The present invention refers to a needle plate machine to consolidate by needling a fleece or web of fibres, in particular non-woven, comprising at least one needle plate, in front of which the fleece or web of fibres passes while moving forwards in the machine or MD direction, and a drive system configured to impart to at least one column integrated with the at least one needle plate and/or needles a to and fro motion in a direction perpendicular or essentially perpendicular to the plane of the mat or fabric so that the needles traverse the sheet or layer of fibres in an elliptical path first in one direction and then the other.
A needle plate machine of this type is known, for example from EP-A1-1736586 in the name of the applicant. The needle plate is connected to a rod or column that extends along a longitudinal axis and passes through the wall of an intermediate housing sliding through a guide pot with a motion both vertical and in the direction MD thereby giving the needles an elliptical motion, the pot being arranged so that it can pivot with respect to an axis extending in the direction CD (that is to say perpendicular to both the vertical direction and the direction MD).
This needling device of the prior art has the advantage of being able to be contained for the most part, namely the greater part of the column and the system for driving the column, in a sealed housing providing lubrication for the various parts and mechanical linkages to ensure increased life and reliability of the installation.
This needling device however has the problem of being a complex structure, requiring, in particular, means for providing a phase shift between the two cam shafts that drive the column to give it an elliptical motion.
A needling device with the same advantage of being able to be contained in a sealed housing providing good lubrication of the various drive components of the column, but while having a more compact, less complex structure is desirable.
A needling device is also known from FR-A1-2800396 comprising a needle plate, a column connected to the needle plate, a driving system configured to impart an elliptical to and fro motion to the column, a housing that contains a part of the column, a part of the drive system and a sleeve arranged in an opening in the housing, the column passing through the housing through the sleeve. In this complex device, the housing is not sealed and parts of the drive system, namely those designed to impart a transverse motion in the direction MD are outside the housing.
According to the invention, a device to consolidate a fleece or web of fibres, in particular non-woven, by needling is as defined in claim 1.
According to the invention, a less complex system than that of the prior art is thereby obtained, in particular from a mechanical point of view, which is also more compact. In particular, it is no longer necessary to provide phase shift between two cam shafts. At the same time, the possibility of integrating the whole drive system in a sealed housing is retained and even enhanced, providing lubrication of the various mechanical components thereby ensuring long life and reliability of the installation.
Improvements and beneficial methods of implementation are defined in the claims below.
According to one beneficial method of implementation, the transverse drive system comprises a control device which in itself is an invention independent of the invention described above, but which can be combined with it, which includes: a drive rod coupled to the needles and/or the needle plate and/or to a component connected to the needle plate and/or to an oscillating pot to give them a to and fro motion in a direction essentially parallel to the direction MD or parallel to the direction MD, a cam shaft and a rod, the cam shaft driving the rod round in one axis of rotation, in particular in the direction CD perpendicular to the direction MD and to the vertical direction, and a rod connected to the tie-rod by means of a part forming an intermediate lever, comprising a single part or several parts not hinged together, pivoting with respect to a pivot pin, in particular parallel to the rotation pin of the cam shaft, the lever being hinged firstly directly to the rod, in particular in a direction parallel to the pivot pin and spaced apart from it, and secondly directly to the drive rod, in particular at a point spaced apart from the pivot pin to impart to the latter the to and fro motion in the direction MD.
Preferably, the control device includes means for adjusting the stroke of the to and fro motion of the drive rod.
In particular, the adjustment system adjusts the distance between the pivoting axis of the lever and the drive rod and/or the distance between the pivot pin of the lever and the rod.
According to a preferred method of implementation, the adjustment system comprises a slider connected to the drive rod or the pivot pin of the lever or of the hinge pin of the rod to the lever, the slider and the lever being arranged to enable the slider to slide in relation to the lever between several positions, and means for locking the slider to the lever in each of the said several positions.
According to a highly favourable method of implementation, the adjustment system comprises a guide slot in which the slider can slide between two extreme positions, in particular a high position in which the drive rod is located level with the pivot pin and a low position in which the drive rod is at its maximum distance from the pivot pin which the slider is connected to the lever, thereby enabling adjustment of the amplitude of the to and fro motion of the rod, in particular between zero amplitude (rod stationary) and maximum amplitude.
According to a preferred method of implementation, the means for fixing the position of the slider in the slot comprises an adjusting rod connected to an adjusting tie-rod, the adjusting tie-rod being hinged to an auxiliary adjustment cam shaft, rotating the auxiliary adjustment shaft enabling the position of the slider in the slot to be adjusted and locked.
According to another favourable method of implementation, the means for fixing the position of the slider in the slot comprise an adjusting rod connected to a spiral cam comprising a disk driven round by an auxiliary adjustment shaft with a spiral slot along which the adjustment rod can move.
According to yet another favourable variant, the system for fixing the position of the slider in the slot comprises an adjusting rod connected to an adjusting tie-rod driven by an actuator, permitting linear motion of the adjusting tie-rod, the adjusting tie-rod pivoting with respect to the axis of the adjusting rod.
