The present subject matter relates generally to a gas turbine engine having an embedded electric machine, and to a propulsion system for an aeronautical device including the same.
Typical aircraft propulsion systems include one or more gas turbine engines. For certain propulsion systems, the gas turbine engines generally include a fan and a core arranged in flow communication with one another. Additionally, the core of the gas turbine engine general includes, in serial flow order, a compressor section, a combustion section, a turbine section, and an exhaust section. In operation, air is provided from the fan to an inlet of the compressor section where one or more axial compressors progressively compress the air until it reaches the combustion section. Fuel is mixed with the compressed air and burned within the combustion section to provide combustion gases. The combustion gases are routed from the combustion section to the turbine section. The flow of combustion gasses through the turbine section drives the turbine section and is then routed through the exhaust section, e.g., to atmosphere.
For certain aircraft, it may be beneficial for the propulsion system to include an electric fan to supplement propulsive power provided by the one or more gas turbine engines included with the propulsion system. However, providing the aircraft with a sufficient amount of energy storage devices to power the electric fan may be space and weight prohibitive. Notably, certain gas turbine engines may include auxiliary generators positioned, e.g., within a cowling of the gas turbine engine. However, these auxiliary generators are not configured to provide a sufficient amount of electrical power to adequately drive the electric fan.
Accordingly, a propulsion system for an aircraft having one or more gas turbine engines and electric generators capable of providing an electric fan, or other electric propulsor, with a desired amount of electrical power would be useful.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one exemplary embodiment of the present disclosure, a gas turbine engine is provided. The gas turbine engine defines a radial direction and an axial direction. The gas turbine engine includes a compressor section and a turbine section arranged in serial flow order, the compressor section and turbine section together defining a core air flowpath. The gas turbine engine also includes a rotary component rotatable with at least a portion of the compressor section and with at least a portion of the turbine section. The gas turbine engine also includes a static frame member and an electric machine rotatable with the rotary component. The electric machine is positioned at least partially inward of the core air flowpath along the radial direction, the electric machine flexibly mounted to the static frame member, or flexibly coupled to the rotary component, or both.
In another exemplary embodiment of the present disclosure, a propulsion system is provided for an aeronautical device. The propulsion system includes an electric propulsor and a gas turbine engine. The gas turbine engine defines a radial direction and an axial direction. The gas turbine engine includes a compressor section and a turbine section arranged in serial flow order, the compressor section and turbine section together defining a core air flowpath. The gas turbine engine also includes a rotary component rotatable with at least a portion of the compressor section and with at least a portion of the turbine section. The gas turbine engine also includes a static frame member and an electric machine rotatable with the rotary component. The electric machine is positioned at least partially inward of the core air flowpath along the radial direction. The electric machine is electrically connected to the electric propulsor. The electric machine is also flexibly mounted to the static frame member, or flexibly coupled to the rotary component, or both.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention. As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “forward” and “aft” refer to relative positions within a gas turbine engine, with forward referring to a position closer to an engine inlet and aft referring to a position closer to an engine nozzle or exhaust. The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows.
The present application is directed generally towards a gas turbine engine of a propulsion system for an aircraft having an electric machine embedded therein. In at least certain embodiments, the gas turbine engine includes a compressor section and a turbine section arranged in serial flow order and together defining a core air flowpath. A rotary component, such as a shaft or spool, is rotatable with at least a portion of the compressor section and the turbine section. The gas turbine engine additionally includes a static frame member, such as one or more structural support members, and an electric machine. The electric machine is rotatable with the rotary component. The electric machine is positioned coaxially with the rotary component at least partially inward of the core air flowpath along a radial direction of the gas turbine engine. For example, in at least certain embodiments, the electric machine may be an electric generator, driven by the rotary component. Additionally, the electric machine is flexibly mounted to the static frame member, or flexibly coupled to the rotary component, or both. Such a configuration may increase a useful life of the electric machine by at least partially mechanically isolating the electric machine from certain internal and/or external static and dynamic forces of the gas turbine engine.
