Elongated medical sheath

Information

  • Patent Grant
  • 11980412
  • Patent Number
    11,980,412
  • Date Filed
    Tuesday, August 17, 2021
    2 years ago
  • Date Issued
    Tuesday, May 14, 2024
    a month ago
Abstract
An elongated medical sheath is configured to be movable and positionable proximate to a biological feature of a patient. An expandable-and-collapsible support structure is configured to be selectively movable, at least in part, between an interior of the elongated medical sheath and an exterior of the elongated medical sheath. An energy-emitting assembly is supported by the expandable-and-collapsible support structure.
Description
TECHNICAL FIELD

This document relates to the technical field of (and is not limited to) an elongated medical sheath (and method therefor).


BACKGROUND

Known medical devices are configured to facilitate a medical procedure, and help healthcare providers diagnose and/or treat medical conditions of sick patients.


SUMMARY

It will be appreciated that there exists a need to mitigate (at least in part) at least one problem associated with existing (known) elongated medical sheaths. After much study of, and experimentation with, the existing (known) elongated medical sheaths, an understanding (at least in part) of the problem and its solution have been identified (at least in part) and are articulated (at least in part) as follows:


There is a need to access and deliver medical devices, such as cardiac devices from the right atrium to the left atrium of the heart of a patient. Cryoablation, mitral valve replacement and/or left atrial appendage closure are examples of procedures that require the use of larger sheaths. Therefore, tissue dilation may be necessary to allow for transcatheter delivery of these medical devices to the left atrium of the heart. Known medical methods to dilate the initial puncture include the use of several dilators or the use of a balloon.


It may be desirable to deploy relatively smaller form-factor medical sheaths; unfortunately, known medical sheaths having a relatively smaller form factor are not available for medical procedures which require the larger form-factor medical sheaths.


To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) an apparatus. The apparatus includes and is not limited to (comprises) an elongated medical sheath configured to be movable and positionable proximate to a biological feature of a patient. An expandable-and-collapsible support structure is configured to be selectively movable, at least in part, between an interior of the elongated medical sheath and an exterior of the elongated medical sheath. An energy-emitting assembly is supported by the expandable-and-collapsible support structure.


To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) a method for operating an elongated medical sheath configured to be movable and positionable proximate to a biological feature of a patient. The method includes and is not limited to (comprises) selectively moving, at least in part, an expandable-and-collapsible support structure supporting an energy-emitting assembly between an interior of the elongated medical sheath and an exterior of the elongated medical sheath.


Other aspects and features of the non-limiting embodiments may become apparent to those skilled in the art upon review of the following detailed description of the non-limiting embodiments with the accompanying drawings. This Summary is provided to introduce concepts in simplified form that are further described below in the Detailed Description. This Summary is not intended to identify potentially key features or possible essential features of the disclosed subject matter, and is not intended to describe each disclosed embodiment or every implementation of the disclosed subject matter. Many other novel advantages, features, and relationships will become apparent as this description proceeds. The figures and the description that follow more particularly exemplify illustrative embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The non-limiting embodiments may be more fully appreciated by reference to the following detailed description of the non-limiting embodiments when taken in conjunction with the accompanying drawings, in which:



FIG. 1A, FIG. 1B and FIG. 2 depict a side view (FIG. 1A), an end view (FIG. 1B) and a cross-sectional view (FIG. 2) of embodiments (implementations) of an elongated medical sheath; and



FIG. 3, FIG. 4 and FIG. 5 depict cross-sectional views of embodiments (implementations) of the elongated medical sheath of FIG. 1A; and



FIG. 6 and FIG. 7 depict cross-sectional views of embodiments (implementations) of the elongated medical sheath of FIG. 1A.





The drawings are not necessarily to scale and may be illustrated by phantom lines, diagrammatic representations and fragmentary views. In certain instances, details unnecessary for an understanding of the embodiments (and/or details that render other details difficult to perceive) may have been omitted. Corresponding reference characters indicate corresponding components throughout the several figures of the drawings. Elements in the several figures are illustrated for simplicity and clarity and have not been drawn to scale. The dimensions of some of the elements in the figures may be emphasized relative to other elements for facilitating an understanding of the various disclosed embodiments. In addition, common, and well-understood, elements that are useful in commercially feasible embodiments are often not depicted to provide a less obstructed view of the embodiments of the present disclosure.


LISTING OF REFERENCE NUMERALS USED IN THE DRAWINGS





    • medical sheath 100

    • elongated lumen 102

    • expandable-and-collapsible support structure 104

    • energy-emitting assembly 106

    • expandable-and-collapsible cage structure 200

    • elongated member 202

    • energy-emitting devices (300A, 300B, 300C)

    • generator 500

    • cable 502

    • biological feature 900

    • patient 902





DETAILED DESCRIPTION OF THE NON-LIMITING EMBODIMENT(S)

The following detailed description is merely exemplary and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure. The scope of the disclosure is defined by the claims. For the description, the terms “upper,” “lower,” “left,” “rear,” “right,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the examples as oriented in the drawings. There is no intention to be bound by any expressed or implied theory in the preceding Technical Field, Background, Summary or the following detailed description. It is also to be understood that the devices and processes illustrated in the attached drawings, and described in the following specification, are exemplary embodiments (examples), aspects and/or concepts defined in the appended claims. Hence, dimensions and other physical characteristics relating to the embodiments disclosed are not to be considered as limiting, unless the claims expressly state otherwise. It is understood that the phrase “at least one” is equivalent to “a”. The aspects (examples, alterations, modifications, options, variations, embodiments and any equivalent thereof) are described regarding the drawings. It should be understood that the disclosure is limited to the subject matter provided by the claims, and that the disclosure is not limited to the particular aspects depicted and described. It will be appreciated that the scope of the meaning of a device configured to be coupled to an item (that is, to be connected to, to interact with the item, etc.) is to be interpreted as the device being configured to be coupled to the item, either directly or indirectly. Therefore, “configured to” may include the meaning “either directly or indirectly” unless specifically stated otherwise.



