This invention relates generally to rifle style firearms, and particularly concerns both apparatus and methods for readily and precisely determining the cant of the rifle relative to the target such that the shooter can make appropriate aim adjustments to improve the probability of hitting the target. The location of the cant measurement device is designed to facilitate the shooters assessment of the rifle's cant when viewing other sighting mechanisms on the rifle.
Accuracy in placing a projectile onto a target using a rifle requires the shooter to determine three primary elements: 1) distance to the target, 2) the incline of the rifle as the projectile leaves the rifle, and 3) the cant of the rifle at the moment the projectile leaves the rifle. A rifle's cant is defined as the degree of rotational tilt the rifle has along the axis of the barrel. Determining distance and incline are part of “sighting” a rifle to a target and generally require several elements that must be determined by the shooter. Since gravity tends to bring the projectile downward, the barrel must often be inclined to hit a target at some distance. Commonly used sights for setting the incline can be a groove or aperture at the rear end of the post or the point at the barrel end-muzzle. Once the shooter determines a point at which the projectile is aimed, the shooter aligns the post into the groove, which effectively aligns the rifle both horizontally and vertically to the point of aim.
However, such sighting mechanisms may not offer the shooter with the degree of accuracy that may be desired. To improve the accuracy of the horizontal and vertical alignment, some rifle assemblies make use of a scope. A scope typically provides the shooter with a glass view port displaying horizontal and vertical lines in addition to a magnified view of the point of aim. Scopes incorporate vertical and horizontal adjustment mechanisms. The shooter makes the calculated vertical and horizontal adjustments to account for situational issues such as wind, temperature, and distance and aligns the point of aim with the intersection of these two lines, commonly referred to as cross-hairs. Scopes can contain a system of lines, dots, cross hairs, wires, or electrically projected images which aid aligning the barrel to the point of aim. Scopes are generally mounted on top of the action assembly near the back end of the barrel of the rifle and are attached thereto with a mechanism for adjustment. A common adjustment mechanism is a ring and slotted bar-rail device also known as scope ring and base. These adjustments are typically made at a shooting range or target practice area where the rifle is placed in a holder to ensure proper alignment and target distances are accurately known. Using this method, a rifle and scope can be adjusted to provide the shooter with a high degree of accuracy.
However, using a holder at a shooting range for calibrating a rifle's proper incline as a function of distance to the target often does not represent real world situations where the shooter is either standing or prone with the rifle being held at the time of firing. In these situations, the rifle is often twisted or rotated about the axis of the barrel. The physics of projectile firing is greatly affected by this degree of rotation or “cant” of the rifle at the moment of firing. For example, a left angle of cant tends to result in the projectile impacting the target to the lower left of the point of aim. Shooters, especially competition target shooters, must compensate for the cant of the rifle to improve shot accuracy.
Various mechanisms have been presented in the prior art to provide feedback to the shooter about the degree of cant during their aim. One such example is U.S. Pat. No. 6,813,855 where Pinkley presents an apparatus where among other accompanying pieces, a bubble level is strapped to the rifle stock underneath the scope. Pinkley's cant compensation method involves the steps of positioning the firearm and scope with a canted reticle system so that its vertical axis is positioned as indicated by the level bubble of the mounted level sub-assembly, positioning the vertical reference shaft sub-assembly a distance from the muzzle end of the firearm. The shooter then rotates the scope on the firearm sufficiently to align the vertical cross hair of the scope reticle system with the distant vertical reference shaft sub-assembly. Lastly, the shooter locks the sighting scope in the corrected position on the firearm.
The prior art attempts to provide the shooter with feedback for the cant of the rifle tend to be attached to the scope and, as such, are accessories that must be carefully attached to the scope and are not suitable for shooting situations where speed and durability are required. Also, the prior art cant measurement systems themselves must be thoroughly tested and calibrated by the shooter so that typically only that shooter, with that cant feedback device, on that special rifle, which is carefully calibrated by a trained technician can be used to produce the degree of accuracy required in critical or competitive shooting environments.
