The present invention relates generally to a source container used in vapor deposition of a layer onto a structure, such as a deposition of an organic layer onto a structure that will form part of an organic light-emitting device (OLED).
An organic light-emitting device, also referred to as an organic electroluminescent device, can be constructed by sandwiching two or more organic layers between first and second electrodes.
In a passive matrix organic light-emitting device (OLED) of conventional construction, a plurality of laterally spaced light-transmissive anodes, for example indium-tin-oxide (ITO) anodes, are formed as first electrodes on a light-transmissive substrate such as, for example, a glass substrate. Two or more organic layers are then formed successively by vapor deposition of respective organic materials from respective sources, within a chamber held at reduced pressure, typically less than 10−3 torr (1.33×10−1 pascal). A plurality of laterally spaced cathodes is deposited as second electrodes over an uppermost one of the organic layers. The cathodes are oriented at an angle, typically at a right angle, with respect to the anodes.
Applying an electrical potential (also referred to as a drive voltage) operates such conventional passive matrix organic light-emitting devices between appropriate columns (anodes) and, sequentially, each row (cathode). When a cathode is biased negatively with respect to an anode, light is emitted from a pixel defined by an overlap area of the cathode and the anode, and emitted light reaches an observer through the anode and the substrate.
In an active matrix organic light-emitting device (OLED), an array of anodes are provided as first electrodes by thin-film transistors (TFTs) which are connected to a respective light-transmissive portion. Two or more organic layers are formed successively by vapor deposition in a manner substantially equivalent to the construction of the aforementioned passive matrix device. A common cathode is deposited as a second electrode over an uppermost one of the organic layers. The construction and function of an active matrix organic light-emitting device is described in U.S. Pat. No. 5,550,066, the disclosure of which is herein incorporated by reference.
Organic materials, thicknesses of vapor-deposited organic layers, and layer configurations, useful in constructing an organic light-emitting device, are described, for example, in U.S. Pat. Nos. 4,356,429, 4,539,507, 4,720,432, and 4,769,292, the disclosures of which are herein incorporated by reference.
Vapor-deposited organic layers of organic light-emitting devices and, more generally, vapor-deposited layers of other types of substrate-based structures and devices, are formed by vaporizing a solid material by applying heat to the container holding the material, and placing a structure in proximity to the container such that the vaporized material is deposited on the structure to form a layer. The container or “source” that holds such materials typically has one or more openings that allow the vaporize material (vapor efflux) to escape from the source and come in contact with the structure. During the vaporization process, solid particles of the material, also known as spatter, can be ejected and become airborne. Deposition of such particles degrades the properties of the layer being formed; thus, thermal physical vapor deposition sources are generally designed to prevent spatter from escaping from the source container. One approach for preventing egress of solid particles is to place a baffle between the heated solid material and the openings in the source container, thereby permitting only vaporized material to exit the container. Thus, the function of such known baffles is to prevent emission of solid deposition material from the source container that would degrade the vapor deposition process.
A source for thermal physical vapor deposition of organic layers onto a structure for making an organic light-emitting device has been disclosed by Robert G. Spahn in commonly assigned U.S. Pat. No. 6,237,529, issued May 29, 2001, the entire contents of which are hereby incorporated herein by reference. The source disclosed by Spahn includes a housing, which defines an enclosure for receiving solid organic material, which can be vaporized. The housing is further defined by a top plate which defines a vapor efflux slit-aperture for permitting vaporized organic materials to pass through the slit onto a surface of a structure. The housing defining the enclosure is connected to the top plate. The source disclosed by Spahn further includes a conductive baffle member attached to the top plate. This baffle member provides line-of-sight covering of the slit in the top plate so that vaporized organic material can pass around the baffle member and through the slit onto the substrate or structure, while particles of organic materials are prevented from passing through the slit by the baffle member when an electrical potential is applied to the housing to cause heat to be applied to the solid organic material in the enclosure, causing the solid organic material to vaporize. The function of Spahn's baffle is to prevent line of sight emission and hence solid particle emission.
