaft. The car guide rails could be positioned on opposite side walls of the shaft or on a back wall of the shaft in a so called ruck-sack elevator.
The stop arrangement can be used on car guide rails and on counterweight guide rails.
It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
16174565.8 | Jun 2016 | EP | regional |