As an example, preferred methods of implementation of the invention will now be described with reference to the drawings in which:
This needle plate machine comprises a needle plate 10 consisting of needles 1 projecting from the lower face of the plate and arranged either in rows and columns, or randomly, or pseudo-randomly, as is well known in the field. The needle plate 10 is carried by a beam 2, called the moving beam. The beam 2 and plate 10 are connected together but separable, so that broken or worn needles can easily be replaced with a new plate. The needles are designed to have an elliptical motion perpendicular, or essentially perpendicular, to the plane of the fleece or web, in particular alternately up and down to pass through in one direction, then the other, a fleece or web of fibres passing in front of them in the driven or MD direction, that is from left to right horizontally in the diagram.
A longitudinal column 3 extending along a longitudinal axis 11 perpendicular to the plane of the plate is connected to the moving beam 2 so that movements of the column 3, the moving beam 2, the needle plate 10 and the needles are identical, that is with the same elliptical motion.
A drive system is provided to impart to the column 3 (and therefore also to the needle plate 10, the moving beam 2 and the needles 1) a motion having a component in a direction parallel to the longitudinal axis 11 and a component in the direction MD, so as to have an elliptical path as shown in
A sealed housing 7 encloses the drive system and part of the column 3, the latter passing through the wall of the housing 7 through a guide pot 4, whose interface with the housing 7 is made oil-tight by means of a seal, that according to a possible method of implementation may take the form of a bellows joint 50. The guide pot 4 can oscillate with respect to an axis 5 fixed in respect of the housing 7, parallel to the direction CD (perpendicular to direction MD and the longitudinal axis 11). The column 3 can slide inside the guide pot 4. Guide bushes 16 are fitted to the internal wall of the guide pot 4 to ensure sliding and lubrication between the column 3 and the guide pot 4. Oil-tightness between the column 3 and the pot guide 4 is ensured by a seal (not shown) fixed to the base of the guide pot.
Highly beneficially, in particular in terms of the life and oil-tightness of the housing, the shaft 5 is located essentially at the level of the housing traversed by the guide pot 4, in particular in the opening.
The drive system comprises the first longitudinal drive system configured to impart a to and fro motion to the column in a direction parallel to the longitudinal axis. The first drive systems consist of systems 6 with cam shafts 12 and rods 13 and an intermediate tie-rod 9.
The shafts 12 drive the heads of the two rods 13 in opposite directions (as shown by the two arrows at the top in
These first longitudinal drive systems impart to the column 3a solely to and fro motion in relation to the longitudinal axis.
Second transverse drive systems are also fitted in the form of a main tie-rod 8 in the direction MD. One end of the tie-rod 8 is hinged to the guide pot 4, the interior of the housing 7, at a point 17 away from the axis of rotation 5 of the pot, in particular essentially to the upper end of the pot 4. An oscillating to and fro motion is thus imparted to the guide pot 4 that is repeated by the column 3 which crosses it with a to and fro motion in the direction MD, or essentially in the direction MD (as shown by the double arrow above the tie-rod 8 in
Elsewhere, a system balance weight 19 is coupled to the guide pot 4, being fixed to the latter on the opposite side to that to which the advance system is fitted.
Finally, since the advance system is fitted in the sealed housing, it can be activated either by an independent motor, or by one of the control shafts 6 for the first vertical drive system, or by a rod fitted directly to a cam mounted on one of the control shafts 6 of the first drive system.
This needle plate machine comprises two needle plates 10′ with needles 1′ projecting from the lower face of the plate being arranged either in rows and columns, or randomly, or pseudo-randomly, as is well known in the field. Each needle plate 10′ is carried by a respective beam 2′, called the moving beam. The needles are designed to have an elliptical to and fro and up and down path from top to bottom and from bottom to top to pass through, in one direction then the other, a fleece or web of fibres passed in front of them in the drive or MD direction, or from left to right horizontally to the diagram.
Two longitudinal columns 3′ extend along the longitudinal axes 11′ perpendicular to the plane of the plate. The columns 3′ are each connected to a moving beam 2′, so that the motion of the column 3′, the moving beam 2′, the needle plate 10′ and the needles are similar, even identical, that is with the same elliptical path or an elliptical path of the same shape but different size. In addition the two paths may be in opposition, that is the two ellipses are mirror images of each other.
Drive systems are fitted to impart to each column 3′ (and thus also to the needle plates 10, the moving beams 2′ and the needles 1) a motion with a component in a direction parallel to the longitudinal axis 11′ and a component in the direction MD, so as to have an elliptical path as shown in
An oil-tight housing 7′ encloses the drive systems and part of the columns 3′, the latter passing through the wall of the housing 7′ through the respective guide pots 4′, whose interfaces with the housing 7′ are rendered oil-tight by means of seals (not shown, but which for example can be in the form of bellows joints as shown in
The drive systems comprise first longitudinal drive systems configured to impart a to and fro motion to each column in a direction parallel to the longitudinal axis. These first drive systems consist of two systems with cam shafts 6′ and rods 13′.