It has been discovered that by locating a pre-calibrated bubble level between the shooter's eye and the scope and carefully machining the bubble level within the rifle stock system, a reliable cant feedback system can be readily made available to any shooter and repeatable across an entire weapon platform. Also, by carefully embedding the bubble level within the body of the rifle, the cant feedback method can be durable and repeatable for a whole range of shooting applications, especially for the war-fighter.
Additionally, by embedding the cant level indicator into the rifle's stock and providing an accurate measurement of the rifle's cant, calibrating the firearm is greatly facilitated. By placing a plumb line at the desired target calibration distance (100 yards or 100 meters, for example), and then aligning the vertical reticle of the scope with the rifle at zero cant, the scope reticle-aiming reference is “trued” to the cant axis of the rifle. Once this initial process is completed, the rifle and scope are now calibrated for a “zero-cant” condition relative to each other.
The present invention presents an embedded precision level indicator that provides a true reference to level or plumb allowing for the final cant correction to be made before the shot is taken. The present invention provides the rifle shooter with a tool that greatly enhances “first-round-hit” probabilities and increases overall accuracy. The invention is located so that the rifle shooter does not have to change or disturb his body position to monitor the cant of the rifle.
The invention is machined into the rifle stock and is aligned with the horizontal axis of the center line. This horizontal axis is perpendicular to the vertical center line referenced from top to bottom. This horizontal axis can also be described as the 3 o'clock to 9 o'clock “cant axis”. This invention provides the rifle shooter with one more calculation used in making the perfect shot at even longer distances from the target. This feedback is of critical importance because cant measuring mechanisms of the prior art did not solve the issue of “man-introduced-errors” because the mounting of the cant level indicator is often not performed by a specially trained technician. These specially-trained technicians often install several items for reference points but none of them are truly calibrated to the horizontal plane.
The invention presented herein is machined into the assembly on the same plane as the cant axis. The accuracy of locating the invention true to the cant axis is enhanced by the use of computer-aided tools with very small error tolerances. A set of cant reference gradients is machined into the assembly as well. The reference gradients allow for duplicating the cant if a “Zero Cant” condition is not achievable. The shooter can perform a quick calculation that formulates the amount of “Point of Aim” adjustment required to successfully engage the target due to the amount of Cant introduced into the rifle. This combination of location, precision machining and calibration feedback allows shooters with limited experience and in situations of duress to greatly improve shot accuracy.
The invention herein presents methods of using the embedded cant indicator to provide a shooter with an optimized and compensated alignment system that maximizes the accuracy and repeatability of hitting the shooter's target and provides a weapon system that achieves this high level of precision compensation between the target and weapon in a most convenient manner.
In one embodiment, the same principles for housing the bubble level can be applied to raise the cant level indicator above the top surface of the stock. In one such embodiment, a rectangular bubble holder (or other shaped object or mass) is machined that protrudes upward from the top surface of the stock, behind the receiver. In this embodiment, the bubble holder has a cavity within it that is aligned with the horizontal axis of the barrel. As with other embodiments, the bubble level fits into the cavity so that the bubble level is aligned with the horizontal axis of the barrel when it is inserted into the cavity. As with other embodiments, the bubble holder also has a view port machined into the bubble holder so that a shooter can see the bubble inside the bubble holder. In some embodiments, the view port is on the top of the bubble holder. In other embodiments, the view port is on a rear-facing side of the bubble holder. In other embodiments, the view port is on both the rear-facing and the front-facing side of the bubble holder so that light will pass all the way through the bubble level. The bubble holder can be any shape or size so long as it does not interfere with the shooter's view of the sight reticle. In one embodiment, the bubble level is suspended in a frame extending at least partially above the top surface of the stock behind the receiver. In one embodiment, the frame is attached to the stock. In one embodiment, the frame is a unitary piece of the stock (i.e., part of the stock) or is part of a larger component of the stock. In an embodiment with a frame protruding at least partially from the top surface of the stock, the bubble level is held inside the frame and the bubble level can be protected by the frame against being bumped or knocked out of alignment with the horizontal axis of the barrel.
