The above and other exemplary objects, features and advantages of the present invention will become more apparent from the following detailed description in conjunction with the accompanying drawings, in which:
Throughout the drawings, the same drawing reference numerals will be understood to refer to the same elements, features and structures.
The matters defined in the description such as a detailed construction and elements are provided to assist in a comprehensive understanding of the embodiments of the invention. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. Also, descriptions of well-known functions and constructions are omitted for clarity and conciseness.
An exemplary embodiment of the present invention using a transistor as a switch applied to an embedded battery control circuit of a mobile terminal is described as follows. In an exemplary implementation, the switch applied to the embedded battery control circuit is hardware that selectively transmits a signal from one side to the other side, such as a complementary metal-oxide semiconductor (CMOS), an n-channel metal-oxide semiconductor (NMOS), a p-channel metal-oxide semiconductor (PMOS), a bipolar junction transistor (BJT), a toggle switch, and an integrated circuit chip with a switch function. Additional extended or modified forms of the above devices may also be applied. According to an exemplary implementation, an emitter, base, and collector correspond to a source, gate, and drain respectively when the transistor is substituted by a CMOS.
According to an exemplary implementation of an exemplary embodiment of the present invention, an embedded battery is denoted by VBTT, a main power supply line for supplying power to each component of a terminal set is denoted by VBTL, a test power supply unit is denoted by VBTM, and a recharge power supply unit is denoted by VBTO. An external power supply unit supplies power to the mobile terminal from the outside, and may include the test power supply unit VBTM and the recharge power supply unit VBTO.
The mobile terminal, according to an exemplary embodiment of the present invention, is a terminal with an embedded battery, and may be all information and communication appliances and multimedia appliances, such as a mobile communication terminal, a digital broadcast receiving terminal, a personal digital assistant (PDA), a smart phone, an international mobile telecommunication 2000 (IMT-2000) terminal, a wideband code division multiple access (WCDMA) terminal, a universal mobile telecommunication service (UMTS) terminal, and their applications.
Referring to
The terminal set includes various components and a circuit pattern connecting the components to each other. The components may include a microphone, an audio processing unit, a radio frequency (RF) unit, a data processing unit, a key input unit, a camera, a display unit and a control unit. The microphone collects audio input and the audio processing unit has a speaker to play the audio. The RF unit forms a communication channel with external systems and the data processing unit processes data received by the RF unit. The key input unit generates an input signal, the camera takes an image, the display unit displays the image and the control unit controls each component. The terminal set may further include a printed circuit board formed in a circuit pattern, a connector for a power supply jack, and a recharge circuit for recharging the embedded battery VBTT.
The main power supply line VBTL is a route for supplying power to the terminal set. The main power supply line VBTL is selectively connected to the embedded battery VBTT or to the connector through which test power or recharge power is supplied. The main power supply line VBTL is normally connected to the embedded battery VBTT so that power from the embedded battery VBTT is supplied to the terminal set. However, in an inspection process of mass production, the main power supply line VBTL is disconnected from the embedded battery VBTT and connected to the test power supply unit VBTM, so that various electric signals may be transmitted from the test power supply unit VBTM to the terminal set.
The embedded battery VBTT is preinstalled in a mobile terminal and supplies power (for example, 5 volts) required for the operation of the terminal set. The embedded battery VBTT may be secondary or rechargeable batteries, such as a lithium battery, a nickel-cadmium battery, a nickel-metal hydride battery, and other chemical batteries.
The test power supply unit VBTM is a power supply unit transmitting a test signal Test_sig required for the inspection of characteristics of components included in the terminal set, and the test signal Test_sig is transmitted at various levels of power. That is, the test power supply unit VBTM may supply power at a certain level equal to that of the embedded battery VBTT, and may further supply a higher or lower level of power (voltage and current) than the embedded battery VBTT.
The switching unit SW is disposed between the main power supply line VBTL, the embedded battery VBTT, and the test power supply unit VBTM. The switching unit SW selectively controls the connection between the main power supply line VBTL and the embedded battery VBTT, and the connection between the main power supply line VBTL and the test power supply unit VBTM. If transmission of a test signal Test_sig is requested, the switching unit SW connects the main power supply line VBTL to the test power supply unit VBTM, and if recharging of the embedded battery VBTT is requested, the switching unit connects the embedded battery VBTT to the recharge power supply unit VBTO and maintains the connection between the main power supply line VBTL and the embedded battery VBTT.
