EMAIL CLIENT CAPABLE OF SUPPORTING NEAR REAL-TIME COMMUNICATION

Information

  • Patent Application
  • 20100198925
  • Publication Number
    20100198925
  • Date Filed
    September 02, 2009
    15 years ago
  • Date Published
    August 05, 2010
    14 years ago
Abstract
An email client capable of supporting real-time communication of time-based media. The email client includes a session element configured to establish a session with a server when an email address addressing a recipient within a domain is defined. As soon as the email address is defined, a transmitting element of the email client is configured to progressively and simultaneously transmit time-based media as the time-based media is being created to the recipient via a route at least partially discovered by a lookup of the domain of the email address. By at least partially discovering the route to the recipient as soon as the email address of the recipient is defined, the transmitting element may progressively deliver the time-based media to the recipient.
Description
BACKGROUND

1. Field of the Invention


This invention pertains to communications, and more particularly, to an email client capable of supporting near real-time communication of time-based media.


2. Description of Related Art


Currently there are three globally used addressing domains. The postal system, which is mainly used for the delivery of letters and parcels, relies on the use of a physical address, such as a house address, office building address or Post Office (PO) box. In order to assure the delivery of a letter or parcel, the physical address of the recipient must be provided, including a country, state or territory, a city or town, postal or zip code, street name and street number. The existing telephone infrastructure defines another global addressing domain that has historically been used for near real-time voice communications (i.e., telephone calls). Both land-line and mobile telephones are addressed (i.e., called) using a telephone number, which typically includes a country code and a variable number of additional digits to identify a particular phone within a given country and/or area code. When a circuit connection is made between the calling parties, a full duplex conversation may take place. A third global addressing system is email. Every email account is identified by a unique globally addressable email address, which defines a user name and a domain name.


Emails are typically text messages that are sent from a sender to one or more recipients. The emails are created on an email client. One well-known email client is Microsoft Outlook, which is used to create, receive and manage email messages on a computer. Alternatively, free email services like Yahoo, Google or Hotmail are available to users through a web page. Regardless of the type used, an email client will typically (i) list or display all the received messages, with an email header showing the subject of the email, the sender of the email, the date/time it was sent and possibly other attributes such as the size of the email; (ii) allow the user to select messages for review; (iii) allow the user to type and send new messages to recipients and reply to the received emails of others; and (iv) allow attachments, such as still photos, documents, or video clips, to be attached to an out-going email.


An email message must first be created in full before it can be sent. A sender will typically first define a recipient by entering their email address into the appropriate “To” field in the header of the email. The text message is then typed into the body of the email and files may optionally be attached. When the message is complete, the user sends the email. During the send sequence, the email client initiates a session with its email server located on a network. This session is typically established with the Simple Mail Transport Protocol (SMTP). During the session, the email client provides the SMTP server with the email address of the sender, the email address of the recipient, and the body of the email with any attachments. The email addresses of the recipient is segmented into two parts, including the recipient's name (e.g., “jsmith”) and the domain name (e.g., “hotmail.com”). If the recipient is in a domain that the SMTP server controls, then the server carries out delivery instructions for the specific recipient, which is typically delivery of the email to an in-box associated with the recipient on the same SMTP server or another server located in the same domain. On the other hand if the recipient is in a domain that the server does not control, then the email server needs to communicate with a server that controls the recipient's domain using SMTP.


To send the email to the recipient in another domain, the SMTP server initiates a conversation with the Domain Name System (DNS), asking for the Mail eXchanger (MX) record of the recipient's domain. This MX record contains a prioritized list of SMTP servers for that domain. The email is then sent from the SMTP server of the sender to the first SMTP server in the MX list that responds. This first responding server then determines if the recipient is in the domain the first responding server controls. If so, the email is delivered to the inbox of the recipient. If not, the above-described process is repeated until a responding server is the one that can deliver the message into the recipient's inbox. Each server along the delivery route is sometimes referred to as a “hop”. The email may then be accessed through the email client of the recipient, which may be located on the computer of the recipient or on the Internet. If an email is sent to multiple parties, the above-described process is repeated for each recipient.


The above-described sequence generally applies for emails sent over the Internet. With certain proprietary systems, such as an email sent between two Microsoft Exchange users on the same proprietary network, the SMTP protocol may not be used for routing the email but email addresses are still used. The operation of the proprietary protocol and server is essentially the same as SMTP.


The existing email infrastructure, regardless if it relies on SMTP or a proprietary email protocol, is essentially a “store and forward” messaging system. An email message must first be created in its entirety before it can be sent. At the SMTP or proprietary mail server of the sender, as well as any intermediate email server hops along the path to the SMTP or proprietary mail server of the recipient, the email message must be received in full before it can be forwarded. Finally the email must be received in full at the inbox of the recipient before the recipient can review the message.


By way of comparison, telephone conversations over the Public Switched Telephone Network (PSTN) are progressive in nature. As words are spoken, they are simultaneously transmitted from the sender to the recipient, where they are heard effectively live or near real-time. As a result, telephone conversations can be conducted in a “live” or near real-time mode through a common network connection (i.e., a circuit). Email communication in contrast usually occurs through a series of separate store and forward messages, often sent back and forth between two or more parties at distinct times, across a network, such as the Internet.


It is well known to attach a file to an email containing time-based media (i.e., media that changes with respect to time), such as a video clip. The time-based media attached to an email message, however, can never be reviewed by a recipient “live”, as it is being created, due to the store and forward nature of email. Rather the email and the attachment containing the time-based media must first be created, sent, stored and forwarded at each email server hop on the network, and then received by the recipient in full before the time-based media of the attachment can be reviewed. It is therefore not possible for the recipient of an email message to review the media in near real-time as the media is being created.


Telephone messaging systems are also known where a voice message may be created and sent to a recipient in the form of an email. With these systems, the Public Switched Telephone Network (PSTN) is used in cooperation with emails. In use, a recording of the message must first be made, stored, and then forwarded to the recipient by email. Again, however, the message must first be received in full before the recipient can review the recorded message.


Instant messaging or IM is another example of a store and forward system. Similar to email as described above, messages must be completed before they can be forwarded to a recipient. Messages in IM systems are generally much shorter than those sent via email. Each line of text in IM systems is a separate message delivered in a store and forward manner. Existing IM systems do not provide a way for a recipient to progressively and simultaneously review a message as the sender creates the message.