Referring now to the drawings, wherein identical numerals indicate the same elements throughout the figures,
Moreover, the aircraft 10 includes a fuselage 12, extending longitudinally from the forward end 16 of the aircraft 10 towards the aft end 18 of the aircraft 10, and a pair of wings 20. As used herein, the term “fuselage” generally includes all of the body of the aircraft 10, such as an empennage of the aircraft 10. The first of such wings 20 extends laterally outwardly with respect to the longitudinal centerline 14 from a port side 22 of the fuselage 12 and the second of such wings 20 extends laterally outwardly with respect to the longitudinal centerline 14 from a starboard side 24 of the fuselage 12. Each of the wings 20 for the exemplary embodiment depicted includes one or more leading edge flaps 26 and one or more trailing edge flaps 28. The aircraft 10 further includes a vertical stabilizer 30 having a rudder flap 32 for yaw control, and a pair of horizontal stabilizers 34, each having an elevator flap 36 for pitch control. The fuselage 12 additionally includes an outer surface or skin 38. It should be appreciated however, that in other exemplary embodiments of the present disclosure, the aircraft 10 may additionally or alternatively include any other suitable configuration of stabilizer that may or may not extend directly along the vertical direction V or horizontal/lateral direction L.
The exemplary aircraft 10 of
Referring still to the embodiment of
It should be appreciated, however, that the aircraft 10 and propulsion system 100 depicted in
Referring now to
As shown in
The exemplary core turbine engine 204 depicted generally includes a substantially tubular outer casing 206 that defines an annular inlet 208. The outer casing 206 encases, in serial flow relationship, a compressor section including a booster or low pressure (LP) compressor 210 and a high pressure (HP) compressor 212; a combustion section 214; a turbine section including a high pressure (HP) turbine 216 and a low pressure (LP) turbine 218; and a jet exhaust nozzle section 220. The compressor section, combustion section 214, and turbine section together define a core air flowpath 221 extending from the annular inlet 208 through the LP compressor 210, HP compressor 212, combustion section 214, HP turbine section 216, LP turbine section 218 and jet nozzle exhaust section 220. A high pressure (HP) shaft or spool 222 drivingly connects the HP turbine 216 to the HP compressor 212. A low pressure (LP) shaft or spool 224 drivingly connects the LP turbine 218 to the LP compressor 210.
For the embodiment depicted, the fan section 202 includes a variable pitch fan 226 having a plurality of fan blades 228 coupled to a disk 230 in a spaced apart manner. As depicted, the fan blades 228 extend outwardly from disk 230 generally along the radial direction R. Each fan blade 228 is rotatable relative to the disk 230 about a pitch axis P by virtue of the fan blades 228 being operatively coupled to a suitable actuation member 232 configured to collectively vary the pitch of the fan blades 228 in unison. The fan blades 228, disk 230, and actuation member 232 are together rotatable about the longitudinal axis 12 by LP shaft 224 across a power gear box 234. The power gear box 234 includes a plurality of gears for stepping down the rotational speed of the LP shaft 224 to a more efficient rotational fan speed.
Referring still to the exemplary embodiment of
Additionally, the exemplary turbofan 200 depicted includes an electric machine 246 rotatable with the fan 226. Specifically, for the embodiment depicted, the electric machine 246 is configured as an electric generator co-axially mounted to and rotatable with the LP shaft 224 (the LP shaft 224 also rotating the fan 226 through, for the embodiment depicted, the power gearbox 234). The electric machine 246 includes a rotor 248 and a stator 250. In certain exemplary embodiments, the rotor 248 and stator 250 of the electric machine 246 are configured in substantially the same manner as the exemplary rotor and stator of the electric machine described below. Notably, when the turbofan engine 200 is integrated into the propulsion system 100 described above with reference to
It should be also appreciated, however, that the exemplary turbofan engine 200 depicted in
Referring now to
For the embodiment depicted, the electric machine 246 generally includes a rotor 248 and a stator 250. The rotor 248 is attached via a plurality of rotor connection members 252 directly to the LP shaft 224, such that the rotor 248 is rotatable with the LP shaft 224. By contrast, the stator 250 is attached via one or more stator connection members 254 to a static frame member of the gas turbine engine, or more particularly, to a structural support member 256 of the gas turbine engine. As will be discussed in greater detail below, the connection of the rotor 248 and stator 250 of the electric machine 246 to the respective LP shaft 224 and structural support member 256 may mechanically isolate the electric machine 246. Notably, in at least certain exemplary embodiments, the electric machine 246 may be an electric generator, such that the rotor 248, and rotor connection members 252, are driven by the LP shaft 224. With such an embodiment, a rotation of the rotor 248 relative to the stator 250 may generate electrical power, which may be transferred via an electric communication bus to one or more systems of the gas turbine engine, or to a propulsion system with which the gas turbine engine is included.