In another embodiment, the cant indicator can be machined directly into the action receiver of a rifle. A firearm receiver has several components, including a bolt assembly and a receiver body. The bolt assembly has a body, a handle, and a rear firing pin shroud. The receiver body is typically a tube-shaped support for the bolt assembly. Generally, a receiver body has a tang (rear facing end of the action receiver, often tapered and located below the firing pin shroud when the action receiver is assembled) that extends from the back of the action receiver. In such an embodiment, a cant level indicator can be machined directly into the tang. In such an embodiment, a cavity and a view port are machined into the tang either from the side or from the top. The cavity in such an embodiment is similar to other embodiments and holds a bubble level within the tang. Of course, a smaller bubble lever and cavity may be required to fit into the tang. The view port allows a shooter to see the bubble level within the cavity. In some embodiments, the bubble level is only partially recessed into a top surface of the tang, and a view port is not required because part of the bubble level is above the top surface of the tang.
In reference to
In reference to
In reference to
In yet other embodiments, a light source is used to illuminate the cant indicator assembly, but is located some distance from the cant indicator assembly. The remote light source emits light which is directed towards the cant indicator assembly via channels or fiber optics. For example, a battery powered light emitting diode (LED) is located within the pistol grip. The LED emits a light into a hollow channel that travels between the LED and the cant indicator assembly, more specifically, ends at or around the bubble level indicator within the viewport. Likewise, a fiber optic cable may be used within or in place of the channel to direct light from the LED to illuminate the bubble level of the cant indicator assembly. In fact, in certain exemplary embodiments, one or more fiber optic cables may transmit light from a remote light source to one or more locations in or about the cant indicator assembly, including the front, back, bottom, or sides of the bubble level.
In these various embodiments, the remote light source may include one or more battery powered LED lights integrated within or externally to the weapon, for example integrated within the stock section or pistol grip, or secured externally to the weapon, or be separate from the weapon. For example, and as described above, the light source may be a battery powered LED within the pistol grip. Alternatively, the light source may be a battery powered LED embedded within the stock. In yet another alternative, the light source may be a tritium or other radioactive power based light integrated within the stock or pistol grip. Further embodiments include light sources secured externally to the weapon, for example, a battery powered LED light affixed to the stock of the weapon. In fact, the light source may not even be physically connected to the weapon. For example, in certain embodiments, the light source may be a flash light or even sun light that is incident upon the weapon, whereby the light incident upon the weapon is directed through channels or fiber optics toward the cant indicator assembly to illuminate the bubble level (or other level indicator) therein.
Other embodiments of the current disclosure provide for the same light source that illuminates the cant indicator assembly to also illuminate other features of the weapon, including gun sights and safe or fire positions.
For battery powered or selectively engaged light sources, certain embodiments of the current disclosure include a switch for engaging and disengaging the light source. For example, a pressure switch is integrated into the pistol grip of the weapon such that when a user grasps the pistol grip, the switch is engaged and the light source is illuminated. Likewise, when the user releases the pistol grip, the switch is disengaged and the light source is extinguished.
Although generally bubble levels are elongated tubular chambers incompletely filled with a liquid, various other changes may be made to the apparatus in size, proportions, and material of construction to accommodate other bubble level chamber designs without departing from the meaning, scope, or intent of the claims which follow.
This is a Continuation of U.S. patent application Ser. No. 16/207,069 filed Nov. 30, 2018, which in turn claims the benefit of U.S. patent application Ser. No. 15/680,822 filed on Aug. 18, 2017, which in turn claims the benefit of U.S. patent application Ser. No. 15/061,613 filed on Mar. 4, 2016, which in turn claims the benefit of Ser. No. 14/842,925 filed on Sep. 2, 2015, which in turn claims the benefit of Ser. No. 14/154,214 filed on Jan. 14, 2014, the entireties of which are hereby claimed as priority and incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15061613 | Mar 2016 | US |
Child | 15680822 | US | |
Parent | 14842925 | Sep 2015 | US |
Child | 15061613 | US | |
Parent | 14154214 | Jan 2014 | US |
Child | 14842925 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16207069 | Nov 2018 | US |
Child | 17405059 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15680822 | Aug 2017 | US |
Child | 16207069 | US |