Exemplary embodiments of the present invention are described below based on the type of switching unit.
Referring to
The configuration of the main power supply line VBTL, the embedded battery VBTT, and the test power supply unit VBTM included in the embedded battery control circuit is similar to that illustrated in
The switching unit SW includes a first transistor TR11 disposed between the embedded battery VBTT and the external power supply unit VBTM/VBTO, a second transistor TR12 disposed between the main power supply line VBTL and the external power supply unit VBTN/VBTO, a first node N1 formed as a connection point for the base of the first transistor TR11, a second note N2 formed as a connection point for the base of the second transistor TR12, a third node N3 formed between the first transistor TR11 and the second transistor TR12, and a third transistor TR13 disposed between the second node N2 and a ground GND. The switching unit SW may further include a first resistor R1, a second resistor R2 and a capacitor C. The first resistor R1 is disposed between the first node N1 and the embedded battery VBTT for the stabilization of a circuit by protecting the circuit from an overcurrent. The second resistor R2 is disposed between the external power supply unit VBTM/VBTO and the second node N2. The capacitor C is disposed between the external power supply unit VBTM/VBTO and the ground GND. A test signal Test_sig is transmitted to the first node N1. The test signal Test_sig, a power-on signal on_sw, and a hold signal PS_HOLD are selectively transmitted to the base of the third transistor TRI 3. Diodes D may be included between the third transistor TR13 and the power-on signal supply on_sw, and between the third transistor TR13 and the hold signal PS_HOLD supply to protect the third transistor TR13 from a counter-flow of the signal. The first transistor TR11 and the second transistor TR12 are P-type transistors maintaining a turn-on state when a low voltage is formed at their bases, and the third transistor TR13 is an N-type transistor maintaining a turn-on state when a high voltage is formed at its base.
A driving method of the embedded battery control circuit, according to the first exemplary embodiment of the present invention, is described.
If no test signal Test_sig is input, the external power supply unit VBTM/VBTO operates as a recharge power supply unit VBTO, and if a test signal Test_sig is input, the external power supply unit VBTM/VBTO operates as a test power supply unit VBTM. Supply of test power or recharge power may be identified when a power supply unit is connected to the terminal set. A plurality of pins are disposed on the connector formed in the terminal set and pins to be connected to a jack of the test power supply unit VBTM and pins to be connected to a jack of the recharge power supply unit VBTO may be disposed in different methods. Accordingly, in an inspection process, power supplied to the connector may be selectively transmitted to the test power supply unit VBTM or to the recharge power supply unit VBTO. Although the external power supply unit including the test power supply VBTM unit and the recharge power supply unit VBTO has only one connector, power may be distributed to the test power supply unit VBTM and the recharge power supply unit VBTO individually according to requirements.
Referring to
Because no test signal Test_sig is input, a low voltage GND is formed at the first node N1, and the first transistor TR11 enters a turn-on state. Accordingly, a second pass 12 Path is formed through the embedded battery VBTT, first resistor R1, first node N1, first transistor TR11, and recharge power supply unit VBTO. As a result, the first pass 11Path is connected to the second pass 12 Path, and a third pass 13 Path is formed through the embedded battery VBTT, first resistor R1, first node N1, first transistor TR11, third node N3, second resistor R2, second node N2, second transistor TR12, and main power supply line VBTL. Accordingly, power of the embedded battery VBTT is supplied to the main power supply line VBTL. If the recharge power supply unit VBTO is not connected, the power of the embedded battery VBTT may be supplied directly to the main power supply line VBTL.
Referring to
Because no test signal Test_sig is input, a low voltage GND is formed at the first node N1 and the first transistor TR11 enters a turn-on state. Accordingly, a second pass 12 Path is formed through the embedded battery VBTT, first resistor R1, first node N1, first transistor TR11, and recharge power supply unit VBTO. As a result, the first pass 11Path is connected to the second pass 12 Path, and a third pass 13 Path is formed through the embedded battery VBTT, first resistor R1, first node N1, first transistor TR11, third node N3, second resistor R2, second node N2, second transistor TR12, and main power supply line VBTL. Accordingly, power of the embedded battery VBTT is supplied to the main power supply line VBTL. When the recharge power supply unit VBTO is connected, power may be supplied to the embedded battery VBTT for recharging and to the main power supply line VBTL.