Live text systems are well known, although they were mostly used on early Unix systems with dumb terminal interfaces. In a live text system, each individual keystroke is sent to the recipient as soon as the sender pressed that key. These systems are for text only, but they do allow the recipient to progressively review a message as the message is being created.


Currently there is no known system or method for extending the global addressing and routing infrastructure of email to support the live or near real-time communication of time-based media between a sender and a recipient using their email addresses.


SUMMARY OF THE INVENTION

An email client capable of supporting real-time communication of time-based media is disclosed. The email client includes a session element configured to establish a session with a server when an email address addressing a recipient within a domain is defined. As soon as the email address is defined, a transmitting element of the email client is configured to progressively and simultaneously transmit time-based media as the time-based media is being created to the recipient via a route at least partially discovered by a lookup of the domain of the email address. By at least partially discovering the route to the recipient as soon as the email address of the recipient is defined, the transmitting element may progressively deliver the time-based media to the recipient.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings, which illustrate specific embodiments of the invention.



FIG. 1 is a diagram of a network capable of supporting live or near real-time communication of time-based media between users according to the present invention.



FIG. 2 is a diagram of a communication device according to one embodiment of the present invention.



FIG. 3 is a diagram of a communication device according to another embodiment of the present invention.



FIGS. 4A and 4B are flow diagrams illustrating the sequence of creating an email header on a communication device of the present invention.



FIGS. 5A through 5D are flow diagrams illustrating the sequence for conducting communication over the network in accordance with the present invention.



FIG. 6 is a flow diagram illustrating the attachment of a media file to an email according to the present invention.



FIG. 7 is a diagram illustrating the delivery of time-based media over the network according to another embodiment of the present invention.



FIG. 8 is a diagram illustrating the structure of a conventional email according to the prior art.



FIG. 9 is a diagram of the structure of a progressive email according to the present invention.





It should be noted that like reference numbers refer to like elements in the figures.


DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

The invention will now be described in detail with reference to various embodiments thereof as illustrated in the accompanying drawings. In the following description, specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art, that the invention may be practiced without using some of the implementation details set forth herein. It should also be understood that well known operations have not been described in detail in order to not unnecessarily obscure the invention.


The present application is directed to a number of embodiments, including (i) the use of the email and DNS infrastructure to define the routing for the delivery of messages containing time-based media while using a near real-time communication protocol for the actual delivery of the media; (ii) various delivery options of messages containing time-based media using email addressing and DNS; (iii) the modification of SMTP or other proprietary email protocols to support the transmission of “progressive” emails containing time-based media; (iv) the late binding of recipient email addresses for near real-time voice or other time-based media communication; and (v) conducting near real-time conversations by routing messages or progressive emails containing time-based media using globally addressable email addresses and DNS. Each of these aspects are described in detail below.


I. The Use of the Email and DNS Infrastructure to Define the Routing for the Delivery of Messages Containing Time-based Media Using a Near Real-Time Communication Protocol for the Actual Delivery of the Media

Referring to FIG. 1, a diagram of a network system capable of (i) supporting “live” or near real-time communication of time-based media and (ii) routing using the infrastructure of email and DNS according to the present invention is shown. The system 10 includes a network 12 with users A, B, C and D using communication devices 14A, 14B, 14C and 14D and Servers 16A, 16B, 16C and 16D located on the network 12. The network 12 further includes a DNS server 18. In various embodiments, the network 12 may include the Internet, an intranet, a mobile IP network, or any other type of network that relies on the Internet Protocol and/or DNS, or any combination thereof. Users A, B and C are each addressed by the servers 16A through 16D by their respective globally addressable email addresses “UserA@Domain A”, “UserB@Domain B”, and “UserC@Domain C”. User D is intentionally not identified on the network 12 by a globally addressable email address for reasons mentioned below.


The Servers 16A, 16B, 16C and 16D are each configured to provide one or more services to Users A, B, C and D respectively. In this example, Server A defines Domain A and provides User A with the standard email delivery service using SMTP (or a similar proprietary service) and MX DNS records, hereafter referred to as “MX”. Server A further provides User A with a real-time communication service, hereafter referred to as “RVX”. Server 16B defines Domain B and provides User B with the real-time communication service RVX, but not the email service MX. Server 16C defines Domain C and provides User C with the email service MX, but not the real-time domain RVX service. Server 16D does not provide user D with either the real-time communication service RVX nor the email domain MX service, but other services that are not identified because they are not relevant.


In one embodiment, the real-time service RVX may rely on any communication protocol that allows users to communicate time-based media in near real-time, but does not require the recipient to review the time-based media in a near real-time mode. Known protocols with these properties include the Cooperative Transmission Protocol (CTP) described in detail in the U.S. applications Ser. No. 12/028,400 and Ser. No. 12/192,890 or the near real-time synchronization protocol of voice or other time-based media as described in U.S. application Ser. Nos. 12/253,816, 12/253,833 and 12/253,842. The above-listed U.S. applications are assigned to the assignee of the present invention and are incorporated herein by reference for all purposes.


In alternate embodiments, the RVX service may rely on other communications protocols, individually or in combination, that provide near real-time communication, such as SIP, RTP, Skype, VoIP, etc.


The communication devices 14A through 14D may each be any type of communication device, such as land-line telephones, VoIP telephones, cellular radios, satellite radios, military or first responder radios, mobile Internet devices, or just about any other type of communication device. In addition, a given user might have multiple communication devices 14. For example, a user may have one or more of the following; a home computer, a work computer, a Push to Talk radio, a mobile phone or a personal digital assistant (PDA). Regardless of the number of communication devices 14 each user A, B, C and D has, each will operate essentially the same and receive the services provided by the servers 16A, 16B, 16C and 16D as described herein respectively.


It should be noted that the system 10 as illustrated has been greatly simplified compared to what would typically be implemented in actual embodiments. For the sake of illustration, the RVX and MX services as (or not) provided to Users A, B, C and D as listed above have been purposely selected to highlight and describe various features and aspects of the present invention. In actual embodiments, however, there would likely be a significantly larger number of users, each with one or more communication devices 14 and associated servers on the network 12, providing a variety of services to each user. In addition, any combination ranging from a single server or a suite of servers 16 may be included on the network 12 to provide the RVX and/or MX for one to multiple users respectively. The communication devices 14A, 14B and 14C and the servers 16A, 16B and 16C may also communicate with one another in a manner similar to that described above using DNS, SMTP, or other proprietary email protocols for route discovery across one or more hops on the network 12. The delivery route for a message to a recipient in the same domain is typically delivered to an inbox on the same server 16 or an associated server in the same domain. A message sent to a recipient in another domain will typically be sent to the email server of the recipient via one or more hops across the network 12. As the routing of emails and media in near real-time across an IP network is well known in the art, a detailed explanation is not provided herein.


