The present invention relates to an elongated security element for security papers, value documents and the like, having a longitudinal direction and, perpendicular to the longitudinal direction, a transverse direction, and having, arranged on a support, a magnetic layer that includes machine-readable magnetic regions. The invention further relates to a method for manufacturing such a security element, and a data carrier that is equipped accordingly.
For protection, data carriers, such as value or identification documents, but also other valuable articles, such as branded articles, are often provided with security elements that permit the authenticity of the data carrier to be verified, and that simultaneously serve as protection against unauthorized reproduction. The security elements are developed, for example, in the form of a security thread that is completely or partially embedded in a banknote.
To facilitate an automatic authenticity check and, if applicable, further sensor-based detection and processing of the documents provided therewith, the security elements are often provided with machine-readable codes. One example of a machine-readable security element for banknotes is a security thread having machine-readable magnetic regions whose information content, in the authenticity check, can be detected and analyzed by the magnet sensor of a banknote processing system. Here, in known embodiments, the detection of the magnetic regions can be problematic, for example when, in the chosen transport direction of the banknotes, a sensor of a track-based magnet sensor encounters a non-magnetic gap between the magnetic regions.
Also the provision of machine-readable magnetic regions often poses limiting conditions for the visually visible design of a security thread, for example because the space available for visual design elements is limited, or because the magnetic material impairs the transparency of inverse lettering regions.
Proceeding from this, the object of the present invention is to specify a generic security element that avoids or diminishes the disadvantages of the background art. In particular, it is intended to combine easy and reliable detection of the machine-readable magnetic regions with a visually attractive appearance and great design freedom for the designer.
This object is solved by the security element having the features of the main claim. A method for manufacturing such a security element and a data carrier having such a security element are specified in the coordinated claims. Developments of the present invention are the subject of the dependent claims.
According to the present invention, the magnetic layer in a security element of the kind mentioned above comprises a plurality of frame-shaped magnet elements that include the machine-readable magnetic regions, and that are arranged along the longitudinal direction of the elongated security element. Here, a security element is referred to as elongated when its dimension in the longitudinal direction is more than twice as large as its dimension in the transverse direction. Here, in typical elongated security elements, such as a security thread, security band or security strip, the longitudinal direction is the main axis of the thread, band or strip, or the running direction of the thread, band or strip. Here, the relationship of dimension in the longitudinal direction to dimension in the transverse direction is usually significantly greater than 2 and is normally between about 3.5 and about 40.
The frame-shaped magnet elements are preferably developed to be rectangular and exhibit only linear inner and outer borders, in other words especially no curved, serrated or crooked borders. Advantageously, the borders of the frame-shaped magnet elements extend only either parallel or perpendicular to the longitudinal direction of the elongated security element.
In a variant of the present invention, the frame-shaped magnet elements form, in some regions, open magnet frames that are either immediately connected to one another or arranged spaced apart. Currently, however, the variant of the present invention in which the frame-shaped magnet elements form spaced-apart, closed magnet frames is particularly preferred.
In all embodiments, the frame-shaped magnet elements are advantageously each arranged around further security features, the frame-shaped magnet elements forming, in the currently particularly preferred variant, closed magnet frames that enclose the further security features, such that said security features lie in the magnet-free inner region of the magnet frames. As further security features, especially see-through regions having a piece of see-through information may be considered, which can be formed, for example, by inverse pattern regions, such as inverse lettering or other inverse motifs. The see-through regions especially constitute transparent or semitransparent regions in otherwise opaque layers and can be formed, for example, by gaps in a colored opaque layer or by demetallizing a metal layer.
The piece of see-through information can be a positive depiction in which the information to be depicted, for example a letter string, is formed by the opaque regions, but it can also be an inverse depiction in which the information to be depicted is formed by gaps in the opaque regions. The piece of see-through information can also comprise a combination of a positive and inverse depiction, or can depict a geometric or abstract pattern in which it often cannot be established whether the piece of information is present in a positive depiction or an inverse depiction.
Also optically variable security features may, according to the present invention, be considered as further security features. The optically variable security features can especially be color-shifting thin-film elements, liquid crystal coatings, optically variable pigments, diffraction patterns, such as holograms, or also optically variable coatings that exhibit a combination of color-variable and color-constant regions.
The frame-shaped magnet elements preferably exhibit a remanent line flux between 120 nWb/m and 500 nWb/m. Here, the remanent line flux is the magnetic flux per unit length that is emitted from the edge of an elongated security element according to the present invention. If one multiplies the remanent line flux with the length of 1 m, one obtains the total flux that is emitted from 1 m of the elongated security element.
In a preferred specific embodiment, the frame-shaped magnet elements exhibit along the longitudinal direction a ridge width between 0.1 mm and 1.5 mm, preferably between 0.2 mm and 0.4 mm. Along the transverse direction, the ridge width is advantageously between 0.1 mm and 4 mm, preferably about 1 mm.
