Elucidation of Antisickling Molecules in a Botanical with Antisickling Activity

Information

  • Research Project
  • 8589491
  • ApplicationId
    8589491
  • Core Project Number
    R41AT008000
  • Full Project Number
    1R41AT008000-01
  • Serial Number
    008000
  • FOA Number
    PA-12-089
  • Sub Project Id
  • Project Start Date
    9/1/2013 - 11 years ago
  • Project End Date
    1/31/2015 - 9 years ago
  • Program Officer Name
    WILLIAMSON, JOHN S
  • Budget Start Date
    9/1/2013 - 11 years ago
  • Budget End Date
    1/31/2015 - 9 years ago
  • Fiscal Year
    2013
  • Support Year
    01
  • Suffix
  • Award Notice Date
    8/21/2013 - 11 years ago
Organizations

Elucidation of Antisickling Molecules in a Botanical with Antisickling Activity

DESCRIPTION: New therapeutic agents are urgently needed for the treatment of sickle cell disease (SCD), the world's most common genetic disease. Our long-term goal is to develop a drug for use in children that prevents the inexorable progression of SCD. SCD affects approximately 100,000 people in the United States and millions worldwide. It kills more children in Africa than HIV, but while HIV commands vast attention from the international community, SCD is virtually invisible. In the US, those with SCD have an average mortality in their 40s and an estimated aggregate cost of medical care in excess of $1.4 billion per year. In less developed countries, 80% of children with SCD die before the age of five. The only FDA approved disease-modifying drug for use in SCD is the anti-cancer drug hydroxyurea, which has serious side effects and is only approved for use in adults. SCD results from a mutation in the ¿-globin gene (Hb S), a variant of Hb A, the common adult hemoglobin. When deoxygenated, Hb S polymerizes, forming long polymers that deform the biconcave red blood cells (RBCs) into rigid, adherent, sickle-shaped cells. The rigid sickled RBCs are easily trapped in the microvasculature, blocking blood flow to tissues and organs with resultant ischemic tissue damage. Best supportive therapies for SCD include folic acid for anemia, penicillin to prevent infections, pneumococcal and influenza vaccinations, pain medication, and intravenous injection of fluids. Chronic transfusion therapy can modify the course of the disease, but hyperviscosity, alloimmune reaction, infection, and iron overload are just a few of the complications of transfusion therapy. Bone marrow transplants can cure SCD, but the morbidity and mortality of the procedure, coupled with difficulty in finding a donor match and the cost of the procedure, leave this an uncommon treatment option. We have identified a botanical extract with potent antisickling activity. We propose to isolate the active compounds in the botanical by bio-assay guided fractionation of the botanical extract using an in vitro assay that measures sickling of human RBCs under hypoxic conditions. The active fractions will be further fractionated, the compounds in the sub-fractions identified using mass spectroscopy and NMR, and in vivo activity confirmed in 100% human Hb S transgenic mice.

IC Name
NATIONAL CENTER FOR COMPLEMENTARY & ALTERNATIVE MEDICINE
  • Activity
    R41
  • Administering IC
    AT
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    397926
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    213
  • Ed Inst. Type
  • Funding ICs
    NCCAM:397926\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    INVENUX, LLC
  • Organization Department
  • Organization DUNS
    078524468
  • Organization City
    WINDSOR
  • Organization State
    CO
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    805507914
  • Organization District
    UNITED STATES