Referring still to the exemplary electric motor of
The stator connection member 254 may be an annular/cylindrical member extending from the structural support member 256 of the gas turbine engine. For the embodiment depicted, the stator connection member 254 supports rotation of the rotor 248 and rotor connection members 252 through one or more bearings. More specifically, a forward electric machine bearing 264 is positioned forward of the electric machine 246 and between the rotor connection member 252 and the stator connection member 254 along the radial direction R. Similarly, an aft electric machine bearing 266 is positioned aft of the electric machine 246 and between the rotor connection member 252 and the stator connection member 254 along the radial direction R. Particularly for the embodiment depicted, the forward electric machine bearing 264 is configured as a roller element bearing and the aft electric machine bearing 266 includes a pair of bearings, the pair of bearings configured as a roller element bearing and a ball bearing. It should be appreciated, however, that the forward and aft electric machine bearings 264, 266 may in other embodiments, have any other suitable configuration and the present disclosure is not intended to be limited to the specific configuration depicted, unless such limitations are added to the claims.
The gas turbine engine further includes a cavity wall 268 surrounding at least a portion of the electric machine 246. More specifically, for the embodiment depicted, the cavity wall 268 substantially completely surrounds the electric machine 246, extending from a location forward of the electric machine 246 (attached to the structural support member 256 through the stator connection member 254) to a location aft of the electric machine 246. The cavity wall 268 defines at least in part an electric machine sump 270 substantially completely surrounding the electric machine 246. More specifically, the electric machine sump 270 extends from a location forward of the electric machine 246 continuously to a location aft of the electric machine 246. Certain components include openings 272 to allow for such a continuous extension of the electric machine sump 270. Notably, for the embodiment depicted, the electric machine sump 270 additionally encloses the aft bearing 262 of the gas turbine engine. Although not depicted, the gas turbine engine may include an electric machine lubrication system for providing lubrication to, and scavenging lubrication from the electric machine sump 270. The electric machine lubrication system may remove an amount of heat from the electric machine sump 270 and electric machine 246.
In order to further reduce/maintain a temperature of the electric machine 246, the exemplary gas turbine engine depicted further includes a buffer cavity 274 surrounding at least a portion of the electric machine 246 to thermally insulate the electric machine 246. More specifically, for the embodiment depicted, the cavity wall 268 at least partially defines the buffer cavity 274. Additionally, as is seen depicted in
Referring still to
Specifically, for the embodiment depicted, the rotor connection member 252 includes one or more flexible members allowing the rotor connection member 252 to flex or bend in response to various static or dynamic forces during operation of the gas turbine engine. Similarly, for the embodiment depicted, the stator connection member 254 includes one or more flexible members allowing the stator connection member 254 to flex or bend in response to various static or dynamic forces during operation of the gas turbine engine. For the embodiment depicted, the flexible members of the rotor connection member 252 are configured as a pair of baffles 278 positioned proximate to the LP shaft 224, at a location forward of the rotor 248 along the axial direction A of the gas turbine engine. Additionally for the embodiment depicted, the flexible members of the stator connection member 254 are also configured as a pair of baffles 280 positioned proximate to the structural support member 256 at a location forward of the stator 250 along the axial direction A of the gas turbine engine. Inclusion of the flexible members with the rotor connection member 252 and the stator connection member 254 may allow for the electric machine 246 to be mechanically isolated or insulated from various forces acting on or within the gas turbine engine during operation, e.g., for increasing a useful life of the electric machine 246. As depicted, the term “baffles” refers to a section of, e.g., a cylindrical member including a plurality of bends in relatively close proximity to provide an amount of flexibility to the cylindrical member.