Referring to FIG. 2, a diagram of a communication device 14 according to one embodiment of the present invention is shown. In this embodiment, the communication device 14 is a mobile device 20 capable of wirelessly communicating with the network 12, such as a mobile phone or PTT radio. The mobile device 20 may optionally include one or more of the following; a keypad 22, a display 24, speaker 26, microphone 28, volume control 30, camera 32 capable of generating still photos and/or video, a display control element 34, a start function element 36 and an end function element 38. In various embodiments, the device 20 (i) is IP based, meaning it is designed to communicate over the network 12 using the Internet Protocol and (ii) runs one or more RVX protocols, including any of those listed above or any other near real-time communication protocol. In addition, the device 20 may optionally also locally run an email client, access an email client located on one of the servers 16 located on the network 12, or be capable of both running and accessing an email client on the network.


Referring to FIG. 3, a diagram of a communication device according to another embodiment of the present invention is shown. In this embodiment, the communication device 14 is a computer 40 connected to the network 12, either through a wired or wireless connection (not shown). The computer 40 optionally includes one or more of the following; a keyboard 42, a display 44, speakers 46, a microphone 48, a camera 50 capable of generating still photos or video, a mouse 52, a start function element 54 and an end function element 56. The computer 40 is capable of running an email client, accessing an email client located on the network 12, or both. In various embodiments, the computer 40 (i) is IP based, meaning it is designed to communicate over the network 12 using the Internet Protocol and (ii) runs one or more RVX protocols, including any of those listed above or any other near real-time communication protocol. Further, the computer 40 could be a portable computer, such as a laptop or personal digital assistant, and is not limited to the desktop computer as shown. In addition, the device 40 may optionally also locally run an email client, access an email client located on one of the servers 16 located on the network 12, or be capable of both running and accessing email client on the network.


The start function elements 36/54 and the end function elements 38/56 of the mobile device 20 and computer 40 are meant to be symbolic of their respective functions. It is not necessary for mobile device 20, computer 40, or any other type of communication device 14, to physically include start and end buttons per se. Rather, it should be understood that each of these functions might be implemented in a variety of ways, for example, by entering a voice command, a predefined keystroke or command using a touch screen or other input device such as a mouse, stylus or pointer, etc.


The network 12 uses the existing email infrastructure, including the globally recognizable email addresses of the recipient users and DNS for route discovery, while using a near real-time RVX protocol for the actual transport of messages containing time-based media to the addressed recipient once the route is discovered. Like conventional emails, each message relies on a header that defines, among other things, a globally addressable email address of one or more recipients for routing purposes. Unlike conventional store and forward emails, however, the time-based media of the message is transmitted using a near real-time RVX protocol. As a result, time-based media may be simultaneously and progressively transmitted across the network 12, as the sender creates the media. In addition, the recipient may optionally simultaneously and progressively render the time-based media as it is received over the network. When two or more parties are conversing (e.g., generating and reviewing time-based media) at the same time, the network 12 is supporting near real-time communication using an RVX protocol for media delivery, while using the existing email infrastructure and DNS for routing.


Referring to FIG. 4A, a flow diagram illustrating the sequence of creating and transmitting time-based media associated with a message on a communication device 14 is shown. If the user of a communication device 14 wishes to communicate with a particular recipient, the user will either select the recipient from their list of contacts or reply to an already received message from the intended recipient. If a message from the intended recipient is not available for responding or if the intended recipient is not already in the contact list, the globally addressable email address of the recipient is manually entered into the device 14.


In response to any of the above, a message header is created (step 62), including the globally addressable email address of the recipient in a “To” header. As soon as the globally addressable email address of the recipient is defined, a DNS lookup is performed, so that the route for delivering the media associated with the message to the globally addressed recipient is immediately discovered. Thereafter, a user may initiate the start function 36/54 and begin creating time-based media (step 64), for example by speaking into the microphone, generating video, or both. The time-based media is then progressively and simultaneously encoded (step 66), transmitted (step 68) over the network 12 using an RVX protocol using the discovered delivery route, and optionally persistently stored on the device 14 (step 70). It should be noted that although these steps 62 through 70 are illustrated in the diagram in a sequence, for all practical purposes they occur at substantially the same time. The user may select a recipient from a contacts list, initiate the start function 36/54, and then begin speaking immediately. As the media is created, the RVX protocol progressively and simultaneously transmits the media across the network 12 to the recipient, using the DNS lookup result to discover the route without any perceptible delay to the sending user.


The time-based media of outgoing messages may optionally be persistently stored on the sending communication device 14 for a number of reasons. For example, if time-based media of a message is created before the delivery route is discovered, then the time-based media may be transmitted from storage when the delivery route is discovered. If time-based media is still being created after the route is discovered, then the time-based media is transmitted progressively and simultaneously as the media is being created. Alternatively with the storage of time-based media, the sender may review stored messages at an arbitrary later time. A message may also be created and stored when the communication device 14 is not connected to the network 12, where connected is defined as the ability to send messages over the network and not connected is defined as the inability to send messages over the network. When the device 14 later connects, the message may be transmitted to the intended recipient from storage, using either an RVX protocol or as an attachment to an email.


Referring to FIG. 4B, a flow diagram 100 illustrating the sequence for creating a message header (step 62 in FIG. 4A) is shown. In the step 62a, the globally addressable email address of the sender is provided in the “From” field of the message header. In step 62b, the globally addressable email address of the recipient is entered into the “To” field of the message header. If there are multiple recipients, the email address of each is entered into the “To” field. In additional embodiments, a “CC” or “BCC” field may be used for one or all recipients. In step 62c, a globally unique message ID or number is assigned to the message. In step 62d, other information, such as a conversation name, or the subject of the message, is provided in the header. In step 62e, the start date/time the message was created and possibly the end date/time of the message may be included in the header. In one embodiment, the steps 62a through 62e generally all occur at substantially the same time, with the possible exception of defining the end date/time. In other embodiments, the steps 62a through 62e may occur in any order.