FIG. 1A, FIG. 1B and FIG. 2 depict a side view (FIG. 1A), and end view (FIG. 1B) and a cross-sectional view (FIG. 2) of embodiments (implementations) of an elongated medical sheath 100.


Referring to the embodiments (implementations) as depicted in FIG. 1A and FIG. 1B, an elongated medical sheath 100 is configured to be movable (and positionable) proximate to a biological feature 900 (such as a biological wall) of a patient 902. An embodiment of the biological feature 900 of the patient 902 is depicted in FIG. 3. The elongated medical sheath 100 is configured (preferably) to be inserted into a confined space defined by a living body (the patient). An expandable-and-collapsible support structure 104 is configured to be selectively movable, at least in part, between an interior of the elongated medical sheath 100 (as depicted in FIG. 3) and an exterior of the elongated medical sheath 100 (as depicted in FIG. 5); this technical feature is depicted in the embodiments of FIG. 3, FIG. 4 and FIG. 5. It will be appreciated that, as depicted in FIG. 1A, the expandable-and-collapsible support structure 104 is selectively moved, at least in part, from the interior of the elongated medical sheath 100, and is positioned, at least in part, at the exterior of the elongated medical sheath 100. An energy-emitting assembly 106 is supported by (is configured to be supported by) the expandable-and-collapsible support structure 104. The elongated medical sheath 100 is (preferably) configured to receive and guide the expandable-and-collapsible support structure 104 into the confined space defined by the patient. The elongated medical sheath 100 includes, preferably, a flexible tube (and any equivalent thereof). The elongated medical sheath 100 forms (defines) an elongated lumen 102 extending between the distal section and the proximal section of the elongated medical sheath 100. The elongated lumen 10 is configured to slidably receive the energy-emitting assembly 106; this is done in such a way that the energy-emitting assembly 106 may be movable along the interior of the elongated medical sheath 100.


Referring to the embodiments (implementations) as depicted in FIG. 1A and FIG. 1B, the elongated medical sheath 100 may provide, for instance, an alternative to balloon atrial septostomy while not requiring, advantageously, the exchange of multiple conventional medical dilators (if so desired).


Referring to the embodiments (implementations) as depicted in FIG. 1A and FIG. 1B, the elongated medical sheath 100 includes biocompatible material properties suitable for performance (such as, electric dielectric strength, thermal insulation, electrical insulation, corrosion, water resistance, heat resistance, etc.) for compliance with industrial and regulatory safety standards (or compatible for medical usage), etc. Reference is made to the following publication for consideration in the selection of a suitable material: Plastics in Medical Devices: Properties, Requirements, and Applications; 2nd Edition; author: Vinny R. Sastri; hardcover ISBN: 9781455732012; published: 21 Nov. 2013; publisher: Amsterdam [Pays-Bas]: Elsevier/William Andrew, [2014].


Referring to the embodiments (implementations) as depicted in FIG. 1A and FIG. 1B, the expandable-and-collapsible support structure 104 includes (preferably) a shape-memory material configured to be manipulated and/or deformed followed by a return to the original shape that the shape-memory material was set in (prior to manipulation). Shape-memory materials (SMMs) are known and not further described in detail. Shape-memory materials are configured to recover their original shape from a significant and seemingly plastic deformation in response to a particular stimulus applied to the shape-memory material. This is known as the shape memory effect (SME). Superelasticity (in alloys) may be observed once the shape-memory material is deformed under the presence (an application) of a stimulus force.


Referring to the embodiments (implementations) as depicted in FIG. 1A and FIG. 1B, the energy-emitting assembly 106 includes (preferably) energy-emitting devices (300A, 300B, 300C). The energy-emitting devices (300A, 300B, 300C) are supported by the expandable-and-collapsible support structure 104. The energy-emitting devices (300A, 300B, 300C) are configured to selectively emit energy (such as radiofrequency energy). The energy-emitting devices (300A, 300B, 300C) are configured to be connected (electrically connected) to an energy source 500 (depicted in FIG. 2). The energy-emitting devices (300A, 300B, 300C) include (preferably) electrodes supported by the expandable-and-collapsible support structure 104. The electrodes are configured to selectively emit energy (such as radiofrequency energy) in a manner that is, preferably, similar to the BAYLIS (TRADEMARK) POWERWIRE (REGISTERED TRADEMARK) radiofrequency guidewire manufactured by BAYLIS MEDICAL COMPANY (headquartered in Canada).


Referring to the embodiments (implementations) as depicted in FIG. 1A and FIG. 1B, the energy-emitting assembly 106 is (preferably) configured to be detectable by an electroanatomical mapping system (known and not depicted), which may include fluoroscopy mapping systems (if so desired, but may not be preferred for some embodiments). The electroanatomical mapping system may include a nonfluoroscopy mapping system, such as, and not limited to, (A) the CARTO EP (TRADEMARK) mapping system (manufactured by BIOSENSE WEBSTER based in the USA), (B) the ENSITE PRECISION (TRADEMARK) cardiac mapping system (manufactured by Abbott Laboratories based in the USA), (C) the LOCALISA (TRADEMARK) intracardiac mapping system (manufactured by MEDTRONICS INC., based in the USA), and (D) the RHYTHMIA HDx (TRADEMARK) mapping system (manufactured by Boston Scientific Corp., based in the USA).


