The invention relates to air cleaners and air intake systems for internal combustion engines and, more particularly, to devices for trapping hydrocarbon vapors such as fuel vapors in the air intake system when the engine is shut down and then releasing the trapped vapor back into the air intake system when the engine is later operated.
It is desirable to trap evaporated fuel and oil vapors within the air intake system, thereby preventing their release into the outside environment. Fuel vapors contain hydrocarbons which are known to be a significant contributing component in urban smog.
Gasoline, for example, is a highly volatile hydrocarbon fuel that includes components which transition easily from a liquid to vapor phase. Elevated temperatures such as occurring during normal internal combustion engine operation accelerate the liquid to vapor transition. The hydrocarbon vapors, unless treated or captured, may ultimately discharge into the atmosphere. It is known that hydrocarbon vapors are discharged from the engine crankcase during engine operation. When the engine is shutdown, these vapors may continue to be released from the hot engine crankcase and other components, particularly as the engine cools.
The control of hydrocarbon vapors escaping into the environment is regulated by state and federal regulations. Hydrocarbon traps for capturing hydrocarbon vapors are well known. For example, motor vehicles are commonly equipped with hydrocarbon adsorptive emissions canisters connected to the fuel tank for trapping hydrocarbon vapors, particularly as emitted during refueling.
It is known that certain porous materials such as activated carbon are useful for absorption and removal of organic hydrocarbon vapors. It is known hydrocarbon vapors are liquefied within small micro pores of the activated carbon and may be retained by absorption.
Various types of hydrocarbon traps for capturing hydrocarbon vapors are known in the art. For example, U.S. Pat. No. 5,914,294 discloses a monolithic trap which adsorbs chemical constituents from a gas stream. This is achieved by bringing the gas into direct contact with the activated carbon in the monolith. One disadvantage of this type of extruded or press formed hydrocarbon trap is that the extrusion and binding process results in a relatively brittle trap that may crack or have individual pieces flake off.
Another example is U.S. Published Application 2005/0223894 which discloses an adsorption element for adsorbing gases and vapors from the intake tract of an engine. The adsorption element has free-flow channels in an element having a spacer layer and an adsorption layer. One disadvantage of this type of corrugated trap is that the trap itself introduces a restriction to airflow in the intake tract.
Another example is in U.S. Pat. No. 8,262,785 which discloses a flat hydrocarbon adsorption traps having a first media retention layer and a second media retention layer in a spaced parallel relationship. The layers are separate sheets between which the hydrocarbon vapor adsorbent media is arranged. One disadvantage of this type of trap in the high cost of production due to the necessity of cutting the first and second media retention sheets to size, applying the hydrocarbon vapor adsorbent media on the first sheet and stacking the second sheet over the first sheet. A mounting member is then secured to the edges of the spaced sheets, the mounting member closing over the sealing the hydrocarbon vapor adsorbent media within the trap. The manufacturing process is relative complex resulting in higher cost. As the manufacturing requires several discrete components assembled in discrete steps, where the size and shape of the components is dependent upon the specific part being produced, the process is suitable of high speed low cost production.
Therefore, there remains a need in the art for a hydrocarbon adsorption trap that is producible from a single roll stock sheet media in a continuous forming process, where the process is adaptable for configurable to manufacture a variety of hydrocarbon adsorption trap for different applications from a single flexible process.
In various aspects of the invention, an elongated rolled sheet tubular hydrocarbon adsorption trap is provided for adsorption of evaporated fuel vapors within an air intake tract of an internal combustion engine. The elongated rolled sheet tubular hydrocarbon adsorption trap is formed from a circularly wrapped substantially flat sheet of porous media, preferably a polyester, a non-woven polyester or polyester felt. The media sheet may be of one or more layers, with the layers possibly of differing materials. Other porous woven or non-woven or cellulose media sheets may be used to for the porous exterior of the elongated rolled sheet tubular hydrocarbon adsorption trap.
In another aspect of the invention an air cleaner housing is provided having an air inlet port, an air outlet port and defining a chamber therein. A filter element is disposed in the chamber and configured to filter air flowing between the inlet and outlet ports. A tubular hydrocarbon adsorption trap is permanently secured to an interior wall of the air cleaner housing.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
The accompanying Figures where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention.
Features of the present invention, which are believed to be novel, are set forth in the drawings and more particularly in the appended claims. The invention, together with the further objects and advantages thereof, may be best understood with reference to the following description, taken in conjunction with the accompanying drawings. The drawings show a form of the invention that is presently preferred; however, the invention is not limited to the precise arrangement shown in the drawings.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
Before describing in detail embodiments that are in accordance with the present invention, it should be observed that the embodiments reside primarily in combinations of apparatus components and method steps related to an elongated rolled sheet tubular hydrocarbon adsorption trap for an engine air intake tract as disclosed herein. Accordingly, the apparatus components may have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
In this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
The hydrocarbon vapor adsorbent media enclosed within the media sheet is preferably but not necessarily in a granular form. In other aspect of the invention, the hydrocarbon adsorbent granules are bound together by an adhesive, the adhesive maintaining the granules in a desired distribution within the interior of the elongated rolled sheet tubular hydrocarbon adsorption trap.