The start and end date/times ordinarily coincide with the implementation of the start function 36/54 and end function 38/56 on the sending device 14 respectively. A sender, however, might not always implement the end function 38/56 for a given message. When this occurs, the sender may simply stop creating and sending time-based media associated with the message. The message may, therefore, remain “open-ended” without a defined end-time/date.


In certain embodiments, the steps 62a through 62e may be performed on a sending communication device 14. In other embodiments, the sending communication device may send some or all of the message header information to a server 16, where the steps 62a through 62e are performed. The time-based media of the message may also be optionally stored on a server 16 for later review by the sending user or transmission to the recipient.


In the embodiments described above, a message header with various fields including a To, From, Message ID number, Conversation Name, and message Start and End time is provided. It should be understood that not all of these fields are necessary, and other fields may be included. The only required information is at least one recipient specified in one of the To, CC, or BCC fields, which defines the globally addressable email address of a recipient. The other fields are all optional.


The format of the message header is also variable. In one embodiment, the structure of the message header may be similar to that used with conventional emails or the enveloped used with emails. In other embodiments, the structure of the message header may take any form that is suitable for transmitting the globally addressable email address of the recipient(s), along with possibly other header information, across the network 12. While specific email header fields are discussed for specifying recipients, the actual header field containing the recipient address information may not necessarily include the globally addressable email address of the recipient per se. As is well known in the art, an “envelope recipient” may be used to specify the email address of the recipient, even though the envelope recipient may differ from the recipients listed in the email headers. Thus as used herein, the term message header should be broadly construed to include both envelope information and conventional message or email headers including any number of fields, such as but not limited to those specified in RFC 822 or 5322. In addition, the usage of the terms “addressing” or “globally addressable email address” is intended to be broadly construed to include any addressing method, including usage in conventional message or email headers or in a message envelope.


The network 12, under certain circumstances, may deliver messages containing time-based media that can (i) be simultaneously and progressively transmitted to a recipient over the network 12 and (ii) reviewed in near real-time by the addressed recipient as the time-based media is being created and sent by the sending user. Under other circumstances, the messages cannot be delivered in real-time. Both the near real-time and non real-time scenarios are discussed below with regard to FIGS. 5A through 5C respectively.


Referring to FIG. 5A a flow diagram 80 illustrating the sequence for potentially conducting near real-time communication with messages containing time-based media using a globally addressable email address over the network 12 is shown. The sequence is described in the context of user A sending a message to user B using any near real-time RVX protocol. As noted above, server 16B provides user B with an RVX service, but not the MX service.


In the initial step 82, server 16A receives at substantially the same time the message header (or the header information allowing the server to perform some or all of the steps 62a-62e) and the time-based media of the message to be transmitted as it is being progressively and simultaneously created and transmitted by communication device 14A. As the message header contains user B's globally addressable email address (userB@DomainB) in the “To”, “CC”, or “BCC” field, server 16A requests a lookup for the RVX of domain B (step 84) of DNS server 18 using the DNS protocol. Since the RVX exists for domain B (decision 86), the lookup result is positive. The time-based media is then progressively and simultaneously sent using the RVX protocol from the server 16A associated with the sender to server 16B associated with the recipient. The time-based media may be transmitted across one or more hops between the two servers 16A and 16B. At each hop, a DNS lookup is performed to discover the delivery route to the next hop, while the RVX protocol is used to deliver the time-based media to each next hop.


In one embodiment, the media is simultaneously and progressively transmitted to the communication device 14B of the recipient when the time-based media arrives at server 16B. The recipient is notified of the incoming message, and in response, the recipient may elect to simultaneously review the media in the near real-time mode as the media of the message is progressively received.


In an alternative embodiment, the media of the message is also optionally placed in an inbox and persistently stored on the recipient device 14B. With the persistent storage of the message, the recipient has the option of reviewing the media in the near real-time mode as the media is received or at an arbitrary later time from storage.


In yet another embodiment, the message may also be stored in an inbox located at the server 16B associated with the user B. In this manner, the user of device 14B may access the message at an arbitrary later time from the inbox on server 16B. In addition, the server 16B may encapsulate the message into a file and attach the file to an email. As noted above, user B is not provided the MX service and therefore cannot receive such an email. But in situations where a user can receive emails, the message can be forwarded in the form of an attachment.


In yet other embodiments, the media of the message may be stored in an out-box of the sending user, either located on the user's sending communication device 14, or on the server 16A associated with the sender.


Referring to FIG. 5B, the flow diagram 80 is again provided to illustrate communication between user A and user C. As previously noted, server 16C provides user C with the MX service, but not a real-time RVX service. When user A wishes to communicate with user C, the initial sequence is essentially the same as that described above. Server 16A initially receives a message header (or the header information necessary to optionally perform steps 62a-62e) with the globally addressable email address of user C (userC@domainC) and the progressive and simultaneous transmission of time-based media by user A (step 82). Since the RVX lookup result (decision 86) is negative, server 16A next requests an MX lookup of DNS server 18 for domain C (step 90) using the DNS protocol. With a positive result (decision 92), server 16A sends a conventional email with the time-based media encapsulated as an attachment (step 96) to server 16C. At the server 16C, the email is placed in the recipient's inbox. The email may also be forwarded to an inbox on communication device 14C. Thus when the recipient does not have the RVX service, the time-based media of the message is sent across the network 12 by Server 16A to server 16C, and possibly communication device 14C, using the store and forward procedure of SMTP or a similar proprietary email system.


Referring to FIG. 5C, the flow diagram 80 is again provided to illustrate a communication attempt between user A and user D. As previously noted, user D is not provided with either the email MX service or a near real-time RVX service. When user A wishes to communicate with user D, the initial sequence is essentially the same as that described above. Server 16A receives a message header with the globally addressable email address of user D (userD@domainD) (or the header information needed to optionally perform steps 62a through 62e) and the progressive and simultaneous transmission of time-based media by user A (step 82). Since the RVX lookup (decision 86) and the MX lookup for domain D (diamond 92) are both negative, an error message is generated (step 94) and the message cannot be delivered (step 96). In various embodiments, the time-based media of the message may be stored at either the sending communication device 14A, the server 16A, or both. The message may later be sent when the RVX and/or MX service is provided to user D.