Referring to the embodiment (implementation) as depicted in FIG. 1A, FIG. 1B and FIG. 2, the expandable-and-collapsible support structure 104 includes (preferably) an expandable-and-collapsible cage structure 200 (such as a flexible wire cage and any equivalent thereof). The expandable-and-collapsible cage structure 200 is configured to be selectively movable, at least in part, between the interior of the elongated medical sheath 100 (as depicted in FIG. 3) and the exterior of the elongated medical sheath 100 (as depicted in FIG. 5). Returning back to FIG. 2, if desired, an elongated member 202 extends from the expandable-and-collapsible cage structure. The elongated member 202 is configured to be movable along the interior of the elongated medical sheath 100. The distal section of the elongated member 202 is attached to the expandable-and-collapsible cage structure 200. The elongated member 202 is configured to selectively move the expandable-and-collapsible cage structure 200 relative to the interior of the elongated medical sheath 100, etc. A proximal section of the elongated member 202 extends from the proximal end of the elongated medical sheath 100 (for user-control purposes).


Referring to the embodiments (implementations) as depicted in FIG. 1A, FIG. 3, FIG. 4 and FIG. 6, the expandable-and-collapsible cage structure 200 has (supports) the energy-emitting devices (300A, 300B, 300C), as depicted in FIG. 1A. The expandable-and-collapsible cage structure 200 has a distal section and a proximal section, as depicted in FIG. 1A. At least one, or more, of the energy-emitting devices (300A, 300B, 300C), such as the energy-emitting device 300A, is/are positioned at the distal section of the expandable-and-collapsible cage structure 200, and is/are configured to puncture the biological feature 900 (such as the septum of the heart), as depicted in FIG. 3 (in response to forward movement of the expandable-and-collapsible cage structure 200 toward the biological feature 900, as depicted in FIG. 3 and FIG. 4). At least one (or more) of the energy-emitting devices (300A, 300B, 300C), such as the energy-emitting devices (300B, 300C) is/are positioned at the proximal section of the expandable-and-collapsible cage structure 200, and is/are configured to dilate the puncture hole and create (form) a larger hole (such as septal hole) by dilation of the initially formed puncture hole, as depicted in FIG. 6 (in response to rearward movement of the expandable-and-collapsible cage structure 200 toward the biological feature 900, after formation of the puncture hole).


Referring to the embodiments (implementations) as depicted in FIG. 1A, FIG. 3, FIG. 4 and FIG. 6, the expandable-and-collapsible cage structure 200 may be used to create or form larger holes in the biological feature (a wall, the interatrial septum, etc.) as described above, and/or may be used for tissue dilation in biological features or structures including, for instance, the interventricular septum and blood vessels, etc.


Referring to the embodiments (implementations) as depicted in FIG. 1A, FIG. 1B and FIG. 3, the expandable-and-collapsible cage structure 200 (also called a selectively flexible wire cage) is depicted. For instance, the wires that form the expandable-and-collapsible cage structure 200 may be made from a stiffer material with shape memory capability, for example, nitinol may allow the expandable-and-collapsible cage structure 200 to form the desired shape after exiting from the distal section of the elongated medical sheath 100. The wires may be arranged in a cross-hatch pattern, if so desired, for improved functionality, etc. The expandable-and-collapsible cage structure 200 is configured to fit in, and be movable along, the interior (such as the elongated lumen 102) of the elongated medical sheath 100. Once the expandable-and-collapsible cage structure 200 is received in the interior of the elongated medical sheath 100, the expandable-and-collapsible cage structure 200 is placed in a storage condition (undeployed state, as depicted in FIG. 3). The expandable-and-collapsible cage structure 200, once deployed (as depicted in FIG. 1A), forms a tear drop shape in an expanded state (deployed condition). The expandable-and-collapsible cage structure 200, once deployed, forms (preferably) a tapered proximal section (a tear drop shape) in an expanded state (deployed condition). The expandable-and-collapsible cage structure 200, once deployed, is configured to expand radially and at the distal section of the expandable-and-collapsible cage structure 200. The elbows and/or bends of the expandable-and-collapsible cage structure 200 may be made of a relatively softer metal.


Referring to the embodiments (implementations) as depicted in FIG. 1A and FIG. 1B, at least one of the energy-emitting devices (300A, 300B, 300C) may be positioned at the distal section and at the proximal section of the expandable-and-collapsible cage structure 200. The energy-emitting devices (300A, 300B, 300C) may be rounded so that they are (preferably) atraumatic. The energy-emitting devices (300A, 300B, 300C) are configured to selectively emit energy (such as radiofrequency energy) for vaporizing tissue (such as the biological feature 900 of FIG. 3). The equivalent devices of the energy-emitting devices (300A, 300B, 300C) may include mechanical sharp cutting edges configured to cut through tissue in response to the application of a mechanical force. The distal instances of the energy-emitting devices (300A, 300B, 300C) may be replaced with at least one or more sharp tips, and the proximal instances of the energy-emitting devices (300A, 300B, 300C) may be replaced with cutting blades, etc. It will be appreciated that unsafe sharp tips and/or cutting blades might cause inadvertent damage to cardiac structures, and that mechanical cutting tips and/or blades might be more appropriate for other parts of the anatomy of the patient, etc. Therefore, it will be appreciated that the energy-emitting assembly 106 may be substituted (at least in part) with a mechanical tissue-cutting assembly (such as a blade, a cutting tip, and any equivalent thereof, etc.) supported by the expandable-and-collapsible support structure 104.


