A series of electro illuminating components designed to be electrically interconnected one with another and placed upon a surface in any of aim variety of desired patterns.
Lighting has always been a necessity of everyday life. Throughout history, mankind has desired to illuminate the dark. Wood fires built on the ground, candles, oil lamps, gas lamps and others have been an evolutionary process through the ages. With the advent of electricity and the invention of the incandescent light bulb in the late 19th century our quest for perpetual light was solved. Mankind no longer needed to stumble in the dark with the introduction of a variety of incandescent lighting devices.
Other than the introduction of neon and fluorescent lighting, innovation in the lighting world revolved around various applications of the incandescent light. Colored lights were the result of using colored glass for the bulb or of a colored coating to the lightbulb. However, the use of the incandescent lightbulbs was limited by their relatively inefficient use of electricity resulting in relatively high power consumption and a significantly high thermal signature. Incandescent lights were thus typically relegated to provide white light for general illumination usage. For the most part, decorative lighting was limited to strings of incandescent lights, either white or colored, placed where its heat signature was of minimal consequence and usually only utilized for special occasions to minimize power usage.
The latter part of the 20th century and early 21st century saw the development and introduction the light-emitting diode (LED). An LED is much more efficient in its usage of electricity thus reducing its size and thermal signature relative to an incandescent light and is thus more adaptable to a variety of applications. We have now seen the incandescent light bulb being replaced by the LED light bulb and with multi-colored LEDs now able to emit a variety of colors their use has penetrated almost every aspect of everyday life. The efficiency and low cost of LEDs now make possible lighting devices which are affordable to both purchase and operate and readily adaptable for decorative purposes.
In accordance with the invention, an elongated hexagonal decorative light system comprises a plurality of light panel assemblies, each light panel assembly further comprising a base having an elongate hexagonal shaped outer periphery, the base defining two connector apertures at each end of the elongate base in a bottom of the base. A printed circuit assembly is mounted to the base and has a plurality of light emitting diodes populated thereon and electronic circuitry for selectively illuminating the light emitting diodes. A plurality of electrical receptacles wherein at least two receptacles are positioned at each end of the printed circuit assembly, each electrical connector in registration with one of the connector apertures defined in the base at each end of the elongate base, and a prismatically shaped lens affixed to an upper surface of the base. A controller has a base receiving an electrical power cord. The power cord is electrically connected to a printed circuit assembly mounted on the base wherein the printed circuit assembly includes the circuitry and logic for controlling the plurality of light panel assemblies. The controller further includes a signal and power cord extending therefrom and terminating with an electrical connector connectively compatible with the receptacles of the light panel assemblies. A plurality of connector cables, each having a multi-lead cable segment terminated at each end with an electrical plug receivable in the electrical receptacles in the light panel assemblies.
a method of using an elongated hexagonal decorative light system includes obtaining at least one elongated hexagonal decorative light system. The light system includes a controller having an electrical power and signal output plug and a plurality of elongated hexagonal decorative light panel assemblies. Each light panel assembly has a base with a plurality of electrical receptacles communicative with a printed wiring assembly and further has a plurality of light emitting diodes populated thereon for desired illumination. A translucent lens is affixed over and attached to the base for permitting the light generated by the light emitting diodes to be visible external to the light panel assembly. The plurality of light panel assemblies are arranged in a desired geometric pattern, and the electrical power and signal plug of the controller is electrically connected to one of the electrical receptacles of a first light panel assembly. A second or more light panel assemblies are electrically connected to the first panel assembly utilizing a connector cord having plugs at each end thereof. One plug is received in one of the remaining electrical receptacles of the first light panel assembly, and a second plug is received in one of the electrical receptacles of the second or more light panel assemblies. Each light panel assembly is assured to have only one connector cable functioning as an electrical power and signal input thereto. A control application is installed on a portable electronic device paired to a Wi-Fi network, and the controller is electronically paired to the Wi-Fi network. A desired operational function of the light system is set utilizing the application installed on the portable electronic device.
In another aspect, the electrical receptacles at each end of the light panel assemblies are aligned parallel to a long axis of the light panel assembly.
In a further aspect, the base includes a visible orientation arrow corresponding to the arrangement orientation of the light emitting diodes on the printed circuit assembly.
In yet another aspect the prismatically shaped lens is translucent.
In another aspect the lens has a raised center and faceted sides, each facet corresponding to a side of the light panel assembly.
In a further aspect the controller further includes a plurality of microswitches electrically interconnected with the controller printed circuit assembly.
In an additional aspect the controller further includes circuitry and logic to be remotely responsive to wireless electronic inputs from a remote electronic device for controlling the plurality of light panels.
In another aspect each of the connector cables is directionally biased to permit flow of electrical signals in one direction only, at least one electrical plug bearing a visible legend identifying the directional bias of the connector cable.
In a further aspect the printed circuit assembly of the light panel assembly further includes circuitry and logic to illuminate the light emitting diodes thereon in a plurality of predetermined patterns and light motions.
In yet an additional aspect, the light panel assemblies of the system are identically responsive to electrical signals from the controller to display identical light patterns and motions concurrently.
In a further aspect, the light panel assemblies of the system are responsive to electrical signals from the controller to display a progressive light pattern and motion across the plurality of the light panel assemblies.
In another aspect the system further includes an octagonal mounting bracket wherein the mounting bracket has a magnet housed therein.
In a further aspect, the light panel assembly base defines a octagonal aperture in a bottom surface thereof for receiving the octagonal mounting bracket.
In an additional aspect, the light assembly base further includes a magnetically sensitive plate mounted over the octagonal aperture in a manner that the magnetic force of the mounting bracket magnet retains the light panel assembly in a desired location and position, the light panel assembly being readily detachable and rotationally repositionable from the octagonal mounting bracket by overcoming the magnetic force.