In a development of the present invention, outside the frame-shaped magnet elements are arranged visually perceptible characters, patterns or codes, especially visually perceptible see-through regions or color motifs. Here, too, the see-through regions can be formed, for example, by inverse pattern regions, such as inverse lettering or other inverse motifs, or also by appropriate positive pattern regions.
In an advantageous variant of the present invention, the frame-shaped magnet elements are imprinted on a data carrier that itself is not part of the security element. For example, the magnetic layer having the frame-shaped magnet elements can be imprinted on a security paper, a security document or a value document. It is understood that the region of the data carrier that is printed on with the frame-shaped magnet elements becomes, due to the printing, a part of the elongated security element according to the present invention. In particular, the data carrier can be a paper banknote having a substrate composed of paper, especially cotton paper, a polymer banknote having a substrate composed of a plastic material, or a foil-composite banknote. Of course also paper that includes a portion x of polymer material in the range from 0<x<100 wt. % can be used as the substrate for the data carrier provided for the imprint of the frame-shaped magnet elements. If the data carrier is a substrate composed of plastic material, then especially plastic foils composed of polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polypropylene (PP), polyamide (PA) or monolayer composite substrates composed of these plastic materials are preferred. Further, the substrate can be developed as a multilayer foil composite, especially as a composite of multiple different plastic foils (composite laminate) or as a paper-foil composite. Here, the foils of the composite can be formed, for example, from the above-mentioned plastic materials. Such a composite is distinguished by an extraordinarily high stability, which is of great advantage for the durability of the security element. These composite materials can also be used with great advantage in certain climate regions of the earth.
In a particularly preferred variant of the present invention, the paper-foil-composite exhibits an interior base paper and two exterior foil plies, as described in greater detail in publication EP 1 545 902 B1, the disclosure of which is incorporated in the present description by reference. Also the inverse structure of a paper-foil composite in which an interior foil is provided with two exterior paper plies is advantageous.
In general, it is also to be noted that, in the multilayer foil composite substrates, the frame-shaped magnet elements can be arranged on/in the interior or exterior layer. This applies both to the variants of the present invention having magnet elements that are imprinted on, and to security elements according to the present invention having a support substrate.
In another, likewise advantageous variant of the present invention, the security element includes, as the support, a plastic support foil on which the frame-shaped magnet elements are arranged. In an expedient embodiment, here, the frame-shaped magnet elements occupy the entire width of the support foil in the transverse direction.
In an advantageous embodiment, the frame-shaped magnet elements are each arranged around further security features, and the frame-shaped magnet elements and the further security features are arranged on opposing sides of the support foil. If the magnet elements and the further security features do not lie in the same plane, then the specification that the frame-shaped magnet elements are to be arranged around the further security features refers to the projection of the magnet elements into the plane of the further security features. Thus, for example, the magnet frames 44 in
Preferably there are arranged outside the frame-shaped magnet elements visually perceptible characters, patterns or codes, especially visually perceptible see-through regions or color motifs, that occupy substantially the entire width of the support foil in the transverse direction. Here, the formulation “substantially the entire width of the support foil” accounts for the fact that not all motifs can extend to the edges of the support. For example, inverse characters must always maintain a certain distance from the edges of the support foil in order to still be well recognizable as such. However, what is important is that the support foil width that is usable for the motifs not be limited by the magnetic layer in the region outside the frame-shaped magnet elements. In particular, the motifs, in other words the visually perceptible characters, patterns or codes, can exhibit, in the transverse direction of the support foil, a dimension that is larger than the width of the support foil minus twice the ridge width of the frame-shaped magnet elements along the longitudinal direction of the support foil.
The security element is preferably a security thread, a security band, a security strip or a security thread imprinted on a data carrier.
The present invention also comprises a method for manufacturing a security element of the kind described above, in which a magnetic layer is arranged on a support, the magnetic layer being developed having a plurality of frame-shaped magnet elements that include the machine-readable magnetic regions, and that are arranged along the longitudinal direction of the elongated security element.
Here, in an advantageous variant of the present invention, the magnetic layer having the plurality of frame-shaped magnet elements is imprinted on a data carrier that itself is not part of the security element.
In another, likewise advantageous variant of the present invention, the method comprises the steps:
In both variants, the frame-shaped magnet elements are preferably each arranged around further security features, the frame-shaped magnet elements particularly preferably being developed as closed magnet frames that include the further security features.
In the second mentioned variant of the present invention, the frame-shaped magnet elements and the further security features are advantageously arranged on opposing sides of the support foil. According to the kind of security feature, the further security features can be imprinted, vapor deposited or applied in some other manner known to the person skilled in the art.
The present invention further comprises a data carrier, especially a value document, such as a banknote, a passport, a certificate, an identification card or the like, that is furnished with a security element of the kind described. The data carrier can also be a continuous material, such as a continuous roll material for security threads.
Furthermore, the security element according to the present invention can advantageously also be transferred to a data carrier through a transfer method (e.g. hot stamping).