It should be appreciated, however, that in other embodiments, the rotor connection member 252 and stator connection member 254 may be configured in any other suitable manner for flexibly mounting and/or flexibly coupling the electric machine 246 within the gas turbine engine and to a rotary component. For example, in certain embodiments, the rotor connection member 252 and stator connection member 254 may include any other suitable flexible members configured to allow the electric machine 246 to absorb static and/or dynamic forces. For example, referring now to
The exemplary gas turbine engine includes a rotary connection member 252 flexibly coupling a rotor 248 of an electric machine 246 to a rotary component (e.g., an LP shaft 224). The rotor connection member 252 includes a flexible element. However, for the embodiment depicted, the flexible element of the rotor connection member 252 is not configured as a pair of baffles 278. Instead, for the embodiment of
Referring additionally to
However, in other embodiments, the dampening material may be any other suitable material. Additionally, in other embodiments, the damper 288 may not be configured as the dampening material, and instead may be configured as a viscous damper providing a flow of oil between the splined coupling portions of the LP shaft 224 and of the rotor connection member 252, a pneumatic damper providing an airflow between the splined coupling portions of the LP shaft 224 and of the rotor connection member 252, or any other suitable damper. When configured as a viscous damper, the damper 288 may receive a flow of oil from an electric machine lubrication system. When configured as a pneumatic damper, the damper 288 may receive a flow of compressed air from, e.g., a compressor section of the gas turbine engine.
Notably, although for the exemplary embodiment depicted, the flexible attachment member is configured between the rotor connection member 252 and the LP shaft 224, in other embodiments, the rotor connection member 252 may be configured as two separate connection members, each including a splined portion, the splined portions configured in a similar manner to achieve a similar result. Further, in other embodiments, the stator connection member 254 may include a flexible attachment member, or a flexible section, configured in a similar manner.
Inclusion of a connection member having a flexible element configured in accordance with one or more these embodiments may allow for the connection member to absorb forces along a radial direction R and along an axial direction. Moreover, inclusion of the connection member in accordance with certain of these embodiments may allow for the connection member to absorb forces along a circumferential direction C, such that the flexible element may be configured as a torsional damper for the electric machine 246. Such may be particularly beneficial for the rotary connection member, given a potential for torsional vibrations of the electric machine 246 due to, e.g., electric pulses, etc.
It should also be appreciated, that in still other embodiments, the gas turbine engine and electric machine 246 may be configured in any other suitable manner for, e.g., providing a desired electrical power output. For example, referring now to
For example, the gas turbine engine includes a rotor connection member 252 supporting a rotor 248 of the electric machine 246 and a stator connection member 254 supporting a stator 250 of the electric machine 246. The rotor connection member 252 is coupled to the rotary component and the stator connection member 254 is coupled to the static support member 256. Additionally, the rotor 248 and stator 250 together define an air gap. However, for the embodiment of
For example, in certain exemplary embodiments, the gearbox 294 may be configured to increase a rotational speed of the rotor 248 relative to the rotary component/LP shaft 224. Notably, with such an exemplary embodiment, the rotor 248 may be rotated at relatively high rotational speeds, potentially generating high centrifugal forces for the rotor connection member 252 and rotor 248 to withstand. Such force may widen the air gap 251 between the rotor 248 and the stator 250, potentially reducing an efficiency of the electric machine 246. Accordingly, for the embodiment depicted, a containment band 295 is provided along an outside of the rotor connection member 252 for strengthening the rotor connection member 252 and rotor 248. In certain embodiments, the band 295 may be a composite band, such as a carbon fiber wrapped band, or alternatively, may be formed of any other suitable material.
In order to allow the gearbox 294 to, e.g., absorb static and dynamic forces that may act on the gearbox 294 during operation of the gas turbine engine, the gearbox 294 is flexibly mounted to a static frame member, or rather to a structural support member 256 extending from an aft engine strut 260 of the gas turbine engine. More specifically, for the embodiment depicted, the gearbox 294 is attached to the structural support member 256 through a gearbox connection member 296. The gearbox connection member 296 includes a flexible element, which for the embodiment depicted is configured as a baffle 297. Such a configuration may increase a lifespan of the gearbox 294 by mechanically isolating or insulating the gearbox 294 from certain forces exerted on or within the gas turbine engine.
It should be appreciated, however, that in other embodiments the gearbox 294 may be flexibly mounted to the structural support member 256 in any other suitable manner. For example, referring now to
The gearbox connection member 296 includes a flexible element. However, for the embodiment depicted, the flexible element is configured as a torsional damper 298 for accommodating torsional vibration of the gearbox 294 relative to the rotary component or other components of the gas turbine engine.
Particularly for the embodiment depicted, the torsional damper 298 of the gearbox connection member 296 provides dampening of the gearbox 294 along an axial direction A, along a radial direction R, and along a circumferential direction C. For example, the exemplary flexible element depicted includes a first attachment member 300 connected to the gearbox 294 and a second attachment member 302 connected to a structural support member 256. The first attachment member 300 and second attachment member 302 together define an attachment interface 304 made up of a plurality of interdigitated members with a damper 306 positioned at least partially between the interdigitated members.
