The invention relates to communication systems for refrigerated transportation containers.
Climate-controlled transportation containers, such as refrigerated trailers, refrigerated containers, and refrigerated trucks, are used for transporting goods that must be kept below a certain temperature to prevent spoilage. Often the refrigerated transportation containers monitor the status of environmental conditions of the container and communicate the status to a remote location along with other information, such as the location of the container. Because different fleet operators have different communication preference and/or needs, manufacturers of refrigerated transportation containers must customize the containers for each fleet operator to meet the individual communication needs of the operator.
In one embodiment, the invention provides a communication system for a climate-controlled container. The system includes a controller and a radio expansion module removably connected to the controller. The controller is coupled to the climate-controlled container and configured to monitor a status of the refrigerated container. The radio expansion module is configured to support a communication mode, and to communicate the status to a remote system. The communication mode used to communicate with the remote system is determined by the controller based on the communication modes supported by the radio expansion module.
In another embodiment the invention provides a communication system including a controller, a first radio expansion module, and a second radio expansion module. The controller is coupled to a device to be monitored, and is configured to monitor a status of the device. The first radio expansion module is configured to be removably connected to the controller, and to communicate the status to a remote system via a first communication mode. The second radio expansion module is configured to be removably connected to the controller, and to communicate the status to the remote system via a second communication mode.
In another embodiment the invention provides a method of communicating by a communication controller with a remote system. The method includes the acts of connecting to a removable radio expansion module populated with a plurality of circuits for communicating, obtaining data from a device external to the communication controller, determining a communication mode to use to send the data to the remote system, and sending the data to the remote system via the radio expansion module using the determined communication mode. Each of the plurality of circuits for communicating provides a different communication mode.
In another embodiment the invention provides a communication system for a climate-controlled container. The system includes a controller and a radio expansion module. The controller is coupled to the climate-controlled container and is configured to monitor a status of the refrigerated container. The radio expansion module is removably connected to the controller and is configured to support a plurality of communication modes including at least two of cellular, satellite, and WiFi. The radio expansion module is also configured to communicate the status to a remote system. When a WiFi communication link is available, and the radio expansion module is configured to support a WiFi communication mode, the controller communicates with the remote system via a WiFi communication link. When a WiFi communication link is not available, or the radio expansion board is not configured to support a WiFi communication mode, and a cellular communication link is available, and the radio expansion board is configured to support a cellular communication mode, the controller communicates with the remote system via a cellular communication.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiment of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiment and of being practiced or of being carried out in various ways.
The refrigerated trailer 205 is equipped with a configurable communication system, and can use one or more communication modes to communicate with the remote system 210. For example, the trailer 205 can communicate via a cellular link 215, a satellite link 220, a WiFi link 225 (e.g., via a router 230), a wireless personal area network (WPAN) link 235 (e.g., to a personal data assistant 240), or other suitable communication link. The remote system 210 can communicate via a cellular link 245, a satellite link 250, a WiFi link 255, a land-line telephone link 260, or other suitable communication methods including links not shown, such as a direct connection (e.g., RS232), an infrared link, a radio frequency (RF) link, and other third-party telematics links.
The trailer 205, via the configurable communication system, determines which communication mode to use based on a criterion. Potential criteria include signal strength, cost, integrity of the mode, and security of the mode. For example, a refrigerated trailer 205 with a configurable communication system that is configured to use cellular, satellite, and WiFi communication modes, can select cellular communication when on the road in an area having cellular service (i.e., when a cellular link is available), cellular communication being generally cheaper than satellite communication. However, should the trailer 205 be loaded on a barge that is at sea, cellular communication would not be available; therefore, the trailer 205 would communicate using satellite communication. Further, when the trailer 205 is located at a terminal, the trailer 205 would communicate using WiFi because there would be no charges associated with the WiFi communication. However, if the communication included sensitive information, and the WiFi system is unsecured, the trailer 205 could communicate using an alternative communication mode. In addition, a user 265 could communicate with the trailer 205 using the WiFi communication via a personal data assistant 240 (e.g., through a wireless router 230).
Data that the system 210 receives from the refrigerated trailer 205 includes, but is not limited to, the trailer's present position, a speed of the trailer, a temperature set point in the trailer, a return air temperature, a discharge air temperature, an operating mode, a unit mode, an alarm status, an hours of operation indication, a fuel quantity, a fuel consumption rate and total, a status of a door, a battery voltage, and other sensed information. Commands that are sent from the system 210 to the refrigerated trailer 205 include, but are not limited to, changing a temperature set point, resetting an alarm, and reprogramming a flash memory (the command can include a program to replace the program presently running in the configurable communication system).
The controller 305 is connected to a refrigeration unit of the container. The refrigeration unit controls the environment inside the container. In some constructions, the system 300 includes a global positioning system (GPS). The GPS can be included in the controller 305, the radio expansion module 310, or the refrigerated trailer 205. The controller 305 receives power from the refrigeration unit and monitors the status of the refrigeration unit and the container. In some embodiments, information received from the refrigeration unit and/or container includes the present position of the container, a speed of travel of the container, a temperature set point of the container, a return air indication (e.g., volume, temperature, etc.), a discharge air indication, an operating mode of the refrigeration unit, alarm indications, an hour meter indication, refrigeration unit and/or container sensor data, a fuel quantity of the refrigeration unit, a fuel consumption indication, a container door status, a voltage level of one or more batteries of the refrigeration unit, etc.
In some constructions, sensors in the container 205 are wired to the input/output circuit 407. The processor 425 receives indications of the status of various elements of the container (e.g., whether a door of the container 205 is open or closed) from the sensors.
In some constructions, one of the communication circuits is populated to communicate with a WPAN (e.g., via Bluetooth). The WPAN communicates with devices near or in the container 205, and retrieves information from various sensors, and switches, such as the status of doors (e.g., a fuel door). In some constructions, the personal area network provides information to a human machine interface in a driver's compartment of a truck (e.g., showing the temperature of the container, fuel level, alarms, etc.).
In some embodiments, the communication circuit functions as a web server and provides data via the Internet. Also, in some embodiments, the communication system 300 may communicate with the remote system 210 via multiple communication modes simultaneously (e.g., to communicate a critical alarm condition).
If a connection is made (step 525), the radio expansion module 310 executes the communication (step 530). If the radio expansion module 310 is unable to connect to the remote system 210 via the chosen communication mode (step 525), the radio expansion module 310 determines if another acceptable communication mode is available (step 535); and if there is, attempts to connect to the remote system 210 using the next highest ranked available mode (step 520). If no other acceptable mode is available, the radio expansion module 310 either attempts to connect with a previously attempted mode or exits (step 540) the process. In some constructions, when a connection cannot be made, the radio expansion module 310 provides an alarm indication (e.g., to a driver who can then perform a corrective procedure). In some constructions, when a connection cannot be made, the radio expansion module 310 stores data and forwards the data once a reliable connection is available.
If a connection is made (step 630), the system 210 executes the communication (step 635). If the system 210 is unable to connect to the trailer 205 via the chosen communication mode (step 640), the system 210 determines if there is another acceptable communication mode (step 645), and if there is, attempts to connect to the trailer 205 using the next highest ranked available mode (step 625). If no other acceptable mode is available, the system 210 either attempts to connect with a previously attempted mode or exits the process (step 620). In a case where a connection cannot be made, the system 210 may provide an alarm indication to a user who can then attempt to contact the driver or execute another procedure.
Thus, the invention provides, among other things, a new and useful configurable communication system for refrigerated containers. Various features and advantages of the invention are set forth in the following claims.