Opposing longitudinal edges 14 of the media sheet forming the tubular body 20 are secured together, preferably by ultrasonic welding or heat bonding, to close the circumferential perimeter of the tubular body 20. The hydrocarbon vapor adsorbent media enclosed within is preferably activated carbon in granular form.
The tubular hydrocarbon adsorption trap 12 is similar to the tubular hydrocarbon adsorption trap 10, but further including a compressed, welded region 18 dividing the tubular body 20 into two or more subtraps 22. Hydrocarbon vapor adsorbent media (not shown as located inside of the tubular body) is not arranged in the subtraps 22 and generally not present in the dividing top/bottom weld or separating weld 18 between the subtraps. The dividing weld 18 is preferably an ultrasonic or heat bond weld compressing and weldably closing the media sheet 24 such that there is a closed separation or partition provided between the subtraps 22.
As shown in
As generally seen in
Alternately, after the hydrocarbon adsorption media loading station 126, the closed bottom tubular sheet body with the closed bottom may then proceed on path B to be provided with a compressed, welded region 18 dividing the tubular body 20 into two or more subtraps 22, such as by ultrasonic welding by sonontrode 132 and anvil 134. At this point the lower subtrap 136 has an interior filled with and fully enclosed by the formed media sheet. The upper subtrap 138 has an open upper end. Hydrocarbon adsorption media loading station 140 loads a predetermined volume of hydrocarbon adsorption media into the upper subtrap 138. Then opposing sides of the tubular sheet at the upper end of the upper subtrap 138 may be compressed together and closed, preferably by ultrasonic welding, such as with sonotrode 142 and anvil 144, such that the open interior of the upper subtrap 138 is closed at the top of the tubular sheet body, thereby fixedly enclosing the hydrocarbon adsorption media within the upper subtrap 138 of the elongated rolled sheet tubular hydrocarbon adsorption trap 12.
The above process is illustrated as discrete stations only for ease of understanding. The illustrated process and stations in
In the foregoing specification, specific embodiments of the present invention have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
This application claims the benefit of U.S. Provisional Application No. 61/904,190, filed Nov. 14, 2013.
Number | Name | Date | Kind |
---|---|---|---|
3730158 | St. Amand | May 1973 | A |
3990872 | Cullen | Nov 1976 | A |
4364474 | Hollander, Jr. | Dec 1982 | A |
4401447 | Huber | Aug 1983 | A |
4938750 | Leise, Jr. | Jul 1990 | A |
5468447 | Bermas | Nov 1995 | A |
6155072 | Sullivan | Dec 2000 | A |
6395074 | Mastromatteo | May 2002 | B1 |
6517614 | Klotz | Feb 2003 | B1 |
6592655 | Iriyama et al. | Jul 2003 | B2 |
6835257 | Perrine | Dec 2004 | B2 |
6976478 | Kato et al. | Dec 2005 | B2 |
7028673 | Itou et al. | Apr 2006 | B2 |
7182802 | Bause et al. | Feb 2007 | B2 |
7344586 | Zulauf | Mar 2008 | B2 |
7360530 | Oda et al. | Apr 2008 | B2 |
7473306 | Uemura et al. | Jan 2009 | B2 |
7501013 | Oda | Mar 2009 | B2 |
7507279 | Mizutani et al. | Mar 2009 | B2 |
7608137 | Oda | Oct 2009 | B2 |
7637974 | Scholl et al. | Dec 2009 | B2 |
7758678 | Yoshida et al. | Jul 2010 | B2 |
7811350 | Hirata et al. | Oct 2010 | B2 |
8082906 | Hirata et al. | Dec 2011 | B2 |
8205442 | Dobert et al. | Jun 2012 | B2 |
8979724 | Fowler | Mar 2015 | B2 |
20020170436 | Keefer | Nov 2002 | A1 |
20040118747 | Cutler | Jun 2004 | A1 |
20050279210 | Hirata | Dec 2005 | A1 |
20070022880 | Mizutani | Feb 2007 | A1 |
20080041736 | Perrine | Feb 2008 | A1 |
20090301071 | Dobert | Dec 2009 | A1 |
20100192530 | Wydeven | Aug 2010 | A1 |
20110023719 | Kidman | Feb 2011 | A1 |
20110072974 | Patel | Mar 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20150219046 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61904190 | Nov 2013 | US |