The thermal physical vapor deposition source disclosed by Spahn is designed to maximize the efficiency of the vapor deposition process by attempting to minimize the amount of heat energy required to perform the vapor deposition. Excessive heat can cause the solid deposition material to break down. Reducing the amount of heat required to achieve deposition can improve the deposition process and potentially increase the duration that the deposition process can be performed continuously. Baffles tend to restrict vapor flow; consequently, while Spahn employs a baffle to prevent line of sight emission of particles, it is desirable in Spahn's source to design the baffle to permit maximum vapor flow and promote efficient coating of the substrate or device structure while still preventing line of sight emission. This is accomplished by positioning the baffle as far away from the top plate as possible and by making the baffle as narrow as possible without allowing a direct line of sight between the slit aperture and the solid material disposed within the source.
In using the thermal physical vapor deposition source disclosed by Spahn to form an organic layer of a selected organic material on a substrate or structure, it has been found that the vapor efflux slit-aperture causes non-uniform vapor flux of organic material vapor to emanate along a length dimension of the slit. While the technical or physical aspects of source design related to this non-uniformity of vapor flux are not fully understood at present, it appears that opposing edges of the slit-aperture, i.e., edges opposed in a width direction of the slit, sag or rise non-uniformly over a central portion of the slit when the source is heated to cause vaporization of solid organic material. This is a particular problem when a width dimension of the slit is reduced, for example, to a width dimension less than 0.5 millimeter (mm). Such spatially non-uniform orientation of opposing slit edges can cause be thought of as a deviation of planarity of opposing edges which, in turn, can promote a greater fraction of vaporized organic material to exit the vapor deposition source through a central portion of the slit, with a correspondingly lower fraction of vaporized organic material exiting the source through remaining portions of the slit along its length dimension. Such non-uniform vapor flux, directed at a substrate or structure, will cause the formation of an organic layer thereon which will have a non-uniform layer thickness in correspondence with the non-uniform vapor flux.
Nevertheless, Spahn's rectangular, slot-shaped slit aperture is highly efficiency from the standpoint of generating a maximum amount of vapor using a minimum amount of heat. Accordingly, replacing Spahn's slit aperture with an aperture arrangement that would potentially provide a more uniform vapor flux at the expense of efficiency would run counter the Spahn's primary objective of providing maximally efficient vapor deposition source while producing an acceptably uniform coating. Moreover, the baffle disclosed by Spahn is not designed to promote uniform vapor flux but merely to prevent egress of solid particles from the source container.
Presently, a need exists for an apparatus that promotes uniform coating of vaporized organic material on a substrate. As described above, conventional solutions for coating a substrate involve a trade-off between employing the least amount of heat to the source, and obtaining a less than uniform coating on the substrate. Other solutions for achieving a substrate with a uniform coating require close proximity between the source material and the substrate; however, this solution limits the type of source material available for use due to the level of heating of the substrate caused by the proximity to the source, i.e., substrate materials that cannot withstand the level of heat caused by the close proximity cannot be used.
Yet another solution involves generating a longer section of substrate material than is required and using only the central portion of the substrate material that is uniformly coated, or, conversely, constructing a source container that is substantially wider than the substrate to be coated. However, each of these approaches is inefficient. In the former case, significant substrate material is wasted. In the later case, the source must be made substantially wider than the vapor deposition region, resulting in wasted vaporized material at the ends of the source and greater heating and energy requirements.
Accordingly, a need exists for a thermal physical vapor deposition apparatus that efficiently produces a uniform coating on a variety of substrate materials.
It is an object of the present invention to provide an elongated thermal physical vapor deposition source for forming organic layers on a structure which will form part of an organic light-emitting device (OLED) and, more generally, to provide a thermal physical vapor deposition source configured to uniformly distribute a vapor efflux of deposition material over an extended region.
These objects are achieved in a method coating a structure by vaporizing a solid material disposed in a container including walls and a cover enclosing an interior volume, the cover including at least one aperture to permit egress of vapor efflux of vaporized material from the container, wherein the method includes:
The solid material can be, for example, an organic material used to coat a structure that will form part of an organic light-emitting device. The ratio of the interior volume of the container to the volume of the region between the baffle and the cover is more preferably at least approximately 35:1 and can be at least approximately 60:1 depending on operational parameters.