Referring to the embodiment (implementation) as depicted in FIG. 2, the elongated medical sheath 100 includes an elongated shaft made of an electrically-insulated material. There may be insulated wires that connect to the energy-emitting devices (300A, 300B, 300C), run the length (within the interior) of the elongated medical sheath 100, and then connect to a generator 500 via a cable 502. The generator 500 is, preferably, configured to generate energy (such as radiofrequency energy, and any equivalent thereof). The generator 500 is, preferably, configured to select and control the emission of energy from a desired instance of the energy-emitting devices (300A, 300B, 300C), in order to emit energy as needed (when needed) by at least one of the energy-emitting devices (300A, 300B, 300C), as well as (preferably) for a time duration and/or with a shaped energy waveform, etc.



FIG. 3, FIG. 4 and FIG. 5 depict cross-sectional views of embodiments (implementations) of the elongated medical sheath 100 of FIG. 1A.


Referring to the embodiments (implementations) as depicted in FIG. 3 and FIG. 5, there is depicted a method. The method, generally, is for operating the elongated medical sheath 100. The method includes selectively moving, at least in part, the expandable-and-collapsible support structure 104 supporting the energy-emitting assembly 106 between the interior of the elongated medical sheath 100 (as depicted in FIG. 3) and the exterior of the elongated medical sheath 100 (as depicted in FIG. 5).


Referring to the embodiment (implementation) as depicted in FIG. 3, in the first state (storage state or collapsed state), the expandable-and-collapsible cage structure 200 is in an undeployed form in a low-profile form factor (that is, fitted to be received in the interior of the elongated medical sheath 100). The distal end section of the expandable-and-collapsible cage structure 200 has at least one of the energy-emitting devices (300A, 300B, 300C). Energy (such as radiofrequency energy) may be selectively emitted from at least one energy-emitting device 300A (or from the energy-emitting assembly 106 in general terms) toward the biological feature 900 (such as the septum) for the purposes of puncturing the biological feature 900. After formation of the puncture hole, the energy-emitting device 300A is selectively deactivated, and the expandable-and-collapsible cage structure 200 may be moved forwardly through the puncture hole (while the expandable-and-collapsible cage structure 200 remains in the undeployed state).


Referring to the embodiment (implementation) as depicted in FIG. 4, after formation of the puncture hole, the energy-emitting device 300A is deactivated, and the distal section of the expandable-and-collapsible support structure 104 (or the expandable-and-collapsible cage structure 200) may be moved to cross (pass through) the biological feature 900 via the puncture hole formed through the biological feature 900; that is, the expandable-and-collapsible cage structure 200 is moved to cross through the puncture hole formed through the biological feature 900. This action is done in response to forward movement of the elongated medical sheath 100. This movement is done, preferably, while the expandable-and-collapsible cage structure 200 remains within the interior of the elongated medical sheath 100.


Referring to the embodiment (implementation) as depicted in FIG. 5, after the puncture hole is formed through the biological wall 900, the energy-emitting device 300A is deactivated. Once the energy-emitting device 300A is deactivated, the expandable-and-collapsible cage structure 200 may be further advanced from the interior of the elongated medical sheath 100, past the puncture hole, and extended (at least in part) past the biological feature 900; in this manner, the expandable-and-collapsible cage structure 200 is deployed from the interior of the elongated medical sheath 100 to the exterior of the elongated medical sheath 100. For instance, the expandable-and-collapsible cage structure 200 may be deployed (such as, into the left atrium of the heart) to the second state (also called the deployment state). In the deployment state, the expandable-and-collapsible cage structure 200 is configured to expand (is expanded and/or expands) into a biased shape as depicted. For instance, once deployed, the expandable-and-collapsible cage structure 200 may have a larger radius in a middle section in comparison to the radius of a distal end section of the expandable-and-collapsible cage structure 200.



FIG. 6 and FIG. 7 depict cross-sectional views of embodiments (implementations) of the elongated medical sheath 100 of FIG. 1A.


Referring to the embodiment (implementation) as depicted in FIG. 6, the proximal section of the expandable-and-collapsible cage structure 200 has (preferably) at least one or more instances of the energy-emitting devices (300B, 300C) configured to selectively emit energy (such as, radiofrequency energy) toward the puncture hole formed through the biological feature 900 while the elongated medical sheath 100 is retracted back into the interior of the elongated medical sheath 100 (such as, after the expandable-and-collapsible cage structure 200 is moved from the right atrium to the left atrium of the heart of the patient, etc.). Selective activation of at last one instance of the energy-emitting devices (300B, 300C), along with rearward movement of the expandable-and-collapsible cage structure 200 toward the initially formed puncture hole, dilates (at least in part) the initially formed puncture hole, thereby forming, advantageously, a larger puncture hole (such as a septal hole, etc.). Once the dilation of the puncture hole is completed, the energy-emitting devices (300B, 300C) are deactivated and the expandable-and-collapsible cage structure 200 may be fully retracted into the interior of the elongated medical sheath 100.


Referring to the embodiment (implementation) as depicted in FIG. 7, it will be appreciated that the expandable-and-collapsible cage structure 200 may form other shapes and/or arrangements in the deployed condition, such as a spiral-shaped formation (and any equivalent thereof), as depicted FIG. 7.


