This application claims priority to European Patent Application No. EP13184758.4 filed on Sep. 17, 2013, the entire contents of which are incorporated herein by reference.
The invention relates to an elevator, in particular to the manual control function of an elevator. The elevator is, in particular, meant for transporting passengers.
Elevators are normally provided with an elevator car, arranged to be moved with an electric motor. This motor for moving the elevator car is connected to the car in a force-transmitting manner. Typically, the motor is connected to a stationary mounted drive wheel engaging a hoisting roping connected to the car. The rotation of the motor causes rotation of the drive wheel and thereby movement of the hoisting roping. Thus the rotation of the motor is transmitted to the car via the drive wheel and the roping. Accordingly, the movement of the car can be transmitted by controlling rotation of the motor. Also other types of elevators are known, which utilize a motor for producing the movement of the car. Modern elevators are typically provided with a control system, which can be switched between an automatic control mode and a manual control mode. When in automatic control mode, the motor of the elevator is arranged to be automatically controlled by the control system in response to calls from passengers to move the elevator car automatically from one landing to another. When in the manual control mode, the motor is arranged to be manually controllable to move the elevator car a manually controllable distance upwards or downwards, i.e. also a distance other than the vertical distance between any two landings of the elevator, in particular also a distance shorter than the vertical distance between consecutive landings. With the manual control mode, the elevator can be controlled by a maintenance person to move and park the car to practically any position in the hoistway, also to positions between consecutive landings. When in manual control mode, the elevator speed is typically substantially lower than the nominal speed of the elevator car. Indeed, the manual control mode is normally provided so as to serves as a service drive mode. For the purpose of the manual control, the elevator is provided with an operating unit for said manual control, which is mounted on the car roof, and accessible only by entering the hoistway, climbing on the car roof and operating it while standing on the car roof. The operating unit comprises operating means, which are operable manually by a user. A problem with the know solutions is that the manual control necessitates access to the roof, which may in some cases be difficult to arrange. Also, staying on the car roof while the car is moving may cause accidents if the person slips of drives the car too close to the end of the hoistway. For this purpose, additional safety devices have been installed in the hoistway, such as additional safety limits for maintenance-time car movement.
The object of the invention is, inter alia, to solve previously described drawbacks of known solutions and problems discussed later in the description of the invention. The object of the invention is to introduce an elevator, wherein the safety of the user is simply ensured during manual control of the elevator. The object is further that said manual control can be allowed for authorized users only. Embodiments are presented wherein these objects are facilitated in a space-efficient manner.
It is brought forward a new elevator comprising an elevator car comprising a cabin box provided with a floor, a roof, walls and preferably also door(s) each delimiting an interior space for receiving a load to be transported with the elevator car. The elevator further comprises at least two landings, a motor for moving the elevator car and a control system for controlling the motor, wherein the control system is provided with an automatic control mode and a manual control mode, in which automatic control mode the motor is arranged to be automatically controlled by the control system in response to calls from passengers to move the elevator car automatically from one landing to another, and in which manual control mode the motor is arranged to be manually controllable to move the elevator car a manually controllable distance upwards or downwards. The elevator further comprises an operating unit for said manual control, the operating unit being mounted on the elevator car and comprising operating means operable manually by a user for said manual control. The car comprises a blocking means operable by a user positioned inside said interior space, the state of the blocking means being changeable between a blocking state and an unblocking state, in which blocking state the blocking means block operation of the operating means for said manual control by a user positioned inside said interior space, and in which unblocking state the blocking means allow operation of the operating means for said manual control by a user positioned inside said interior space, the operating unit being positioned such that the operating means thereof are operable by a user positioned inside said interior space after operation of the blocking means to change their state from blocking state to said unblocking state. The operating means are thus bringable from manually inoperable state to a manually operable state by a user positioned inside said interior space by operation of the blocking means to change their state from blocking state to said unblocking state. The operating means can thus be operated in safe conditions, and operability of them is limited to only those people who can remove the blockage, in practice to only those people who have been authorized to suitable means.
In a preferred embodiment blocking means comprises a lock for locking the blocking means in a blocking state. Thereby the accessibility to the operating means can simply be limited to those authorized users only who have been provided a means for opening the lock.
In a preferred embodiment the blocking means comprise an openable housing inside which the operating means are, and in said blocking state the housing is closed and blocks physical access to the operating means and thereby the operation of the operating means for said manual control by a user positioned inside said interior space, and in said unblocking state the housing is open and physical access to the operating means is unblocked by said housing, thereby allowing operation of the operating means for said manual control by a user positioned inside said interior space. The operating means can thus be made unaccessible to said user positioned inside said interior space unless the housing is opened. Thus a physical blockage limiting access to the operating means is simply provided. In a preferred embodiment the aforementioned lock is arranged to lock the housing in a closed state.
In a preferred embodiment the housing comprises an openable cover, the cover is movable between an closed position where it closes the housing and blocks physical access in to the housing and to the operating means making them manually unoperable to said user, and an open position where physical access in the housing and to the operating means is unblocked by said cover. In particular, the operating means are behind the cover, whereby the cover is between the interior space and the operating means. Thus a physical blockage limiting access to the operating means is simply provided. Preferably, the aforementioned lock is arranged to lock the cover immovable. Preferably, the cover is pivotally mounted, and thereby openable by pivoting movement. In particular, the cover may be mounted by hinges.