The cover can include a plurality of apertures having varying size or varying spacing between adjacent apertures, or combinations thereof, wherein such varying aperture size or varying aperture spacing is selected to provide a substantially improved uniformity of vapor efflux of vaporized material. For example, the apertures can be arranged along a center line with the spacing between adjacent apertures decreasing progressively towards end portions along the center line from a selected even spacing in a central portion along the center line. According to another example, the apertures can be arranged along a center line with the size of the apertures increasing progressively towards end portions along the center line from a selected even aperture size in a central portion along the center line.
This object is further achieved by a container for vaporizing a solid material to form a layer on a surface of a structure in a chamber, comprising:
An advantage of the present invention is that the spacings between adjacent ones of the plurality of vapor efflux apertures in the vaporization heater permit a selection of varying aperture sizes or aperture spacings, or combinations thereof, to provide a substantially improved uniformity of vapor efflux of vaporized organic material along the elongated direction of the vapor deposition source when heat causes vaporization of solid organic material received in the container. The ratio of the overall interior volume of the heater container to the volume of the region between the baffle and the cover of the container is great enough (e.g., at least 20:1) that the baffle provides the added functionality of controlling and regulating the flow of vapor efflux in the region of the apertures and produces a substantially more uniform vapor efflux across the array of apertures than prior art baffles, which merely prevent spatter.
Another advantage of the present invention is that spacings between adjacent ones of the plurality of vapor efflux apertures in the elongated vaporization heater provide mechanical stability to the apertures so that opposing aperture edges retain planarity when the vaporization heater is heated to cause vaporization of solid organic material received in the container.
Relative motion is provided between the elongated vapor deposition source and the structure in directions substantially perpendicular to the elongated direction of the source to aid in providing a substantially uniform organic layer on the structure.
The drawings are necessarily of a schematic nature since layer thickness dimensions of OLEDs are frequently in the sub-micrometer ranges, while features representing lateral device dimensions can be in a range of 50-500 millimeter. Furthermore, the plurality of apertures formed in the vaporization heater is relatively small in size when compared to a length dimension over which the apertures extend along the elongated direction of the heater. Accordingly, the drawings are scaled for ease of visualization rather than for dimensional accuracy.
The term “substrate” denotes a light-transmissive support having a plurality of laterally spaced first electrodes (anodes) preformed thereon, such substrate being a precursor of a passive matrix OLED. The term “structure” is used to describe the substrate once it has received a portion of a vapor deposited organic layer, and to denote an active matrix array as a distinction over a passive matrix precursor.
Turning to
A light-transmissive substrate 11 has formed thereon a plurality of laterally spaced first electrodes 12 (also referred to as anodes). An organic hole-transporting layer (HTL) 13, an organic light-emitting layer (LEL) 14, and an organic electron-transporting layer (ETL) 15 are formed in sequence by a physical vapor deposition, as will be described in more detail hereinafter. A plurality of laterally spaced second electrodes 16 (also referred to as cathodes) are formed over the organic electron-transporting layer 15, and in a direction substantially perpendicular to the first electrodes 12. An encapsulation or cover 18 seals environmentally sensitive portions of the structure, thereby providing a completed OLED 10.
Turning to
The stations include a load station 110 for providing a load of substrates or structures, a vapor deposition station 130 dedicated to forming organic hole-transporting layers (HTL), a vapor deposition station 140 dedicated to forming organic light-emitting layers (LEL), a vapor deposition station 150 dedicated to forming organic electron-transporting layers (ETL), a vapor deposition station 160 dedicated to forming the plurality of second electrodes (cathodes), an unload station 103 for transferring structures from the buffer hub 102 to the transfer hub 104 which, in turn, provides a storage station 170, and an encapsulation station 180 connected to the hub 104 via a connector port 105. Each of these stations has an open port extending into the hubs 102 and 104, respectively, and each station has a vacuum-sealed access port (not shown) to provide access to a station for cleaning, replenishing materials, and for replacement or repair of parts. Each station includes a housing, which defines a chamber.
In the detailed description of
Turning to
The container 30 is defined by elongated side walls 32, 34, end side walls 36, 38, and a bottom wall 35. Elongated side walls 32, 34 and end side walls 36, 38 share a common upper surface 39. The electrically insulative container 30 is preferably constructed of quartz or of a ceramic material. The container has a height dimension HC.