The following is offered as further description of the embodiments, in which any one or more of any technical feature (described in the detailed description, the summary and the claims) may be combinable with any other one or more of any technical feature (described in the detailed description, the summary and the claims). It is understood that each claim in the claims section is an open ended claim unless stated otherwise. Unless otherwise specified, relational terms used in these specifications should be construed to include certain tolerances that the person skilled in the art would recognize as providing equivalent functionality. By way of example, the term perpendicular is not necessarily limited to 90.0 degrees, and may include a variation thereof that the person skilled in the art would recognize as providing equivalent functionality for the purposes described for the relevant member or element. Terms such as “about” and “substantially”, in the context of configuration, relate generally to disposition, location, or configuration that are either exact or sufficiently close to the location, disposition, or configuration of the relevant element to preserve operability of the element within the disclosure which does not materially modify the disclosure. Similarly, unless specifically made clear from its context, numerical values should be construed to include certain tolerances that the person skilled in the art would recognize as having negligible importance as they do not materially change the operability of the disclosure. It will be appreciated that the description and/or drawings identify and describe embodiments of the apparatus (either explicitly or inherently). The apparatus may include any suitable combination and/or permutation of the technical features as identified in the detailed description, as may be required and/or desired to suit a particular technical purpose and/or technical function. It will be appreciated that, where possible and suitable, any one or more of the technical features of the apparatus may be combined with any other one or more of the technical features of the apparatus (in any combination and/or permutation). It will be appreciated that persons skilled in the art would know that the technical features of each embodiment may be deployed (where possible) in other embodiments even if not expressly stated as such above. It will be appreciated that persons skilled in the art would know that other options may be possible for the configuration of the components of the apparatus to adjust to manufacturing requirements and still remain within the scope as described in at least one or more of the claims. This written description provides embodiments, including the best mode, and also enables the person skilled in the art to make and use the embodiments. The patentable scope may be defined by the claims. The written description and/or drawings may help to understand the scope of the claims. It is believed that all the crucial aspects of the disclosed subject matter have been provided in this document. It is understood, for this document, that the word “includes” is equivalent to the word “comprising” in that both words are used to signify an open-ended listing of assemblies, components, parts, etc. The term “comprising”, which is synonymous with the terms “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. Comprising (comprised of) is an “open” phrase and allows coverage of technologies that employ additional, unrecited elements. When used in a claim, the word “comprising” is the transitory verb (transitional term) that separates the preamble of the claim from the technical features of the disclosure. The foregoing has outlined the non-limiting embodiments (examples). The description is made for particular non-limiting embodiments (examples). It is understood that the non-limiting embodiments are merely illustrative as examples.