For example, referring specifically to
Referring again to
The damper 306 may be configured as a dampening material formed of any material suitable for absorbing force and/or vibration. For example, the damper 306 may be any resilient material, such as an elastomeric material. However, in other embodiments, any other suitable material or configuration may be utilized, or, any other suitable damper 306 may be provided. For example, in other embodiments, the damper 306 may be configured as a viscous damper or a pneumatic damper. For example, in certain embodiments, the dampening material may be oil, such that torsional damper 298 includes a squeeze film damper, or other similar structure.
As stated, the torsional damper 298 of the exemplary gearbox connection member 296 depicted may be capable of absorbing forces along the axial direction A, the radial direction R, and the circumferential direction C. Accordingly, a connection member in accordance with one or more embodiments of the present disclosure may be capable of extending a life of, e.g., the gearbox 294, by reducing an amount of stress or strain on the gearbox 294 (or proximally mounted components).
It should be appreciated that the flexible members described above with reference to one or more of the rotor connection member 252, stator connection member 254, and gearbox connection member 296 may be used, in other exemplary embodiments, interchangeably within any of the three connection members described herein.
Moreover, referring now to
However, as is depicted schematically and in phantom, for the embodiment depicted, the electric machine 246 may be positioned at any other suitable location. For example, the electric machine 246 may be an electric machine 246A coaxially mounted with the LP shaft 224 at a location forward of the HP compressor 212 and substantially radially inward of the LP compressor 210. Additionally, or alternatively, the electric machine 246 may be an electric machine 246B coaxially mounted with the HP shaft 222, e.g., at a location forward of the HP compressor 212. Additionally, or alternatively still, the electric machine 246 may be an electric machine 246C coaxially mounted with the LP shaft 224 a location at least partially aft of the HP turbine 216 and at least partially forward of the LP turbine 218. Additionally, or alternatively still, the electric machine 246 may be an electric machine 246D coaxially mounted with the LP shaft 224 and the HP shaft 222, such that the electric machine 246D is a differential electric machine. Moreover, in still other embodiments, the electric machine 246 may be mounted at any other suitable location.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2812912 | Stevens et al. | Nov 1957 | A |
3286470 | Gerlaugh | Nov 1966 | A |
3312448 | Hull, Jr. et al. | Apr 1967 | A |
3844110 | Widlansky et al. | Oct 1974 | A |
4089493 | Paulson | May 1978 | A |
4370560 | Faulkner et al. | Jan 1983 | A |
4605185 | Reyes | Aug 1986 | A |
4913380 | Verdaman et al. | Apr 1990 | A |
5174109 | Lampe | Dec 1992 | A |
5799484 | Nims | Sep 1998 | A |
5927644 | Ellis et al. | Jul 1999 | A |
6105697 | Weaver | Aug 2000 | A |
6169332 | Taylor et al. | Jan 2001 | B1 |
6467725 | Coles | Oct 2002 | B1 |
6545373 | Andres et al. | Apr 2003 | B1 |