Referring to
At the same time, the test signal Test_sig in a high voltage High is transmitted to the first node N1, and a high voltage High is formed at the base of the first transistor TR11. Accordingly, the first transistor TR11 enters a turn-off state. As a result, the connection between the embedded battery VBTT and the test power supply unit VBTM is cut off. Accordingly, power is not transmitted from the test power supply unit VBTM to the embedded battery VBTT, and the embedded battery VBTT is isolated and has no influence on the main power supply line VBTL while the power is being supplied from the test power supply unit VBTM to the main power supply line VBTL.
The embedded battery control circuit and the driving method, according to the first exemplary embodiment of the present invention, protect an embedded battery from damage and facilitate correct terminal characteristic inspection, because the embedded battery supplies power to a main power supply line and activates a terminal set while no test signal is being transmitted, and the embedded battery is isolated from a test power supply unit and a main power supply line while a test signal is being transmitted.
According to an exemplary embodiment of the present invention, the embedded battery control circuit does not have an additional recharge circuit, and may thereby be applied to a travel charger type(TA) terminal comprising a separate recharge adaptor.
Referring to
The power distributing and switching unit DP_SW includes a second transistor TR22, a third transistor TR23, a second node N2 and a third node N3. The second transistor receives the output of the power supply unit D_In through the base of the second transistor TR22. The third transistor TR23 is disposed between the embedded battery VBTT and the main power supply line VBTL, and has a base that is connected to the collector of the second transistor TR22. The second node N2 is disposed between the embedded battery VBTT and the third transistor TR23. The third node N3 is disposed between the main power supply line VBTL and the third transistor TR23, and to which an integrated power Jig_on is connected. The power distributing and switching unit DP_SW may further include a fourth resistor R4 disposed between the second node N2 and the base of the third transistor TR23, and a plurality of capacitors C between the third node N3 and a ground GND, for the stabilization of a circuit by protecting the circuit from an overcurrent. A diode disposed in the third transistor TR23 is used as a route through which the embedded battery VBTT supplies power to the main power supply line VBTL.
The power supply unit D_In includes a first transistor TR21 disposed between the embedded battery VBTT and the ground GND, and whose base is connected to the integrated power Jig_on. The power supply unit D_In may further include a first resistor R1 disposed between the embedded battery VBTT and the collector of the first transistor TR21 to protect a circuit from an overcurrent.
The integrated power Jig_on is supplied from the outside, and is used for recharging the embedded battery VBTT or for testing a terminal set. Recharge power is supplied through a recharge power jack and a connector, and test power is supplied through a test power jack and the connector. If the terminal set is a TA-type terminal comprising an internal recharge circuit, the terminal set may further include an output unit, illustrated in
Referring to
A driving method of the embedded battery control circuit according to the second exemplary embodiment of the present invention is described.
The recharge power supply unit is a power supply unit for recharging the embedded battery VBTT, and supplies a recharge voltage (for example, 5 volts) to the embedded battery VBTT. The test power supply unit may supply a voltage at various levels. According to an exemplary implementation, the first transistor TR21 and the second transistor TR22 are N-type transistors maintaining a turn-on state when a high voltage is formed at their bases, and the third transistor TR23 is a P-type transistor maintaining a turn-on state when a low voltage is formed at its base. However, exemplary embodiments of the present invention are not limited to characteristics of the switching units, and any type of switching unit that can selectively control the connection between the main power supply line VBTL and the embedded battery VBTT may be used according to the characteristics of the integrated power supply Jig_on.
Referring to
Referring to
As described above, the embedded battery control circuit, according to the second exemplary embodiment of the present invention, avoids damage to an embedded battery by selectively supplying an integrated power and selectively isolating the embedded battery from a test power supply unit, and provides an improved environment for terminal characteristic inspection by supplying test power to a main power supply line in the state that the embedded battery is isolated.
According to an embedded battery control circuit and a driving method thereof disclosed by the present invention, an embedded battery may be isolated from an external power supply in a terminal inspection process, and thereby a proper test power may be supplied in the terminal inspection process.
Additionally, production processes and productivity of mobile terminals comprising an embedded battery may be improved by separating embedded battery power from test power without having to disassemble the embedded battery from the mobile terminals comprising an embedded battery.
While the present invention has been shown and described with reference to certain exemplary embodiments, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention as defined by the appended claims and their equivalents.
| Number | Date | Country | Kind |
|---|---|---|---|
| 2006-84311 | Sep 2006 | KR | national |