The scenario described with regard to FIG. 5C typically occurs if an incorrect email domain name is provided for a recipient. When the sender attempts to send a message using an invalid globally addressable email domain name, the error message (step 94) results. If the correct domain name in the email address is provided, the message can then be forwarded using either an RVX protocol or as an attachment to an email using the MX service.


In an alternative embodiment, the communication devices 14A through 14C may be arranged in a peer-to-peer configuration. With this arrangement, at least the sending communication devices 14 are capable of performing the RVX and/or MX lookups on DNS server 18 directly, without the aid of an intervening server 16 to perform the lookup function. The communication devices 14 may also be capable of transmitting the media of the messages directly to other communication devices. Depending on whether the recipient is a member or not of the RVX and/or MX domains, the sending communication device 14A will either (i) progressively and simultaneously transmit the time-based media of a message to the recipient over the network 12; (ii) encapsulate the time-based media of the message into a file and transmit an email including the file as an attachment to the recipient using SMTP or a similar proprietary protocol; (iii) or receive an error message if an invalid globally addressable user name or domain name was used in the email address and/or the recipient is not provided the MX service.


Referring to FIG. 5D, a flow diagram 100 illustrating the peer-to-peer embodiment is illustrated. In the initial step 101, a sending communication device 14 indicates that it would like to communicate with a receiving communication device 14. In decision diamond 102, the communication device 14 of the sender performs a DNS lookup of the recipient's globally addressable email address to determine if the peer recipient receives the RVX service. If the result of the look up is positive, then the time-based media created (step 103) using the sending communication device 14 is progressively and simultaneously transmitted (step 104) to the recipient using the delivery route defined by the RVX lookup. In decision diamond 105, it is determined if real-time communication is established. If yes, then the transmitted media is progressively and simultaneously rendered at the communication device 14 of the recipient as the media is received (box 106). If near real-time communication is not established, then the media of the message is placed in the inbox of the recipient (box 107), either on the device 14 of the recipient, a server 16 associated with the recipient, or possible both. Near real-time communication may not take place with the recipient for a number of reasons, such as the recipient is not available, out of network range, or has indicated a desire to not review the message in the near real-time mode.


On the other hand if the recipient does not receive the RVX service (decision 102), then the media of the message is delivered in the form of an attachment to an email, provided the recipient receives the MX domain service. The time-based media is encapsulated into a file and attached to an email (step 108). When the message is complete, the email is transmitted using the route defined by the MX lookup result (step 109). In one embodiment, the email may be sent directly from the sending peer if the sending communication device 14 is locally running an email client. The email may be received either at the recipient peer device 14 if running an email client, at a server 16 running an email client on behalf of the recipient or possibly both the receiving peer 14 and server 16. In situations where both peers are running an email client, media may be sent in the form of an attachment to an email from the sending communication device 14 to the receiving communication device 14. This differs from known telephone messaging systems, where a server, as opposed to a sending peer, emails a voice message to the recipient. In certain embodiments, an attachment may be substituted or augmented by a link to a web page containing the time-based media, as described in more detail below.


It should be noted that the discussion above with regard to FIGS. 4A, 4B and 5A through 5C has been simplified to illustrate certain aspects of the invention. It should be understood that actual implementations could be modified in several ways. For example, each time the server 16A received an email address, the server 16A would first determine if the domain of the recipient (i.e., domain A, domain B or domain C), is within one or more local domains of the server 16A. If not, then the procedures described above with regard to FIGS. 5A, 5B and 5C are performed respectively. On the other hand if the domain of the recipient is within a local domain of the server 16A, then the server 16A may deliver the message either (i) in real-time if the recipient receives a real-time communication service or (ii) as an attachment to an email if the recipient receives the MX service, but not a real-time service. In addition, it may not be necessary for the Server 16A to perform a DNS lookup in each instance. As is well known, previous DNS lookup results may be cached and used upon rather than performing a new DNS lookup each time an email address of a recipient is received.


Referring to FIG. 6, a flow diagram 110 illustrating the sequence for sending time-based media encapsulated in an email attachment at server 16A (box 98 in FIG. 5B) or from a sending device 14A (box 107 in FIG. 5D) is shown. In either case, time-based media generated by user A is encapsulated in a file (step 112) and is attached to the email (step 114) when the message is complete, for example when the end function 38/56 is implemented. In situations where the end function 38/56 is not implemented, the end of the message may be declared by default, after a predetermined period of time lapses without the creation of any new time-based media. Once the time-based media of the message is complete, either by the implementation of the end function 38/56 or by default, the email with the attachment is then transmitted (step 116) by server 16A or communication device 14A to the MX lookup result of the recipient over the network 12 using the SMTP or a similar proprietary protocol, in a manner similar to a conventional email.


With either the server or peer-to-peer models described above, the RVX lookup result is initially used to deliver the time-based media. If the RVX attempt fails, then the MX result is used as a backup. With this arrangement, a conventional email with the time-based media included in an attachment and/or web link is used to deliver the media in circumstances where the recipient is not provided RVX service. The email may be created either on a server or on the sending device.


II. Delivery Options

Referring to FIG. 7, a diagram illustrating the delivery of time-based media over the network 12 according to another embodiment of the present invention is shown. With this embodiment, the network 12 is essentially the same as that described above with regard to FIG. 1, with at least one exception. One or more of the servers 16A-16C are configured as web servers, in addition to providing the RVX and/or MX services as described above. With this embodiment, users receive an email from their respective server 16 containing a URL link when a message is sent to them. When the user selects the link through a web browser running on their communication device 14, the appropriate web server 16 serves up web pages allowing the recipient to access and review the message. The served web pages may also provide a variety of rendering options, such as review the media of the message in either the real-time or time-shifted modes, catch up to live, pause a live conversation, jump to the head of a conversation, jump to a previous point in time of the conversation, render faster, render slower, jump between different conversations, etc. In the figure, the web server functionality is provided as one of the services provided by Servers 16A, 16B and 16C. In an alternative embodiment, the web server functionality can be implemented using one or more other servers (not illustrated) on the network 12 besides 16A, 16B or 16C.