6817431 | Rasch | Nov 2004 | B1 |
6834831 | Daggett | Dec 2004 | B2 |
6976655 | Thompson | Dec 2005 | B2 |
6992403 | Raad | Jan 2006 | B1 |
7251942 | Dittmar et al. | Aug 2007 | B2 |
7267300 | Heath et al. | Sep 2007 | B2 |
7285871 | Derouineau | Oct 2007 | B2 |
7380749 | Fucke et al. | Jun 2008 | B2 |
7387189 | James et al. | Jun 2008 | B2 |
7417337 | Suttie | Aug 2008 | B1 |
7493754 | Moniz et al. | Feb 2009 | B2 |
7495354 | Herrmann | Feb 2009 | B2 |
7514810 | Kern | Apr 2009 | B2 |
7528499 | Suttie | May 2009 | B2 |
7550881 | Dietrich | Jun 2009 | B1 |
7665689 | McComb | Feb 2010 | B2 |
7677502 | Lawson et al. | Mar 2010 | B2 |
7752834 | Addis | Jul 2010 | B2 |
7806363 | Udall et al. | Oct 2010 | B2 |
7818969 | Hotto | Oct 2010 | B1 |
7819358 | Belleville | Oct 2010 | B2 |
7905449 | Cazals et al. | Mar 2011 | B2 |
7952244 | Colin | May 2011 | B2 |
7958727 | Arnold | Jun 2011 | B2 |
7970497 | Derouineau et al. | Jun 2011 | B2 |
7976273 | Suciu et al. | Jul 2011 | B2 |
8016228 | Fucke et al. | Sep 2011 | B2 |
8033094 | Suciu et al. | Oct 2011 | B2 |
8039983 | Cote et al. | Oct 2011 | B2 |
8099944 | Foster et al. | Jan 2012 | B2 |
8109073 | Foster et al. | Feb 2012 | B2 |
8128019 | Annati et al. | Mar 2012 | B2 |
8141360 | Huber | Mar 2012 | B1 |
8162254 | Roche | Apr 2012 | B2 |
8193761 | Singh | Jun 2012 | B1 |
8220739 | Cazals | Jul 2012 | B2 |
8226040 | Neto | Jul 2012 | B2 |
8291716 | Foster et al. | Oct 2012 | B2 |
8317126 | Harris et al. | Nov 2012 | B2 |
8413750 | Lamke | Apr 2013 | B2 |
8432048 | Paulino | Apr 2013 | B1 |
8469306 | Kuhn, Jr. | Jun 2013 | B2 |
8476798 | Dooley | Jul 2013 | B2 |
8489246 | Dooley | Jul 2013 | B2 |
8492920 | Huang et al. | Jul 2013 | B2 |
8522522 | Poisson | Sep 2013 | B2 |
8549833 | Hyde et al. | Oct 2013 | B2 |
8552575 | Teets et al. | Oct 2013 | B2 |
8568938 | Gao et al. | Oct 2013 | B2 |
8596036 | Hyde et al. | Dec 2013 | B2 |
8631657 | Hagen et al. | Jan 2014 | B2 |
8640439 | Hoffjann et al. | Feb 2014 | B2 |
8657227 | Bayliss et al. | Feb 2014 | B1 |
8672263 | Stolte | Mar 2014 | B2 |
8684304 | Burns et al. | Apr 2014 | B2 |
8692489 | Maalioune | Apr 2014 | B2 |
8723349 | Huang et al. | May 2014 | B2 |
8723385 | Jia et al. | May 2014 | B2 |
8742605 | Wilhide et al. | Jun 2014 | B1 |
8829702 | Menheere | Sep 2014 | B1 |
8836160 | Paterson et al. | Sep 2014 | B1 |
8857191 | Hyde et al. | Oct 2014 | B2 |
8890343 | Bulin et al. | Nov 2014 | B2 |
8925660 | Bowdich et al. | Jan 2015 | B2 |
8928166 | Seger et al. | Jan 2015 | B2 |
8939399 | Kouros et al. | Jan 2015 | B2 |
8950703 | Bayliss et al. | Feb 2015 | B2 |
8957539 | Ralston | Feb 2015 | B1 |
8997493 | Brust et al. | Apr 2015 | B2 |
8998580 | Quiroz-Hernandez | Apr 2015 | B2 |
9003638 | Menheere | Apr 2015 | B2 |
9004849 | Munsell et al. | Apr 2015 | B2 |
9038398 | Suciu et al. | May 2015 | B2 |
9045996 | Anghel et al. | Jun 2015 | B2 |
9059440 | Hotto | Jun 2015 | B2 |
9068562 | Budica et al. | Jun 2015 | B1 |
9143023 | Uskert | Sep 2015 | B1 |
9190892 | Anthony | Nov 2015 | B2 |
9917490 | Lemmers | Mar 2018 | B2 |
20050042944 | Brach | Feb 2005 | A1 |
20060037325 | Peters et al. | Feb 2006 | A1 |
20080056892 | Barton et al. | Mar 2008 | A1 |
20090179424 | Yaron | Jul 2009 | A1 |
20100038473 | Schneider et al. | Feb 2010 | A1 |