In another aspect the connector cables are electrically bidirectional.
In a further aspect the printed circuit assembly of the light panel assembly further includes circuitry and logic to determine which of the receptacles at each end of the light panel assembly is functioning as an electrical input and automatically electrically configures the remaining receptacles as electrical outputs.
Further embodiments and features of the invention will become apparent in conjunction with the detailed description of the inventions and their preferred embodiments provided hereafter.
The invention will now be described, by way of example, with reference to the accompanying drawings, where like numerals denote like elements and in which:
Like reference numerals refer to like parts throughout the various views of the drawings.
The following detailed description is merely exemplary in nature and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used herein, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure, which is defined by the claims. For purposes of description herein, the terms “upper”, “lower”, “left”, “rear”, “right”, “front”, “vertical”, “horizontal”, and derivatives thereof shall relate to the invention as oriented in
Turning now to the drawings, and in particular,
The bottom surface 142 of the base 120 is formed such that the structure 122 of the base forms two connector recesses 124 at each of the right and left ends. Each connector recess 124 further defines a connector port 126 extending through the structure. Additionally, an octagonal aperture is formed in the center of the base 120 and is defined by an octagonally shaped internal wall 134. The base further forms a finger recess 132 at each of the left and right ends of the octagonal aperture. An orientation arrow 130 is integrally formed in the bottom surface 142 of the base 120 and at the left end thereof. The orientation arrow is utilized for reference purposes when integrally interconnecting multiple ones of the light panels 100.
Internally, and as shown in
Connector receptacles 162 are mounted to the bottom of the printed circuit board 152 and electrically interconnected with electronic components populated thereon for operational control and powering of the LEDs 154, 156. The connector receptacles 162 are aligned parallel to a long axis of the elongate base and positioned such that when the PCA 150 is positioned on the registration pins 138, each connector receptacle 162 is in longitudinal registration with one of the connector ports 126 formed in the base 120. The bottom 142 of the base 120 may further include a recess 128 formed therein to prevent interference of the shell of connector 162 with the bottom 142 of the base 120.
Referring now to
While the octagonal mounting bracket 190 and corresponding octagonal aperture defined by wall 134 and ferrous plate 170 have been described herein, other mounting configurations are also contemplated. Although not illustrated herein such mounting configurations as a hook and eye, hook and loop, reusable gel-based micro-suction and other similar methodologies are also possible.
A controller 200 external to the light panel assembly 100 is part of the lighting system and is illustrated in
Further, the PCA 220 can include the processing capability and resident instruction sets to be paired with a Wi-Fi system in a manner known in the art. Remote control of the controller functions for the elongated hexagonal decorative light system can be facilitated by the inclusion of an application on a smart phone also paired with the Wi-Fi system or other pairings of a known type to facilitate remote wireless control.
Referring to
In an alternate configuration, the connector cable 260 does not include biasing diodes and circuitry and performs its interconnectivity function in any orientation. While the necessity for limiting the connectivity between adjacent light panel assemblies 100 to only one electrical input is still a requirement, this function is relocated to the PCA 150 in each light panel assembly 100. This circuitry detects which of the receptacles 162 is functioning as an input and automatically configures the remaining receptacles 162 as outputs. In this manner, the user need only arrange the light panel assemblies according to a desired visual light pattern without the concurrent necessity of reconfiguring the connector cable 260 to accomplish the required electrical flow pattern.
In use, one or more of the elongated hexagonal light panels 100 can be mounted to a wall or other surface by removing the protective layer of the double-sided adhesive element 198 on the mounting bracket 180 and then firmly pressing the unit against the surface. Once the adhesive bond to the surface, the individual light panel 100 can be disengaged from the mounting bracket 180 by overcoming the magnetic force between the magnet 195 and the steel plate 170 and rotating the light panel assembly in any one of eight different orientations, and then again engage the mounting bracket 180 by receiving the mounting bracket 180 within the octagonal aperture 134. Each light panel assembly 100 of a desired system of light panels 100 is mounted in a like manner.
To interconnect a plurality of light panel assemblies, and as best illustrated in
As illustrated in
As illustrated in
As illustrated in
As previously discussed, each individual light panel assembly includes on the bottom thereof an orientation arrow 130. One of the functional modes of the individual light panel assemblies is the lateral visible flow of an illumination pattern of color or series of colors from one end of a light panel assembly 100 to the opposite end thereof. The orientation arrow is indicative of such a flow since the controller will cause the light pattern of each individual light panel assembly to flow in the same direction with respect to the orientation arrow.
Additionally, because of the limitation to the number of light panel assemblies that can be connected to one controller, an application necessitating more than that number of light panel assemblies 100 such as the formation of a series of individual letters spelling a word can be accomplished by utilizing more than one controller 200, each with interconnected light panel assemblies 100. Each of the systems utilized in such an application would have its own controller. By pairing the controllers with a Wi-Fi system or directly to a portable device such as a smart phone the entire arrangement can be controlled concurrently rather than individually and thus appear to have a seamless operation.
The above description is considered that of certain embodiments of the present invention only. Modifications of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments described herein are merely for illustrative purposes only and are not intended to limit the scope of the invention hereof.
This Non-Provisional Utility application is a continuation of PCT/US21/35319 filed on Jun. 1, 2021 (pending), which claims the benefit of U.S. Provisional Patent Application Ser. No. 63/033,112, filed on Jun. 1, 2020 (expired), which are incorporated herein in their entirety.
Number | Date | Country | |
---|---|---|---|
63033112 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2021/035319 | Jun 2021 | US |
Child | 17992383 | US |