Claims
  • 1. An apparatus, comprising: an elongated medical sheath configured to be movable and positionable proximate to a biological feature of a patient; andan expandable-and-collapsible support structure configured to be selectively movable, at least in part, between a collapsed state within an interior of the elongated medical sheath and an expanded state at an exterior of the elongated medical sheath, the expandable-and-collapsible support structure including an expandable-and-collapsible cage structure having a distal section and a proximal section; andan energy-emitting assembly being supported by the expandable-and-collapsible support structure, the energy-emitting assembly includes: energy-emitting devices, one or more of the energy-emitting devices being positioned at the distal section of the expandable-and-collapsible cage structure and being configured to puncture the biological feature of a patient while the expandable-and-collapsible cage structure is in a collapsed state.
  • 2. The apparatus of claim 1, wherein: said energy-emitting devices include: electrodes being supported by the expandable-and-collapsible support structure.
  • 3. The apparatus of claim 1, wherein: the expandable-and-collapsible support structure includes: an elongated member extending from the expandable-and-collapsible cage structure; andthe elongated member is configured to be movable along the interior of the elongated medical sheath.
  • 4. The apparatus of claim 3, wherein: at least one of the energy-emitting devices is positioned at the proximal section of the expandable-and-collapsible cage structure, and is configured to dilate a puncture hole.
  • 5. The apparatus of claim 3, wherein: the expandable-and-collapsible cage structure is configured to fit in, and be movable along, the interior of the elongated medical sheath in such a way that once the expandable-and-collapsible cage structure is received in the interior of the elongated medical sheath, the expandable-and-collapsible cage structure is placed in a storage condition.
  • 6. The apparatus of claim 3, wherein: the expandable-and-collapsible cage structure, once deployed, forms a tear drop shape in an expanded state.
  • 7. The apparatus of claim 3, wherein: the expandable-and-collapsible cage structure, once deployed, forms a tapered proximal section in an expanded state.
  • 8. The apparatus of claim 3, wherein: the expandable-and-collapsible cage structure, once deployed, is configured to expand radially at the distal section of the expandable-and-collapsible cage structure.
  • 9. The apparatus of claim 3, wherein: the expandable-and-collapsible cage structure is configured to form a spiral-shaped formation.
  • 10. The apparatus of claim 1, wherein elbows or bends of the expandable-and-collapsible support structure are formed of a metal softer than other portions of the expandable-and-collapsible support structure.
  • 11. A method of operating an elongated medical sheath configured to be movable and positionable proximate to a biological feature of a patient, the method comprising: selectively moving, at least in part, an expandable-and-collapsible support structure supporting an energy-emitting assembly between a collapsed state within an interior of the elongated medical sheath and an expanded state at an exterior of the elongated medical sheath, wherein the expandable-and collapsible support structure includes an expandable-and-collapsible cage structure having a distal section and a proximal section, and the energy-emitting assembly includes energy-emitting devices, one or more of the energy-emitting devices being positioned at and supported by the distal section of the expandable-and-collapsible cage structure and being configured to puncture the biological feature of a patient while the expandable-and-collapsible cage is in a collapsed state.
  • 12. The method of claim 11, further comprising: using the one or more of the energy-emitting devices positioned at the distal section of the expandable-and collapsible cage structure for formation of a puncture hole through a biological wall.
  • 13. The method of claim 11, further comprising: using at least one of the energy-emitting devices of the energy-emitting assembly for dilating a puncture hole formed through a biological wall.
  • 14. The method of claim 11, further comprising: using the one or more of the energy-emitting devices positioned at the distal section of the expandable-and collapsible cage structure for selective emission of energy to form a puncture hole through the biological wall.
  • 15. The method of claim 14, further comprising: using at least one of the energy-emitting devices of the energy-emitting assembly for selective emission of energy to dilate a puncture hole formed through a biological wall.
  • 16. An apparatus, comprising: an elongated medical sheath configured to be movable and positionable proximate to a biological feature of a patient; andan expandable-and-collapsible cage configured to be selectively movable between a collapsed state within an interior of the elongated medical sheath and an expanded state at an exterior of the elongated medical sheath, the expandable-and collapsible cage having a distal section and a proximal section;an elongated member extending from the expandable-and-collapsible cage; andelectrodes supported by the expandable-and-collapsible cage, at least one of the electrodes being positioned at the distal section of the expandable-and-collapsible cage and being configured to puncture the biological feature of a patient while the expandable-and-collapsible cage structure is in a collapsed state.
  • 17. The apparatus of claim 16, wherein at least one of the electrodes is positioned at the proximal section of the expandable-and-collapsible cage, and is configured to dilate the puncture.