III. Email Protocol Modifications and Progressive Emails

The messages as described above are routed using globally addressable email address and the DNS infrastructure for defining a delivery route, while using an RVX protocol for the actual delivery of the time-based media in near real-time. Although the SMTP standard and other proprietary email protocols as currently defined and used are store and forward protocols, with certain modifications, SMTP and other proprietary email protocols could be used as an RVX messaging protocol for the near real-time delivery of time-based media as contemplated in the present application. With conventional emails, the media content must be composed in full and packaged before the email can be sent. On the receiving end, the email must be received in full before the recipient can review it. As described in detail below, SMTP, Microsoft Exchange or any other proprietary email protocol may be used for creating “progressive” emails, where media may be sent in near real-time.


The existing email infrastructure can be used to support the near real-time transmission of time-based media by modifying the way the SMTP, Microsoft Exchange or other proprietary email protocols (hereafter generically referred to as an email protocol or protocols) are used on the sending side and modifying the way that emails are retrieved from the server on the receiving side. Current email protocols do not strictly require that the entire message be available for sending before delivery is started, although this is typically how email protocols are used. Time-based media can therefore be delivered progressively, as it is being created, using standard SMTP, Microsoft Exchange or any other proprietary email protocol.


Email is typically delivered to user devices through an access protocol like POP or IMAP. These protocols do not support the progressive delivery of messages as they are arriving. However, by making simple modifications to these access protocols, a message may be progressively delivered to a recipient as the media of the message is arriving over the network. Such modifications include the removal of the current requirement that the email server know the full size of the email message before the message can be downloaded to the client. By removing this restriction, a client may begin downloading the time-based media of an email message as the time-based media of the email message is received at the server over the network.


Referring to FIG. 8, the structure of a conventional prior art email 120 using any of the above listed email protocols is illustrated. The email 120 includes a header 122 and a body 124. The header includes a “To” (or possibly the CC and/or BCC fields) field, a “From” field, a unique global ID number, a subject field, optional Attachments, and a Date/time stamp. The body 124 of the email includes the media to be transmitted, which typically includes a typed message and possibly attached files (e.g. documents or photos). When complete, the email is sent. A DNS lookup is performed and the email is routed to the recipient. Conventional emails are “static”, meaning the body of the email, including attachments, is fixed once transmission starts. There is no way to progressively and simultaneously transmit with conventional emails time-based media as the media is being created. Prior art emails 120 are therefore incapable of supporting near real-time communication.


Referring to FIG. 9, the structure of an email 130 according to the present invention is shown. Email message 130 is used for supporting near real-time communication. The email 130 includes a header 132 including a “To” field (and possibly the CC and/or BCC fields) and a body 134. The structure of email 130, however, differs from a conventional prior art email 120 in at least two regards. First, the header 132 includes an email Start date/time and an End date/time. By associating a start and end time with an email 130, as opposed to just a date/time stamp when an email 120 is sent, the second difference may be realized. After an email 130 is created and the sender defines a globally addressable email address of the recipient, the DNS lookup for routing is immediately performed. At substantially the same time, time-based media may be created. As the time-based media is created, it is progressively and simultaneously transmitted to the DNS lookup result, from hop to hop, using the streaming nature of SMTP, Microsoft Exchange or any other type of email protocol. The body 134 of email 130 is therefore “progressive”. As time-based media associated with an email message 130 is dynamically created, the time-based media is simultaneously and progressively transmitted to the email server of the recipient, from hop to hop across the network when necessary. If an email 130 is sent to multiple recipients, regardless if identified in the To, CC or BCC fields, the above process is repeated for each.


The DNS lookup is immediately performed right after the email address of the recipient is defined by initiating an email protocol session with the email server associated with the sender. This differs from conventional emails 120, where the email protocol session is typically initiated only after the email has been composed in full and the sender implements a “send” function. As a result, the delivery route can be discovered either before or concurrent with the progressive and simultaneous transmission of time-based media as it is being created. In situations where time-based media is created before the session is established, the time-based media may be either temporarily or persistently stored as the media is created. The stored media may then be progressively transmitted from storage once the protocol session with the email server is established.


The End date/time of email 130 may be either defined or open-ended. When the sender implements the end function 38/56 on the communication device 14, then the end time of the email 130 is defined. If the end function 38/56 is never implemented, then the duration of the email 130 is “open-ended” and does not necessarily have a defined end date/time. Open-ended emails 130 are therefore typically terminated by default after a predetermined period of time where no media is created.


In summary, progressive emails 130 can be sent using SMTP, Microsoft Exchange or any other proprietary email protocol by implementing the above-described modifications. Similarly, recipients may simultaneously and progressively review the time-based media of progressive emails 130 by modifying access protocols such as POP, IMAC and the like. Together, these modifications enable the use of email addressing, email protocols, DNS and the existing email infrastructure to support real-time communication of time-based media.


IV. Late Binding of Recipient Addresses For Real-Time Voice and Other Time-Based Media

In the context of communications, a recipient address can be described as “bound” when a valid delivery path through the network has been determined for that address. Conventional telephone calls over the PSTN are said to use “early binding” because the dialed phone number, the “recipient address” in this case, is used to establish some active path (i.e., a circuit connection) to the recipient before any media can be transmitted to the recipient. Only after the connection is made can the caller begin speaking and the media transmitted. Regardless if the call is placed to one or more telephone numbers, or the call is transferred a voice messaging system, the binding typically occurs before any words can be delivered. Since the binding of the recipient's address to an active destination on the network happens before any transmission of media, it is said to be “early”. In contrast, emails are said to employ “late” binding. A person may compose an email message and send it over a network without binding that message to the device on which the recipient will consume it. Instead, after the email is composed, the email address of the recipient is used to route the email to the recipient to be reviewed on a device and at a time of the recipient's choosing.


With the messages (as described with regard to FIGS. 4A, 4B and 5A-5D) or emails 130 described above, a user may address a recipient using their globally addressable email address and then immediately begin talking or generating time-based media. As described above, the DNS lookup to define the delivery route is performed immediately, as soon as the email address of the recipient is defined. At substantially the same time, any available time-based media is progressively and simultaneously transmitted across the network 12 to the recipient. Thus the discovery of an active delivery route and the progressive and simultaneous creation, transmission and delivery of the time-based media occur at substantially the same time as the time-based media is created. In the event the actual delivery route is discovered after the creation of time-based media has started, then the media may be temporarily or persistently stored and then transmitted from storage once the active delivery route is defined. No network connection or circuit needs to be established before the user may start talking. The ability to progressively and simultaneously transmit the time-based media using DNS and the infrastructure of email therefore enables the late binding of recipient addresses for voice and other time-based media in a manner that previously was not possible.