An elongated vaporization heater 40, which forms a cover for the container, is sealingly disposed over the common upper surface 39 of the container 30 via a sealing flange 46 which forms part of the vaporization heater. A second sealing flange (not shown in the drawings), also attached to the vaporization heater 40, can be used to provide a second seal between the source and interior portions of the elongated side walls 32, 34 and end side walls 36, 38. Other sealing elements can be used advantageously, for example, ceramic seals, or seals constructed of a temperature-tolerant compliant material. Such seals can be used in conjunction with the sealing flange 46.
The elongated vaporization heater 40 is substantially planar, and includes electrical connecting flanges 41, 43. The vaporization heater 40 and the sealing flange 46 (and a second sealing flange, if used) are preferably constructed of tantalum metal sheet material which has moderate electrical conductivity, superior mechanical strength and stability in repeated use cycles at elevated “vaporization” temperature, and an ability to be readily shaped into a desired shape.
A plurality of vapor efflux apertures 42 are formed about a center line CL along the elongated direction of the vaporization heater. The apertures 42 extend through the vaporization heater 40 to cause vapor of organic material formed in the container (when the heater is heated to cause vaporization of such organic material) to issue from the apertures and to be directed toward a surface of a structure to provide an organic layer thereon, as will be described with reference to
The vapor efflux apertures 42 are spaced from one another by the tantalum metal sheet material used to construct the heater 40. Each one of the plurality of apertures is therefore protected from mechanical distortion of opposing aperture edges, and planarity of the heater 40 and its apertures 42 is maintained over numerous vapor deposition cycles.
The vapor efflux apertures can be formed by several known techniques, for example, laser-machining and wet or dry etching. Various aperture outlines, aperture sizes or aperture areas, and aperture spacings can be formed by such techniques. Such features will be described in greater detail with reference to
Turning to
The elongated electrically insulative container 30 includes a heat-reflective coating 60 formed over the bottom wall 35 of the container, and extending upwardly over portions of the side walls and end walls of the container. The heat-reflective coating is shown here (and in
The container 30 has received a charge of solid organic material, which can be vaporized. Solid organic hole-transporting material 13a in powder form extends to a level 13b in the container. The term “powder” includes flakes and particulates of solid organic material.
A connecting clamp 41c serves to connect an electrical lead 41w to the electrical connecting flange 41 of the vaporization heater 40. Similarly, a connecting clamp 43c serves to connect an electrical lead 43w to the electrical connecting flange 43.
A baffle member 50 is attached mechanically and electrically to an underside of the vaporization heater 40 by a plurality of baffle supports 56 which also provide a selected spacing (shown as a spacing BHS in
The baffle member 50 is sized and positioned with respect to the plurality of vapor efflux apertures 42 of the vaporization heater 40, so that the baffle member substantially provides a line-of-sight covering of these apertures to prevent direct access of vaporized organic materials to the apertures, and to prevent particulate organic materials from passing through the plurality of apertures.
An additional functionality of baffle member 50 is to provide uniform conductance or, in other words, normalization of the vapor flow out of the efflux apertures 42 of the vaporization heater 40. The size and spacing of baffle member 50 with respect to the heater cover surface and apertures 42 creates a tortuous path of conductance or vapor flow between efflux apertures 42 and solid material 13, causing vapor rising from the heated solid material below to flow around the edges of the rectangular baffle member before reaching the apertures and escaping therefrom. The spacing between the baffle and heater cover is made small enough that a preponderance of the enclosed interior volume of the container (i.e., the volume enclosed by the side walls 32, 34, 36, 38, bottom wall 35, and heater cover 40) lies below the baffle, such that the vapor efflux pressure has an opportunity to equilibrate prior to the vapor efflux reaching and circumventing the baffle. This pressure equalization allows the vapor flow to uniformly exit the efflux apertures 42. Essentially, the narrow passage permitting vapor to flow from around the edges of the baffle member into the region above the baffle causes a pressure difference (a pressure drop resulting from a restriction) that produces a more uniform flow into the region above the baffle (i.e., between the baffle and cover) and, consequently, a more uniform vapor efflux emission across the array of apertures. To achieve this effect, the ratio of the interior volume of the container to the volume of the region between the baffle member 50 and heater cover 40 should be at least approximately 20 to 1. Preferably, this ratio is about 35 to 1 or greater, and can be approximately 60 to 1 or greater, depending on operational parameters.