  • 18. The apparatus of claim 16, wherein the expandable-and-collapsible cage forms a tear drop shape in an expanded state.
  • 19. The apparatus of claim 16, wherein the expandable-and-collapsible cage forms a tapered proximal section in an expanded state.
  • 20. The apparatus of claim 16, wherein elbows or bends of the expandable-and-collapsible cage are formed of a metal softer than other portions of the expandable-and-collapsible cage.
US Referenced Citations (332)
Number Name Date Kind
175254 Oberly Mar 1876 A
827626 Gillet Jul 1906 A
848711 Weaver Apr 1907 A
1072954 Junn Sep 1913 A
1279654 Charlesworth Sep 1918 A
1918094 Geekas Jul 1933 A
1996986 Weinberg Apr 1935 A
2021989 De Master Nov 1935 A
2146636 Lipchow Feb 1939 A
3429574 Williams Feb 1969 A
3448739 Stark et al. Jun 1969 A
3575415 Fulp et al. Apr 1971 A
3595239 Petersen Jul 1971 A
4129129 Amrine Dec 1978 A
4244362 Anderson Jan 1981 A
4401124 Guess et al. Aug 1983 A
4639252 Kelly et al. Jan 1987 A
4641649 Walinsky et al. Feb 1987 A
4669467 Willett et al. Jun 1987 A
4682596 Bales et al. Jul 1987 A
4790311 Ruiz Dec 1988 A
4790809 Kuntz Dec 1988 A
4793350 Mar et al. Dec 1988 A
4807620 Strul et al. Feb 1989 A
4832048 Cohen May 1989 A
4840622 Hardy Jun 1989 A
4863441 Lindsay et al. Sep 1989 A
4884567 Elliott et al. Dec 1989 A
4892104 Ito et al. Jan 1990 A
4896671 Cunningham et al. Jan 1990 A
4928693 Goodin et al. May 1990 A
4936281 Stasz Jun 1990 A
4960410 Pinchuk Oct 1990 A
4977897 Hurwitz Dec 1990 A
4998933 Eggers et al. Mar 1991 A
5006119 Acker et al. Apr 1991 A
5019076 Yamanashi et al. May 1991 A
5047026 Rydell Sep 1991 A
5081997 Bosley et al. Jan 1992 A
5098431 Rydell Mar 1992 A
5112048 Kienle May 1992 A
5154724 Andrews Oct 1992 A
5201756 Horzewski et al. Apr 1993 A
5209741 Spaeth May 1993 A
5211183 Wilson May 1993 A
5221256 Mahurkar Jun 1993 A
5230349 Langberg Jul 1993 A
5281216 Klicek Jan 1994 A
5300068 Rosar et al. Apr 1994 A
5300069 Hunsberger et al. Apr 1994 A
5314418 Takano et al. May 1994 A
5318525 West et al. Jun 1994 A
5327905 Avitall Jul 1994 A
5364393 Auth et al. Nov 1994 A
5372596 Klicek et al. Dec 1994 A
5380304 Parker Jan 1995 A
5397304 Truckai Mar 1995 A
5403338 Milo Apr 1995 A
5423809 Klicek Jun 1995 A
5425382 Golden et al. Jun 1995 A
5490859 Mische et al. Feb 1996 A
5497774 Swartz et al. Mar 1996 A
5507751 Goode et al. Apr 1996 A
5509411 Littmann et al. Apr 1996 A
5540681 Strul et al. Jul 1996 A
5545200 West et al. Aug 1996 A
5555618 Winkler Sep 1996 A
5571088 Lennox et al. Nov 1996 A
5575766 Swartz et al. Nov 1996 A
5575772 Lennox Nov 1996 A
5599347 Hart et al. Feb 1997 A
5605162 Mirzaee et al. Feb 1997 A
5617878 Taheri Apr 1997 A
5622169 Golden et al. Apr 1997 A
5624430 Eton et al. Apr 1997 A
5667488 Lundquist et al. Sep 1997 A
5673695 McGee et al. Oct 1997 A
5674208 Berg et al. Oct 1997 A
5680860 Imran Oct 1997 A
5683366 Eggers et al. Nov 1997 A
5720744 Eggleston et al. Feb 1998 A
5741249 Moss et al. Apr 1998 A
5766135 Terwilliger Jun 1998 A
5779688 Imran et al. Jul 1998 A
5810764 Eggers et al. Sep 1998 A
5814028 Swartz et al. Sep 1998 A
5830214 Flom et al. Nov 1998 A
5836875 Webster, Jr. Nov 1998 A
5849011 Jones et al. Dec 1998 A
5851210 Torossian Dec 1998 A
5885227 Finlayson Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5893848 Negus et al. Apr 1999 A
5893885 Webster, Jr. Apr 1999 A
5904679 Clayman May 1999 A
5916210 Winston Jun 1999 A
5916235 Guglielmi Jun 1999 A
5921957 Killion et al. Jul 1999 A
5931818 Werp et al. Aug 1999 A
5944023 Johnson et al. Aug 1999 A
5951482 Winston et al. Sep 1999 A
5957842 Littmann et al. Sep 1999 A
5964757 Ponzi Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5989276 Houser et al. Nov 1999 A
6007555 Devine Dec 1999 A
6009877 Edwards Jan 2000 A
6013072 Winston et al. Jan 2000 A
6017340 Cassidy et al. Jan 2000 A
6018676 Davis et al. Jan 2000 A
6030380 Auth et al. Feb 2000 A
6032674 Eggers et al. Mar 2000 A
6048349 Winston et al. Apr 2000 A
6053870 Fulton, III Apr 2000 A
6053904 Scribner et al. Apr 2000 A
6056747 Saadat et al. May 2000 A
6063093 Winston et al. May 2000 A
6093185 Ellis et al. Jul 2000 A
6106515 Winston et al. Aug 2000 A
6106520 Laufer et al. Aug 2000 A
6117131 Taylor Sep 2000 A
6142992 Cheng et al. Nov 2000 A
6146380 Racz et al. Nov 2000 A
6155264 Ressemann et al. Dec 2000 A
6156031 Aita et al. Dec 2000 A
6171305 Sherman Jan 2001 B1
6179824 Eggers et al. Jan 2001 B1
6193676 Winston et al. Feb 2001 B1
6193715 Wrublewski et al. Feb 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217575 Devore et al. Apr 2001 B1
6221061 Engelson et al. Apr 2001 B1
6228076 Winston et al. May 2001 B1
6245054 Fuimaono et al. Jun 2001 B1
6267758 Daw et al. Jul 2001 B1
6283983 Makower et al. Sep 2001 B1
6292678 Hall et al. Sep 2001 B1
6293945 Parins et al. Sep 2001 B1
6296615 Brockway et al. Oct 2001 B1
6296636 Cheng et al. Oct 2001 B1
6302898 Edwards et al. Oct 2001 B1
6304769 Arenson et al. Oct 2001 B1
6315777 Comben Nov 2001 B1
6328699 Eigler et al. Dec 2001 B1
6360128 Kordis et al. Mar 2002 B2
6364877 Goble et al. Apr 2002 B1
6385472 Hall et al. May 2002 B1
6394976 Winston et al. May 2002 B1
6395002 Ellman et al. May 2002 B1
6419674 Bowser et al. Jul 2002 B1
6428551 Hall et al. Aug 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6475214 Moaddeb Nov 2002 B1
6485485 Winston et al. Nov 2002 B1
6508754 Liprie et al. Jan 2003 B1
6524303 Garibaldi Feb 2003 B1
6530923 Dubrul et al. Mar 2003 B1
6554827 Chandrasekaran et al. Apr 2003 B2
6562031 Chandrasekaran et al. May 2003 B2
6562049 Norlander et al. May 2003 B1
6565562 Shah et al. May 2003 B1
6607529 Jones et al. Aug 2003 B1
6632222 Edwards et al. Oct 2003 B1
6639999 Cookingham et al. Oct 2003 B1
6650923 Lesh et al. Nov 2003 B1
6651672 Roth Nov 2003 B2
6662034 Segner et al. Dec 2003 B2
6663621 Winston et al. Dec 2003 B1
6702811 Stewart et al. Mar 2004 B2
6709444 Makower Mar 2004 B1
6723052 Mills Apr 2004 B2
6733511 Hall et al. May 2004 B2