V. Conversations

The messaging method and system as described (with regard to FIGS. 1-3, 4A-4B and 5A-5D) is conducive for supporting conversations between sending and receiving users. When two or more parties are conversing back and forth using any of the above-listed RVX protocols, such as VoIP, SIP, RTP, or Skype, then the conversation may take place in the live near real-time mode. When the RVX protocol allows users to communicate time-based media in near-real-time, but does not require the recipient to review the time-based media in near real-time, such as with the CTP or synchronization protocols mentioned above, then the conversation may take place (i) in the near real-time mode; (ii) the time-shifted mode; or (iii) seamlessly transition between the two modes.


Reply messages may be routed in a number of different ways. For example, with the CTP and synchronization protocols, the globally addressable email addresses of the participants along with the DNS routing information may be embedded in the streaming media. When a reply is to be sent, the embedded address and routing information is used for the reply message. Alternatively, messages may be routed using a conversation ID or other pointer included in the streaming media which points to the globally recognizable email addresses of the participants along with the DNS routing information. In yet another alternative, the participants may be explicitly addressed and a DNS lookup performed for the reply message.


The progressive email 130 embodiment described above can also be used for implementing conversations. When a conversation is initiated, an email 130 is created by the sender, at either the sending communication device 14 if running an email client or on a mail server on the network running an email client on behalf of the sender. As the media of the progressive email 130 is created, it is progressively transmitted to the recipient, using the routing defined by DNS. To reply, a progressive email 130 is created on behalf of the recipient, either on the recipient's device 14 or on a server running an email client on behalf of the recipient. The email address of the original sender is automatically inserted in the “To” field (or possibly the CC and/or BCC fields) of the return email 130 and the DNS lookup is performed. The media associated with the return email may be transmitted using the streaming feature of SMTP, Microsoft Exchange, or another proprietary email protocol as soon as the media is created. Recipients may simultaneously review the time-based media in near real-time as the media is progressively received at their email client.


Regardless of the embodiment, the “reply” function may be implemented in a variety ways. For example, the recipient may enter an explicit reply command into their communication device 14, such as by using a predefined voice or keystroke command, or entering a command through a touch screen. Alternatively, a reply message or email may be generated automatically when the recipient begins speaking or generating other time-based media in response to an incoming message or email 130. When a reply message is automatically created, the email address of the original sender is extracted from the incoming message and used for addressing the reply message.


In yet other embodiments, the RVX protocol used for sending and receiving the messages of a conversation between participants do not necessarily have to be the same. For example, one participant may send messages using one of the CTP, synchronization, progressive emails, VoIP, SIP, RTP, or Skype protocols, whereas other participants may use a different one of the listed protocols, provided some type of a common conversation identifier is used. Any messages, regardless of the protocol used for transmission, are linked or threaded together using the unique conversation identifier.


In various further embodiments, conversations can be defined using a variety of criteria. For example, conversations may be defined by the name of a person (e.g., mom, spouse, boss, etc) or common group of people (e.g., basketball team, sales team, poker buddies, etc). Conversations may also be defined by topic, such as fantasy football league, ACME corporate account, or “skunk works” project. Regardless of the contextual attribute used to define a conversation, the ability to link or organize the messages of a particular conversation together creates the notion of a persistent or ongoing conversation. With a conventional telephone call, the conversation typically ends when the parties hang up. There is no way to contextually link, organize and possibly store the spoken words of multiple telephone conversations between the same parties. On the contrary, conversations, as defined herein, are a set of common messages linked together by a common attribute. So long as messages are added to the conversation, the conversation is continuous or ongoing. This attribute makes it possible for a participant to contribute to a conversation at any arbitrary time. For example, a user may select a conversation among a list of conversations and contribute a message to the selected conversation at anytime. The message is then sent to all the conversation participants. Messages are therefore not necessarily sent when either a conversation is first created or in reply to an incoming message.


VI. Implementation Embodiments

The messaging methods as described with regard to FIGS. 1-3, 4A-4B and 5A-5D and progressive emails 130 may be implemented in a variety of ways. For example, cell phone and other mobile communication service providers may provide users with peer-to-peer mobile communication devices that operate using either messages and/or progressive emails 130. In addition, these service providers may also maintain a network 12 of servers 16 for receiving messages and/or emails 130 from non peer-to-peer communication devices, creating messages, performing DNS lookup operations and for routing the time-based media of messages using any one or possibly multiple RVX protocols. In yet another embodiment, the messaging and progressive email 130 methods may be embedded in a software application that is intended to be loaded into and executed on conventional telephones, mobile or cellular telephones and radios, mobile, desktop and laptop computers. In each of these cases, the application enables the device to send, receive and process messages and progressive emails 130 as described herein. In yet other implementations, an email client can be modified to create, receive and process progressive emails 130. The email client may alternatively reside on a server on the Internet or other network, on sending or receiving devices, or both.


Although the above-described email methods were generally described in the context of a single sender and a single recipient (as discussed with regard to FIGS. 4A-4B and 5A-5D) or emails 130 to a single recipient, it should be understood the messages and/or emails 130 might be simultaneously sent to multiple parties. Each recipient will either receive or not receive the message or email, depending on their status, as described above. As described in more detail in the above-mentioned U.S. applications, the media may be rendered using a number of different rendering options, such as catch up to live, pause a live conversation, jump to the head of a conversation, jump to a previous point in time of the conversation, render faster, render slower, jump between different conversations, etc. The time-based media exchanged by the messages and/or emails is not limited to just voice or video. In addition, the time-based media may be delivered to a recipient in a different form than it was created. For example, a voice message may be transcribed into a text file or a message in English may be translated into another language before being delivered to the recipient. Any media that varies over time, such as sensor data, GPS or positional information, may be transmitted. While the invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that changes in the form and details of the disclosed embodiments may be made without departing from the spirit or scope of the invention. It is therefore intended that the invention be interpreted to include all variations and equivalents that fall within the true spirit and scope of the invention, as provided in the attached claims.