By way of non-limiting example, a source container can have an interior length dimension (end side wall to end side wall) of 498 mm, an interior width dimension (elongated side wall to elongated side wall) of 36 mm, and an interior height dimension (bottom wall to interior heater cover) of 46 mm, resulting in an overall interior volume of 824.7 cc. The spacing between the baffle member from the cover (i.e., the distance BHS shown in
As will be appreciated from the foregoing description, a key parameter is the relatively narrow spacing BHS between the baffle and the cover which, in conjunction with the dimensions of the baffle and container housing and aperture size and spacing, produces the tortuous path and pressure drop resulting in the substantially uniform vapor efflux flow. It will be understood that the invention is not limited to the foregoing examples, and any volume ratios and baffle spacings capable of producing substantially uniform vapor flow into the region of the apertures are considered to be within the scope of the invention. With suitable spacings between the baffle and cover, together with suitable aperture sizing and spacing, ratios exceeding about 20:1 have been found to produce acceptably uniform efflux flows across the aperture array.
The distance between the baffle member 50 and the efflux aperture 42 is important in another respect. The baffle member 50 should not be too much cooler than the efflux aperture 42 to prevent localized deposition of the vapor flow onto the baffle member 50 itself. The localized deposition would arise if the baffle member 50 is not at a corresponding temperature to the efflux aperture 42.
Turning to
Viewing
Turning to
The bias heater 20 has side walls 22, 24, end walls 26, 28, and a bottom wall 25. Electrical connecting flanges 21 and 23 extend from the end walls 28 and 26, respectively. The bias heater 20 is preferably constructed of tantalum metal sheet material.
During operation of the elongated thermal physical vapor deposition source in a chamber held at reduced pressure, an electrical potential is applied to the bias heater 20 via electrical leads (not shown) connected to respective electrical connecting flanges 21, 23 by connecting clamps (not shown). The applied electrical potential is selected to cause current flow through the bias heater which, in turn, causes bias heat to be applied to solid organic material received in the container 30 to provide a bias temperature which is insufficient to cause the solid organic material to vaporize. However, the bias temperature is sufficient to release entrained gases and/or entrained moisture or volatile compounds from the organic material received in the container 30.
The vaporization heater 40, its electrical connecting flanges 41, 43, and the sealing flange 46 are the same elements described with respect to
While the bias heater 20 is operative, an electrical potential is applied to the vaporization heater 40 via electrical leads (not shown) connected to the electrical connecting flanges 41, 43 via respective connecting clamps (not shown). The electrical potential applied to the vaporization heater causes vaporization heat to be applied to uppermost portions of the solid organic material in the container 30, causing such uppermost portions to vaporize, so that vaporized organic material is projected off the side walls 32, 34 and the end walls 36, 38 of the container 30, lower surfaces of the vaporization heater 40, and the upper surface 52 of the baffle member, to exit the source through the plurality of vapor efflux apertures 42 and to project a vapor stream onto the substrate or structure 11 to provide an organic layer on the structure.
Relative motion between the elongated source of
A vapor deposition source which includes a bias heater 20, an electrically insulative container 30 disposed in the bias heater, and a vaporization heater 40 having a single-slit vapor efflux aperture disposed on the container is disclosed by Steven A. Van Slyke, et al. in U.S. patent application Ser. No. 09/996,415, filed Nov. 28, 2001, commonly assigned, and entitled “Thermal Physical Vapor Deposition Source for Making an Organic Light-Emitting Device.”
Turning to
The plurality of apertures 42 depicted in
The plurality of apertures 42 depicted in
From the description of
Due to the necessarily schematic nature of the drawings, it may appear that the central portions cp of the aperture arrangements extend over a distance comparable to a sum of distances which are described as end portions ep. In a practical elongated thermal physical vapor deposition source constructed with a plurality of vapor efflux apertures, the central portion of apertures can be significantly longer than the end portions of an aperture arrangement. As the source to substrate separation is decreased, for example, the central portion of apertures is significantly longer compared to the end portions of the aperture arrangement.