20110016882 | Woelke et al. | Jan 2011 | A1 |
20110073389 | Lamke | Mar 2011 | A1 |
20120119020 | Burns et al. | May 2012 | A1 |
20120153076 | Burns et al. | Jun 2012 | A1 |
20120209456 | Harmon et al. | Aug 2012 | A1 |
20120214605 | Snook | Aug 2012 | A1 |
20130032215 | Streifinger | Feb 2013 | A1 |
20130036730 | Bruno et al. | Feb 2013 | A1 |
20130052005 | Cloft | Feb 2013 | A1 |
20130062885 | Taneja | Mar 2013 | A1 |
20130088019 | Huang et al. | Apr 2013 | A1 |
20130099065 | Stuhlberger | Apr 2013 | A1 |
20130133336 | Barnett | May 2013 | A1 |
20130139515 | Schlak | Jun 2013 | A1 |
20130154359 | Huang et al. | Jun 2013 | A1 |
20130184958 | Dyrla et al. | Jul 2013 | A1 |
20130227950 | Anderson et al. | Sep 2013 | A1 |
20130251525 | Saiz | Sep 2013 | A1 |
20130306024 | Rolt | Nov 2013 | A1 |
20140010652 | Suntharalingam et al. | Jan 2014 | A1 |
20140060995 | Anderson et al. | Mar 2014 | A1 |
20140084677 | Haillot | Mar 2014 | A1 |
20140151495 | Kuhn, Jr. | Jun 2014 | A1 |
20140245748 | Anghel et al. | Sep 2014 | A1 |
20140250861 | Eames | Sep 2014 | A1 |
20140271114 | Phillips et al. | Sep 2014 | A1 |
20140283519 | Mariotto et al. | Sep 2014 | A1 |
20140290208 | Rechain et al. | Oct 2014 | A1 |
20140338352 | Edwards et al. | Nov 2014 | A1 |
20140339371 | Yates et al. | Nov 2014 | A1 |
20140345281 | Galbraith | Nov 2014 | A1 |
20140346283 | Salyer | Nov 2014 | A1 |
20140367510 | Viala et al. | Dec 2014 | A1 |
20140367525 | Salyer | Dec 2014 | A1 |
20140369810 | Binks et al. | Dec 2014 | A1 |
20150005990 | Burns et al. | Jan 2015 | A1 |
20150013306 | Shelley | Jan 2015 | A1 |
20150014479 | Bayliss et al. | Jan 2015 | A1 |
20150028594 | Mariotto | Jan 2015 | A1 |
20150084558 | Benson et al. | Mar 2015 | A1 |
20150084561 | Benson et al. | Mar 2015 | A1 |
20150084565 | Le Peuvedic | Mar 2015 | A1 |
20150089921 | Rideau et al. | Apr 2015 | A1 |
20150104310 | Griffin | Apr 2015 | A1 |
20150113996 | Cai et al. | Apr 2015 | A1 |
20150115108 | Benson et al. | Apr 2015 | A1 |
20150148993 | Anton et al. | May 2015 | A1 |
20150151844 | Anton et al. | Jun 2015 | A1 |
20150151847 | Krug et al. | Jun 2015 | A1 |
20150159552 | Rodriguez et al. | Jun 2015 | A1 |
20150183522 | Ouellette | Jul 2015 | A1 |
20150380999 | Joshi et al. | Dec 2015 | A1 |
20160061053 | Thomassin | Mar 2016 | A1 |
20160160867 | Gehlot | Jun 2016 | A1 |
20180050806 | Kupiszewski et al. | Feb 2018 | A1 |
20180050807 | Kupiszewski et al. | Feb 2018 | A1 |
20180051702 | Kupiszewski et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
2 831 625 | Apr 2015 | CA |
2 597 269 | May 2013 | EP |
2 947 278 | Nov 2015 | EP |
3 048 042 | Jul 2016 | EP |
2489311 | Sep 2012 | GB |
WO2010020199 | Feb 2010 | WO |
WO2014072615 | May 2014 | WO |
WO2014123740 | Aug 2014 | WO |
Entry |
---|
http://aviationweek.com/awin/boeing-researches-alternative-propulsion-and-fuel-options, Aviation Week & Space Technology, Jun. 4, 2012. |
Bradley et al., “Subsonic Ultra Green Aircraft Research, Phase II: N+4 Advanced Concept Development,” NASA/CR-2012-217556, May 2012. |
Simon Schramm, Damping of Torsional Interaction Effects in Power Systems, 2010. |
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2017/047110 dated Jan. 29, 2018. |
Number | Date | Country | |
---|---|---|---|
20180051701 A1 | Feb 2018 | US |