Claims
  • 1. An email client capable of supporting real-time communication of time-based media, comprising: a session element configured to establish a session with a server when an email address addressing a recipient within a domain is defined; anda transmitting element configured to progressively and simultaneously transmit time-based media as the time-based media is being created to the recipient via a route at least partially discovered by a lookup of the domain of the email address of the recipient.
  • 2. The email client of claim 1, wherein the session element is further configured to establish an email protocol session with the server.
  • 3. The email client of claim 2, wherein the email protocol session uses one of the following: (i) SMTP;(ii) Microsoft Exchange;(iii) IMAP; oriv POP.
  • 4. The email client of claim 1, wherein the session element and the transmitting element further cooperate so that the session with the server is established before the creation of the time-based media is complete.
  • 5. The email client of claim 1, further configured to persistently and progressively store the time-based media as it is being created.
  • 6. The email client of claim 1, further comprising an addressing element configured to enable a user of the email client with the ability to define the email address of the recipient.
  • 7. The email client of claim 6, wherein the addressing element is configured to allow a user of the email client to define the address of the recipient using one or more of the following: (i) selecting the recipient from a list of contacts, the email address of the recipient being retrieved from a storage location in response to the selection;(ii) manually entering the email address associated with the recipient into the email client; or(iii) implementing a reply function in response to receiving a previous message sent by the recipient, the implementation of the reply function resulting in the defining of the email address of the recipient.
  • 8. The email client of claim 1, further comprising a header element configured to present to a user of the email client an email header.
  • 9. The email client of claim 1, wherein the email header includes one of the following: (i) a “To” field to define one or more recipients of the time-based media;(ii) a Copy or “CC” field to define one or more recipients of the time-based media;(iii) a Blind Copy or “BCC” field to define one or more recipients of the time-based media;(iv) a subject field for defining a subject of a message associated with the time-based media;(v) a globally unique message identifier;(vi) a start date and time;(vii) an end date and time; or(viii) any combination of (i) through (vii).
  • 10. The email client of claim 1, further comprising an encapsulation element configured to encapsulate the time-based media created for the recipient into a media file if the recipient is incapable of progressively receiving and rendering the time-based media as it is being transmitted by the transmitting element.
  • 11. The email client of claim 10, wherein the transmitting element is further configured to transmit an email with the media file attached to the recipient using the defined email address if the recipient is incapable of progressively receiving and rendering the time-based media as it is being transmitted by the transmitting element.
  • 12. The email client of claim 1, further comprising an outbox configured to store one or more messages containing time-based media sent by the user of the email client.
  • 13. The email client of claim 1, further comprising an inbox configured to contain one or more received messages containing time-based media received from one or more senders.
  • 14. The email client of claim 1, further comprising a receiving element configured to receive time-based media contained in a message sent to the email client from a sender.
  • 15. The email client of claim 14, further comprising a rendering element configured to enable a user of the email client to render the time-based media contained in the message from the sender.
  • 16. The email client of claim 15, wherein the rendering element is further configured to enable the rendering of the time-based media of the message from the sender in one of the following rendering options: (i) in a near real-time mode by progressively and simultaneously rendering the time-based media of the message as the time-based media is received; or(ii) in a time shifted mode by retrieving and rendering the time-based media of the message out of storage.
  • 17. The email client of claim 16, wherein the rendering element is further configured to seamlessly transition the rendering of the time-based media of the received message between the (i) near real-time mode and the (ii) time shifted mode.
  • 18. The email client of claim 16, wherein the rendering element further comprises one or more of the following rendering options: (i) play;(ii) play faster;(iii) play slower;(iv) jump forward;(v) jump backward;(vi) pause; or(vii) Catch Up To Live (CTL) wherein the time-based media of the message is rendered at a rate faster than it was originally encoded in the time-shifted mode and then merges into the near real-time mode when the rendering of the time-based has caught up to the live point of the message.
  • 19. The email client of claim 1, further comprising a communication device, the email client residing on the communication device.
  • 20. The email client of claim 19, wherein the communication device consists of one of the following: a land-line phone, a wireless phone, a cellular phone, a mobile phone, a computer, a radio, a satellite phone, a satellite radio, a tactical radio, or a tactical phone.
  • 21. The email client of claim 1, further comprising a communication server, the email client residing on the communication server and accessible through a web page over a network.
  • 22. The email client of claim 1, wherein the email address of the recipient is a globally addressable email address associated with the recipient.
  • 23. The email client of claim 1, wherein the route at least partially discovered by the server using the email address of the recipient is discovered using a DNS lookup of the email address of the recipient to determine if the recipient receives a real-time communication service.
  • 24. The email client of claim 23, wherein the real-time communication service relies on one of the following protocols: (i) VoIP;(ii) SIP;(iii) RTP;(iv) Skype;(v) a communication protocol that enables the real-time rendering of media as it is received, but allows the media to be rendered in a time-shifted mode; or(vi) any combination of (i) through (v).
  • 25. The email client of claim 11, wherein the email with the media file attached is sent to the recipient using a route at least partially defined using a DNS lookup of the email address of the recipient.
  • 26. The email client of claim 1, further comprising an error message generator configured to generate an error message in the event the time-based media cannot be transmitted to the recipient.
  • 27. The email client of claim 1, wherein the email client is further configured to cooperate with an access protocol that supports the progressive delivery of the time-based media contained in the one or more received messages.
  • 28. The email client of claim 27, wherein the access protocol is either POP or IMAP modified to remove any requirement that the full size of the received one or more messages be known before the time-based media of the messages can be downloaded to the email client respectively.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Patent Application No. 61/148,885 filed Jan. 30, 2009, entitled “Extending Email to Support the Communication of Time-based Media in Near Real-time.” This application is also a continuation-in-part of U.S. Non-Provisional patent applications Ser. Nos. 12/419,861, 12/419,889, and 12/419,914, each filed Apr. 7, 2009, and each entitled “Methods for Using the Addressing, Protocols, and the Infrastructure of Email to Support Near Real-time Communication.” All of the above-listed Provisional and Non-Provisional applications are incorporated herein by reference for all purposes.

Provisional Applications (1)
Number Date Country
61148885 Jan 2009 US
Continuation in Parts (3)
Number Date Country
Parent 12419861 Apr 2009 US
Child 12552979 US
Parent 12419889 Apr 2009 US
Child 12419861 US
Parent 12419914 Apr 2009 US
Child 12419889 US