The flow of vapor efflux through each aperture a is affected by the flow through adjacent apertures on either side. Specifically, a zone of about six apertures to each side of each aperture impacts the flow through that particular aperture, with a diminishing contribution as a function of increasing distance from adjacent apertures within that zone. Accordingly, the central portion, cp, of the vaporization heater 40 has a substantial uniform vapor efflux flow and produces a substantially uniform layer of vapor deposited on the substrate. In end portions ep, the flow through the last few apertures at the very ends of the linear array can be affected by the absence of adjacent apertures on one side. The decreased spacing or increased size of the apertures in end portions ep can compensate for this effect, thereby enhancing the uniformity of vapor efflux flow across the entire aperture array.
Turning to
The thermal physical vapor deposition source of the present invention is shown in the sectional view depicted in
In
In an intermediate vapor deposition position “II”, the substrate or structure 11, the holder and/or mask frame 289, a glide shoe 288, and a lead screw follower 287 are shown in solid-outline sectional view. These source elements are depicted in dotted and dashed outlines in a starting position “I” of the holder 289, and in an end position “III” of a forward motion “F” of the holder, which is also the beginning position of a reverse motion “R” (or return motion “R”) of the holder.
Forward motion “F” and reverse or return motion “R” are effected by a lead screw 282 which engages the lead screw follower 287. The follower 287 is attached to the glide shoe 288, which, in turn, supports the holder and/or mask frame 289. The glide shoe 288 glides along a glide rail 285, and is guided in a glide rail groove 286 formed in the glide rail 285. The glide rail 285 is supported by glide rail brackets 284, which may be fastened to the housing 130H, as shown in
The lead screw 282 is supported at one end by a lead screw shaft termination bracket 283, and a lead screw shaft 281 is supported in the housing 130 by a shaft seal 281a. The lead screw shaft 281 extends through the housing 130 to a motor 280.
The motor 280 provides for forward motion “F” or reverse motion “R” via switch 290 which provides a control signal to the motor from an input terminal 292. The switch can have an intermediate or “neutral” position (not shown) in which the holder 289 can remain in either the end position “III” of forward motion, or in the starting position “I” in which a substrate or structure 11 with a completed organic layer is removed from the holder and/or mask frame 289 and a new substrate or structure is positioned in the holder.
Located near an end portion within the deposition zone 13v, and outside the dimensions defined by the substrate or structure 11, is a crystal mass-sensor 301, as shown in
Sensor 301 is connected via a sensor signal lead 401 and a sensor signal feedthrough 410 to an input terminal 416 of a deposition rate monitor 420. The monitor 420 provides for selection of a desired vapor deposition rate, i.e. a desired rate of mass build-up on the structure 11 and on the sensor 301, and the monitor includes an oscillator circuit (not shown) which includes the crystal mass-sensor 301, as is well known in the art of monitoring vapor deposition processes. The deposition rate monitor 420 provides an output signal at an output terminal 422 thereof, and this monitor output signal becomes an input signal to a controller or amplifier 430 via a lead 424 at an input terminal 426. An output signal at output terminal 432 of the controller or amplifier 430 is connected via a lead 434 to an input terminal 436 of a vaporization heater power supply 440. The vaporization heater power supply 440 has two output terminals 444 and 447 which are connected via respective leads 445 and 448 to corresponding power feedthroughs 446 and 449 disposed in the housing 130H. The elongated vaporization heater 40, in turn, is connected to the power feedthroughs 446, 449 with electrical leads 43w and 41w, respectively, as depicted schematically in wavy outline in
As indicated schematically in
Upon termination at position “I”, the completed structure is removed from the chamber 130C via robotic means (not shown) disposed in the buffer hub 102 (see
Turning to
In order to preserve clarity of the drawings of
In
Relative motion between the substrate or structure 11 and the elongated vapor deposition source having the plurality of vapor efflux apertures 42 is provided by moving the source with respect to a fixedly disposed substrate or structure by a lead screw which engages a movable carriage or other movable transport means on which the elongated vapor deposition source can be positioned. Alternatively, the substrate can be moved relative to the elongated vapor deposition source.
The drawings of
The use of dopants to provide a doped layer on a structure has been described, for example, in the above-referenced U.S. Pat. No. 4,769,292 in which one or more dopants are incorporated in an organic light-emitting layer to provide a shift of color or hue of emitted light. Such selected shifting or change of color is particularly desirable when constructing a multi-color or full-color organic light-emitting device.