In a preferred embodiment the aforementioned lock is openable with a key, in particular with a mechanical key, an electronic key, or a code key. Thus, beneficial alternatives for providing authorization are provided.
In a preferred embodiment the operating means are inside one of said floor, roof and walls. The overall solution thus provided is space-efficient.
In a preferred embodiment the operating unit is at least partly, but preferably completely inside one of said floor, roof and walls. The overall solution thus provided is also space-efficient, as no separate room needs to be provided for the functions contained in the operating unit, and the consumption of the overhead space between the roof of the cabin box of car and the roof of the hoistway is spared, for instance.
In a preferred embodiment the operating unit comprises a battery for providing electric power for electrical devices mounted on the elevator car, such as for lights and/or emergency communication device. Thus, the unit serves as a multipurpose-unit, and the installation of these functions can be provided simply and quickly.
In a preferred embodiment said operating means comprises a first button, upon actuation of which the motor is arranged to move the elevator car upwards as long as the button is actuated e.g. by pressing, and a second button upon actuation of which the motor is arranged to move the elevator car downwards as long as the button is actuated, e.g. by pressing. Thus, the motor is simply arranged to be manually controllable to move the elevator car a manually controllable distance upwards or downwards. The motor is arranged to stop when said actuation ceases.
In a preferred embodiment the operating means are formed by buttons of a button panel mounted on the car for being used in the automatic control mode for receiving car calls from a passenger. Also in this case, the blocking means, when in blocking state, block operation of said operating means formed by buttons, for said manual control by a user positioned inside said interior space and in the unblocking state the blocking means allow operation of the operating means formed by buttons for said manual control by a user positioned inside said interior space. It is preferable, but not necessary, that the elevator is in automatic control mode configured to receive car calls from a passenger (in response to which car calls the car is moved automatically from one landing to another) via these same buttons forming the operating means. Also in this case it is preferable that the blocking means comprises a lock the opening of which is configured to change the blocking means into said unblocking state. This opening preferably also changes the state of the elevator from automatic control mode to the manual control mode.
The elevator as describe anywhere above is preferably, but not necessarily, installed inside a building. The car is preferably arranged to serve two or more landings. The car preferably is arranged to respond to calls from landing(s) and/or destination commands from inside the car so as to serve persons on the landing(s) and/or inside the elevator car. Preferably, the car has an interior space suitable for receiving a load in the form of a passenger or passengers.
In the following, the present invention will be described in more detail by way of example and with reference to the attached drawings, in which
Said operating means 12,12′,12″,12″′,12″″,12″″′ preferably comprises a first (upwards) button, upon actuation of which the motor 9 is arranged to move the elevator car 1 upwards as long as the button is actuated, and a second (downwards) button upon actuation of which the motor 9 is arranged to move the elevator car 1 downwards as long as the button is actuated. Thus, the motor 9 is arranged to be manually controllable to move the elevator car 1 a manually controllable distance upwards or downwards;
The operating unit 11,11′,11″,11″′,11″″,11″″′ is positioned such that the operating means 12,12′,12″,12″′,12″″,12″″′ thereof are operable by a user positioned inside said interior space 6 after removing a removable blockage.
The blockage is provided for the purpose of delimiting access to the operating means 12,12′,12″,12″′,12″″,12″″′ to only those people who can remove the blockage, in practice to only those people who have been authorized. This function is provided for such that the car 1 comprises a blocking means 13,13′,13″,13″′,13″″,13″″′ operable by a user 14 positioned inside said interior space 6, the state of the blocking means being changeable between a blocking state and an unblocking state. In the blocking state the blocking means block operation of the operating means 12,12′,12″,12″′,12″″,12″″′ for said manual control by a user positioned inside said interior space 6, and in the unblocking state the blocking means allow (i.e. they don't block) the operation of the operating means 12,12′,12″,12″′,12″″,12″″′ for said manual control by a user positioned inside said interior space 6. Both the operation of the blocking means 13,13′,13″,13″′,13″″,13″″′ and the operation of the operating means 12,12′,12″,12″′,12″″,12″″′ (after removing said blockage) can be performed by a person positioned inside said interior space 6. The operating means 12,12′,12″,12″′,12″″,12″″′ are thereby bringable by operation of the blocking means (performed by a user positioned inside said interior space 6) to change their state from blocking state to said unblocking state, from a state wherein they are manually inoperable to a user positioned inside said interior space 6 to a state wherein they are manually operable to user positioned inside said interior space 6. In the preferred embodiments said user is a maintenance person.
Preferably, the blocking means 13, 13′, 13″ further comprises a lock 18, 18′, 18″ for locking the blocking means 13, 13′, 13″ in a blocking state. Particularly, the lock 18, 18′, 18″ is arranged to lock the housing 13a, 13a′, 13a″ in a closed state, which is preferably implemented such that the lock 18, 18′, 18″ is arranged to lock the cover 17, 17′, 17″ immovable. Said lock 18, 18′, 18″ is openable with a with a key, in particular with a triangular key. It is preferable, that the cover 17, 17′, 17″ is pivotally mounted (and thereby openable by pivoting movement), for example via hinges as illustrated in
In the embodiments illustrated in
It is preferable that, as illustrated in
It is to be understood that the above description and the accompanying Figures are only intended to illustrate the present invention. It will be apparent to a person skilled in the art that the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
13184758.4 | Sep 2013 | EP | regional |