6740103 Hall et al. May 2004 B2
6752800 Winston et al. Jun 2004 B1
6755816 Ritter et al. Jun 2004 B2
6811544 Schaer Nov 2004 B2
6814733 Schwartz et al. Nov 2004 B2
6820614 Bonutti Nov 2004 B2
6834201 Gillies et al. Dec 2004 B2
6842639 Winston et al. Jan 2005 B1
6852109 Winston et al. Feb 2005 B2
6855143 Davison et al. Feb 2005 B2
6860856 Ward et al. Mar 2005 B2
6869431 Maguire et al. Mar 2005 B2
6911026 Hall et al. Jun 2005 B1
6951554 Johansen et al. Oct 2005 B2
6951555 Suresh et al. Oct 2005 B1
6955675 Jain Oct 2005 B2
6970732 Winston et al. Nov 2005 B2
6980843 Eng et al. Dec 2005 B2
7029470 Francischelli et al. Apr 2006 B2
7056294 Khairkhahan et al. Jun 2006 B2
7083566 Tornes et al. Aug 2006 B2
7112197 Hartley et al. Sep 2006 B2
7335197 Sage et al. Feb 2008 B2
7618430 Scheib Nov 2009 B2
7651492 Wham Jan 2010 B2
7666203 Chanduszko et al. Feb 2010 B2
7678081 Whiting et al. Mar 2010 B2
7678118 Bates et al. Mar 2010 B2
7682360 Guerra Mar 2010 B2
7828796 Wong et al. Nov 2010 B2
7900928 Held et al. Mar 2011 B2
8192425 Mirza et al. Jun 2012 B2
8246617 Welt et al. Aug 2012 B2
8257323 Joseph et al. Sep 2012 B2
8388549 Paul et al. Mar 2013 B2
8500697 Kurth et al. Aug 2013 B2
9445895 Kreidler Sep 2016 B2
9656046 Liungman May 2017 B2
10111623 Jung et al. Oct 2018 B2
11339579 Stearns May 2022 B1
11369405 Vardi Jun 2022 B2
11497552 Morales Nov 2022 B2
20010012934 Chandrasekaran et al. Aug 2001 A1
20010021867 Kordis et al. Sep 2001 A1
20020019644 Hastings et al. Feb 2002 A1
20020022781 Mclntire et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020087153 Roschak et al. Jul 2002 A1
20020087156 Maguire et al. Jul 2002 A1
20020111618 Stewart et al. Aug 2002 A1
20020123749 Jain Sep 2002 A1
20020147485 Mamo et al. Oct 2002 A1
20020169377 Khairkhahan et al. Nov 2002 A1
20020188302 Berg et al. Dec 2002 A1
20020198521 Maguire Dec 2002 A1
20030032929 McGuckin Feb 2003 A1
20030040742 Underwood et al. Feb 2003 A1
20030144658 Schwartz et al. Jul 2003 A1
20030158480 Tornes et al. Aug 2003 A1
20030163153 Scheib Aug 2003 A1
20030225392 McMichael et al. Dec 2003 A1
20040015162 McGaffigan Jan 2004 A1
20040024396 Eggers Feb 2004 A1
20040030328 Eggers et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040073243 Sepetka et al. Apr 2004 A1
20040077948 Violante et al. Apr 2004 A1
20040116851 Johansen et al. Jun 2004 A1
20040127963 Uchida et al. Jul 2004 A1
20040133113 Krishnan Jul 2004 A1
20040133130 Ferry et al. Jul 2004 A1
20040143256 Bednarek Jul 2004 A1
20040147950 Mueller et al. Jul 2004 A1
20040181213 Gondo Sep 2004 A1
20040230188 Cioanta et al. Nov 2004 A1
20050004585 Hall et al. Jan 2005 A1
20050010208 Winston et al. Jan 2005 A1
20050049628 Schweikert et al. Mar 2005 A1
20050059966 McClurken et al. Mar 2005 A1
20050065507 Hartley et al. Mar 2005 A1
20050085806 Auge et al. Apr 2005 A1
20050096529 Cooper et al. May 2005 A1
20050101984 Chanduszko et al. May 2005 A1
20050119556 Gillies et al. Jun 2005 A1
20050137527 Kunin Jun 2005 A1
20050149012 Penny et al. Jul 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050203507 Truckai et al. Sep 2005 A1
20050261607 Johansen et al. Nov 2005 A1
20050288631 Lewis et al. Dec 2005 A1
20060041253 Newton et al. Feb 2006 A1
20060074398 Whiting et al. Apr 2006 A1
20060079769 Whiting et al. Apr 2006 A1
20060079787 Whiting et al. Apr 2006 A1
20060079884 Manzo et al. Apr 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060089638 Carmel et al. Apr 2006 A1
20060106375 Werneth et al. May 2006 A1
20060135962 Kick et al. Jun 2006 A1
20060142756 Davies et al. Jun 2006 A1
20060189972 Grossman Aug 2006 A1
20060241586 Wilk Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060264927 Ryan Nov 2006 A1
20060276710 Krishnan Dec 2006 A1
20070060879 Weitzner et al. Mar 2007 A1
20070066975 Wong et al. Mar 2007 A1
20070118099 Trout, III May 2007 A1
20070123964 Davies et al. May 2007 A1
20070167775 Kochavi et al. Jul 2007 A1
20070173939 Kim et al. Jul 2007 A1
20070208256 Marilla Sep 2007 A1
20070225681 House Sep 2007 A1
20070270791 Wang et al. Nov 2007 A1
20080039865 Shaher et al. Feb 2008 A1
20080042360 Veikley Feb 2008 A1
20080086120 Mirza et al. Apr 2008 A1
20080097213 Carlson et al. Apr 2008 A1
20080108987 Bruszewski et al. May 2008 A1
20080146918 Magnin et al. Jun 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080208121 Youssef et al. Aug 2008 A1
20080275439 Francischelli et al. Nov 2008 A1
20090105742 Kurth et al. Apr 2009 A1
20090138009 Viswanathan et al. May 2009 A1
20090163850 Betts et al. Jun 2009 A1
20090177114 Chin et al. Jul 2009 A1
20090264977 Bruszewski et al. Oct 2009 A1
20100087789 Leeflang et al. Apr 2010 A1
20100125282 Machek et al. May 2010 A1
20100168684 Ryan Jul 2010 A1
20100179632 Bruszewski et al. Jul 2010 A1
20100191142 Paul et al. Jul 2010 A1
20100194047 Sauerwine Aug 2010 A1
20110046619 Ducharme Feb 2011 A1
20110152716 Chudzik et al. Jun 2011 A1
20110160592 Mitchell Jun 2011 A1
20110190763 Urban et al. Aug 2011 A1
20120232546 Mirza et al. Sep 2012 A1
20120265055 Melsheimer et al. Oct 2012 A1
20120330156 Brown et al. Dec 2012 A1
20130184551 Paganelli et al. Jul 2013 A1
20130184735 Fischell et al. Jul 2013 A1
20130282084 Mathur et al. Oct 2013 A1
20140206987 Urbanski et al. Jul 2014 A1
20140243822 Farin et al. Aug 2014 A1
20140296769 Hyde et al. Oct 2014 A1
20150032103 McLawhorn Jan 2015 A1
20150066010 McLawhorn Mar 2015 A1
20160166314 Hancock et al. Jun 2016 A1
20160220741 Garrison et al. Aug 2016 A1
20170231647 Saunders et al. Aug 2017 A1
20180055496 Hou et al. Mar 2018 A1
20190021763 Zhou et al. Jan 2019 A1
20190142406 Amplatz et al. May 2019 A1
20190247035 Gittard et al. Aug 2019 A1
20190298411 Davies Oct 2019 A1
20200289196 Arevalos Sep 2020 A1
20200345487 Christianson et al. Nov 2020 A1
Related Publications (1)
Number Date Country
20220079654 A1 Mar 2022 US
Provisional Applications (1)
Number Date Country
63078545 Sep 2020 US