So-called color-neutral dopants can be effectively used in conjunction with an organic hole-transporting layer and/or in conjunction with an organic electron-transporting layer to provide an organic light-emitting device having enhanced operational stability or extended operational life time, or enhanced electroluminescent efficiency. Such color-neutral dopants and their use in an organic light-emitting device are disclosed by Tukaram K. Hatwar and Ralph H. Young in commonly assigned U.S. patent application Ser. No. 09/875,646, filed Jun. 6, 2001, the disclosure of which is hereby incorporated by reference.
The use of a uniformly mixed organic host layer having at least two host components is disclosed by Ralph H. Young, et al. in commonly assigned U.S. patent application Ser. No. 09/753,091, filed Jan. 2, 2001, the disclosure of which is herein incorporated by reference.
The elongated thermal physical vapor deposition source of the present invention can also be effectively used to form a uniform layer of one or more organic dopants onto a structure by vapor deposition or by vapor co-deposition from one or more elongated sources having a plurality of vapor efflux apertures. The dopant or dopants are received in an elongated electrically insulative container 30 in the form of powders, flakes, or particles, or in the form of agglomerated pellets.
The elongated thermal physical vapor deposition source of the present invention can also be effectively used to form a uniform layer of one or more organic host materials and one or more organic dopant materials by vapor deposition from one elongated source having a plurality of vapor efflux apertures. The host material(s) and the dopant material(s) are received in an elongated electrically insulative container 30 in the form of powders, flakes, or particles, or in the form of agglomerated pellets.
Before describing the following examples, an experimental vapor deposition station EXP is shown in the schematic cross-sectional view of
In
The experimental station EXP includes a housing H that defines a chamber C. The chamber is evacuated by a vacuum pump (not shown) to a reduced pressure Pc which, for each of the following examples, was 10−6 torr (1.33×10−4 pascal).
Disposed in the chamber C is the elongated container 30, supported by the thermally and electrically insulative source support 70, and an elongated vaporization heater 40 sealingly positioned over the container 30 via sealing flange 46. In each of the following examples, the container 30 received a charge of a solid organic electron-transporting material in powder form. This organic material was tris(8-quinolinolato-N1, 08) aluminum, an aluminum chelate, abbreviated as Alq.
A single-slit vapor efflux aperture, or a plurality of vapor efflux apertures, formed in the vaporization heater 40, extend over a length dimension L in the elongated direction of the heater. In each of the following examples, L was 440 millimeter (mm). This length was chosen to provide uniform deposition over a 300 mm wide deposition region.
An upper surface 52 of the baffle member 50 has a spacing BHS to a lower surface (not identified) of the vaporization heater 40, and the baffle member 50 has a width dimension (not shown in
Also disposed in the chamber C is a sensor array SA having eight crystal mass-sensors 501 to 508. The sensor array SA is spaced from the vaporization heater(s) 40 by a distance DS. A uniform sensor-to-sensor spacing SS is selected so that the sensors 501 and 508 have sensor positions, which extend beyond respective terminations of a single-slit vapor efflux aperture or of a plurality of vapor efflux apertures. In each of the following examples, the sensor array SA was spaced from the vaporization heater by a distance DS of 100 mm, and the sensor-to-sensor spacing SS was 68.5 mm.
Each of the crystal mass sensors 501-508 has a corresponding sensor signal lead 601 to 608 (only signal leads 601 and 608 are identified in
The vaporization heater 40 is heated by a regulated vaporization heater power supply 440R which includes a regulator R that is adjusted to heat the vaporization heater to cause uppermost portions of the Alq material in the container 30 to vaporize. It is known from independent measurements that a vapor pressure Pv of vapors of organic materials, which can be vaporized, can be several orders of magnitude higher than the pressure Pc in the chamber C. If the vapor efflux apertures are sized and configured so as to control vapor efflux with respect to a rate of vaporization of solid organic material in the container 30 by the vaporization heater 40, a vapor cloud VC is formed and spread relatively uniformly in a space between still solid organic material (Alq) in the container 30 and the baffle member 50 and in a space between the baffle member and the vaporization heater 40, as schematically shown in curled outlines. As the vapor cloud VC penetrates or permeates the spacing BHS between the baffle member 50 and the vaporization heater 40, a portion of the vapor cloud can exit through the vapor efflux aperture(s) as vapor streams v into the reduced-pressure environment characterized by the pressure Pc in the chamber C.