The shafts 12′ drive the heads of the two rods 13′ (as shown by the two arrows at the top in
These first vertical, longitudinal drive systems impart to each column 3′ a to and fro motion in a direction essentially parallel to the longitudinal axis.
Second transverse drive systems are also fitted in the form of a main tie-rod 8′ and an auxiliary tie-rod 9′ fitted in the direction MD inside the housing 7′. One end of the tie-rod 8′ is hinged to one of the guide pots 4′ at a point 17′ away from the axis of rotation 5′ of the pot, in particular essentially to the upper end of the pot. The other end of the tie-rod 8′ is coupled to a drive system called the advance system, which in particular can be like those shown below in
The auxiliary tie-rod 9′ is hinged at its opposite ends to a respective tie-rod of the pots 4′. In particular, the tie-rod 9′ is also hinged to the end of tie-rod 8′ hinged at point 17′, but this is not obligatory as the system also works if the ends of the tie-rods 8′ and 9′ are not hinged at the same point, the tie-rod 8′ may be hinged with an independent pin fixed to the guide pot.
A to and fro oscillatory motion is also imparted to the two guide pots 4′ which is transferred to the columns 3′ that traverse with a to and fro motion in the direction MD, or essentially in the direction MD (as shown by the double arrow above the tie-rod 8′ in
Secondly, a system balance weight 19′ is coupled to the auxiliary tie-rod 9′, being fixed to the latter on the upper side half way between the shafts 12′.
Finally, as the advance system is retained in the sealed housing, it may be actuated either by an independent motor, or by one of the control shafts 12′ of the first vertical drive system, or by a rod mounted directly on a cam fitted to one of the control shafts 12′ of the first vertical drive system.
In particular, as shown in
In the above description, the first longitudinal drive system is distinct from the second transverse drive system. Although separation into two distinct halves has advantages, it would however be possible to fit single drive systems that perform the functions of the first and second drive systems, while remaining within the scope of the invention as defined by the claims.
In
The relative position of the rod 26, and therefore also the tie-rod 27, in relation to the pivot pin 24 of the lever in the vertical direction and/or in relation to the hinge pin of the rod 22 to the lever can be adjusted by means of an adjustment system consisting of an auxiliary adjustment cam shaft 29 and an adjustment tie-rod 28. The adjustment tie-rod 28 is hinged at its upper end to the cam shaft (or crankshaft) 29, while its lower end can pivot in relation to the pin of the rod 26.
The lever contains an opening in the form of a slot 30, in which slides the slider 25 of the rod 26 which is fixed in translation.
Depending on the position of the tie-rod 28, which is determined by appropriate rotation of the crankshaft 29, the relative position of the slider 25 in the slot 30 can be chosen and adjusted in order to adjust the distance in the vertical pin of the lever between the pin 24 and the pin of the rod 26 (and therefore also the distance between the pin of the rod 26 and pin 22), this distance can be varied from zero (position of the slider 25 at the top of the slot 30 until the pin of the rod 26 corresponds with the pin 24 and the position of maximum adjustment, when the slider 25 is at the bottom of the slot 30).
The amplitude of the to and fro motion of the tie-rod 27 can be varied either when running or when at rest, the motion transferred from the movement of the crankshaft 21 and the tie-rod 22 acting on the lever 23. Regarding the tie-rod 27, it can either be rigidly connected or hinged to one or other of the main tie-rods 8 and 8′ in the methods of implementation in
In this method of implementation a spiral cam is used, consisting of a disk 40 containing a spiral slot along which the rod 26 moves. When the disk 40 rotates, the rod 26 follows the profile of the spiral slot which moves the rod 26 and therefore the slider 25 along the slot 30. Depending on the position chosen along the spiral for the pin 26, a given to and fro stroke of the tie-rod 27 is obtained.
In the methods of implementation described in
Number | Date | Country | Kind |
---|---|---|---|
20 04057 | Apr 2020 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
3849845 | Obenaus | Nov 1974 | A |
5822834 | Jourde | Oct 1998 | A |
5873152 | Jourde | Feb 1999 | A |
6000112 | Ollinger | Dec 1999 | A |
6161269 | Dilo | Dec 2000 | A |
6266856 | Fehrer | Jul 2001 | B1 |
6305058 | Fehrer | Oct 2001 | B1 |
6389665 | Fuchs | May 2002 | B1 |
6785940 | Muller | Sep 2004 | B1 |
7107658 | Muller | Sep 2006 | B2 |
20030056347 | Pum | Mar 2003 | A1 |
20060288549 | Jean | Dec 2006 | A1 |
20070006432 | Noel | Jan 2007 | A1 |
20120167361 | Reutter | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
1736587 | Dec 2006 | EP |
2800396 | May 2001 | FR |
2862988 | Jun 2005 | FR |
9621764 | Jul 1996 | WO |
Entry |
---|
INPI Search Report dated Jan. 13, 2021 in related application No. FR 2004057. |
Number | Date | Country | |
---|---|---|---|
20210332514 A1 | Oct 2021 | US |