Further exemplary embodiments and advantages of the present invention are explained below by reference to the drawings, in which a depiction to scale and proportion was dispensed with in order to improve their clarity. The different exemplary embodiments are not limited to the use in the form specifically described, but rather can also be combined with one another.
Shown are:
The invention will now be explained using the example of security elements for banknotes. For this,
The transport direction 14 in which the transport occurs longitudinally to the main axis of the thread is referred to as transverse transport since, here, the transport occurs in the transverse direction of the banknote 10. Accordingly, the transport direction 16 in which the transport occurs transverse to the main axis of the thread is referred to as longitudinal transport since, here, the transport occurs in the longitudinal direction of the banknote 10. In both cases, the banknote 10 is transported by a transport system past a magnet sensor that inductively or magnetoresistively reads out the magnetic information integrated in the security thread 12. As magnet sensors, often track-based sensors having a limited number of adjacent measuring tracks are used, such that, for a good readout result, there must not be any excessively large gaps in the magnetic information.
In longitudinal transport 16, difficulties in signal detection by means of tracked magnet sensors are unlikely, due to the small gaps 26. In the magnet-free regions 24, inverse lettering 28 can be provided, the text height of the inverse lettering 28 being limited by the width of the magnetic edge track strip 22 and the printing tolerances.
The magnet design of the security thread 30 in
Inventive embodiments of security threads will now be described in greater detail by reference to
A current particularly preferred embodiment of a security thread 40 according to the present invention is shown in
The magnet frames 44 exhibit along the thread longitudinal direction a dimension of 5 mm to 40 mm, preferably of 8 mm to 20 mm, and in the thread transverse direction, a dimension of 2 mm to 6 mm, preferably of 3 mm to 4 mm. For the ridges 44-1 that extend along the main axis of the thread, the width of the ridges of the magnet frames 44 is between 0.1 mm and 1.5 mm, preferably between 0.2 mm and 0.4 mm, and for the ridges 44-2 that extend transverse to the main axis of the thread, between 0.1 mm and 4 mm, preferably about 1 mm. The remanent line flux of the magnet frames 44 is preferably between 120 nWb/m and 500 nWb/m.
Due to the inventive embodiment of the magnetic layer, particularly good detectability of the magnetic information is achieved both in readout in transverse transport 14 and in readout in longitudinal transport 16.
In transverse transport 14, the perpendicular frame struts 44-2 that run transverse to the main axis of the thread produce a greatly improved readout signal compared with known embodiments according to
In the exemplary embodiment in
The thin-film element 50 is provided with gaps 52 in which the otherwise opaque thread structure is transparent or translucent, and that, when viewed in transmitted light, thus appear brightly shining as see-through regions, for example as inverse patterns 54, 56.
A portion of the gaps 52 forms inverse lettering 54 that is enclosed by the magnet frames 44 of the magnetic layer, as depicted in
As depicted in the exemplary embodiment in
Moreover, the security thread 60 exhibits an opaque thin-film element 64, of the kind already described in connection with
Also the open frame design in
The exemplary embodiments in
Besides the magnetic layer, the security thread 70 exhibits an optically variable security feature 74, in the exemplary embodiment a hologram, that is provided with gaps in the form of inverse lettering 76 and an inverse pattern 78. As illustrated in
With respect to the exemplary embodiments having inverse lettering and/or positive lettering disclosed in this application, it is also to be noted that, besides the examples shown in
For the security element according to the present invention, also embodiments can be used in which a first piece of information and a second piece of information are provided, the second piece of information being depicted as positive lettering and exhibiting the same form as the first piece of information, and the first and the second piece of information being arranged nested in such a way that the second piece of information exhibits unprinted surroundings. Such embodiments are disclosed in EP 0 930 174 B1, the disclosure of which is incorporated in the present application by reference.
The present invention is not limited to homogeneous magnet elements. For example, the security thread 80 shown in
The security thread 80 further exhibits an optically variable security feature 88 that is provided with gaps in the form of inverse lettering 90 and an inverse pattern 92. The frame-shaped first and second magnet elements 82, 84 are each arranged around the inverse characters 90 formed by the gaps, while the inverse pattern 92 is arranged outside the magnet elements 82, 84 in a magnet-free region and extends substantially to the thread edges of the security thread 80.
Due to the transverse ridges of the frame-shaped magnet elements 72, 82, 84 and the narrow gaps between the adjacent magnet elements both in transverse transport and in longitudinal transport, the embodiments in
The opaque regions 108 can be, for example, regions of a metalization that were left standing in a demetalization step, or also a colored, opaque layer that is applied only in some regions. In the parlance of the present application, the letter string “PL” then depicts, not an inverse piece of information (as in
Also the characters 110 arranged between the magnet frames 102 in magnet-free regions can be developed not only in inverse depiction, as shown, for example, in
The exemplary embodiment 120 in
Number | Date | Country | Kind |
---|---|---|---|
10 2009 042 022.3 | Sep 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP10/05589 | 9/13/2010 | WO | 00 | 3/16/2012 |