In
The invention and its advantages are further illustrated by the following specific examples.
An elongated vaporization heater of the prior art was sealingly disposed over the elongated container 30 of
The vaporization heater was heated by adjusting the regulator R of the regulated vaporization heater power supply 440R to heat the heater to a temperature which caused uppermost portions of the solid Alq material to vaporize, and which provided a deposition rate indication on the monitor 620M from each of the crystal mass-sensors 501 to 508.
Relative uniformity of a normalized deposition rate (normalized with respect to signals provided by crystal mass-sensor 504 and/or sensor 505 of
Another elongated vaporization heater was sealingly disposed over the elongated container 30 of
The vaporization heater was heated in a manner described in Comparative Example 1 to actuate vaporization of uppermost portions of the solid Alq material.
Relative uniformity of a normalized deposition of Comparative Example 2 is shown in
An elongated vaporization heater, having a plurality of rectangular vapor efflux apertures arranged in accordance with the present invention was sealingly disposed over the elongated container 30 of
Alq in powder form had been received in the elongated container 30 as a relatively uniform charge to a fill-level 2×b of approximately 25 mm.
The vaporization heater was heated in a manner described in Comparative Example 1 to effect vaporization of uppermost portions of the solid Alq material.
Relative uniformity of a normalized deposition rate of Example 3 is shown in
The elongated vaporization heater of Example 3 was sealingly disposed over the elongated container 30 which had received Alq in powder form in an amount approximately equivalent to a fill-level b, but substantially distributed towards one end wall of the container.
The vaporization heater was heated in a manner described in Comparative Example 1 to effect vaporization of uppermost portions of the nonuniformly distributed solid Alq material.
Relative uniformity of a normalized deposition rate is shown in
The elongated vaporization heater of Example 3 was sealingly disposed over the elongated container 30 which had received Alq in powder form as a uniformly distributed charge to a fill-level 0.125×b of approximately 1.6 mm.
The vaporization heater was heated in a manner described in Comparative Example 1 to effect vaporization of uppermost portions of the non-uniformly distributed solid Alq material.
Relative uniformity of a normalized deposition rate was substantially identical to the normalized deposition rates of trace 3 of
Turning to
Comparative Example 1 is shown as a trace 1 in dotted outline. The vapor efflux from this single-slit vapor efflux aperture is relatively non-uniform along the elongated direction of the slit. Such relative nonuniformity may be caused by a deviation of planarity of opposing edges of the slit-aperture upon heating the vaporization heater to effect vaporization of the Alq material.
Comparative Example 2 is shown as a trace 2 in dashed outline. Relative uniformity of the normalized deposition rate is improved over a central portion of the aperture arrangement when compared to the single-slit results of Comparative Example 1. This improved relative uniformity may be related to an improved mechanical integrity of the plurality of apertures, which are spaced from one another by 1.0 mm. Since the aperture spacing is a metal bridge, opposing edges of the 10 mm long apertures are likely to retain planarity.
Example 3 is shown as a trace 3 in solid outline. Relative uniformity of the normalized deposition rate is substantially improved over an extended portion of the length dimension L over which the plurality of apertures are formed in this vaporization heater, and wherein the apertures having progressively decreasing aperture spacing towards end portions of the aperture arrangement. In fact, the uniformity over the central 300 mm portion, the region that the source was designed for, is extremely good. The non-uniformity is less than about 5% over this region and demonstrates that a high level of uniformity can be achieved with an appropriately designed vaporization heater.
Turning to
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
This application is a continuation-in-part of co-pending U.S. patent application Ser. No. 10/093,739, entitled “Elongated Thermal Physical Vapor Deposition Source with Plural Apertures for making an Organic Light-Emitting Device,” filed Mar. 8, 2002.
Number | Date | Country | |
---|---|---|---|
Parent | 10093739 | Mar 2002 | US |
Child | 10971698 | Oct 2004 | US |