Displays are employed to convey digital information via a lighted platform. The displays are installed in a variety of contexts and environments, such as televisions, advertisements, personal computing devices, and more commonly in recent times, in vehicles.
The standard display assembly includes display driving logic with various instructions as to the patterns to communicate to an array of lighting elements. The display driving logic communicates signals that instruct which of the lighting elements to turn on, and essentially light up to a corresponding intensity and color (if available). The display assembly may be incorporated with various interface devices, such as keyboards, pointers, gaze trackers, head trackers, eye trackers, touch screens, and the like.
The displays are usually cased with transparent substances, such as lenses, that allow light being illuminated to be projected to the viewer's eyes. A surface of the lens faces the viewer of the display, and thus, implementers provide different shapes, sizes, and types based on an implementers preference. Further, different locations and such may necessitate the lens to be a specific type and shape.
In recent years, displays in vehicles have been employed using a head-up display (HUD). A HUD is a display intended to be in front of a viewer (for example, the windscreen area of a vehicle), and allows the viewer to see content through the windscreen and still see the landscape behind it.
However, because of the implementation mentioned above, the lighting conditions in the environment may vary. For example, if the present weather is overcast, the lighting may be dark. Conversely, if the present weather is sunny and clear, the lighting may be bright. In either case, the content being projected onto the HUD may be adjusted accordingly. A HUD implementation may be provided with a light sensor, the sensor detecting the current light condition, and effectively being employed to adjust the luminance of the content being presented on the HUD.
One such implementation is shown in
The viewer 100 views, via the viewer 100's eyes 101, the blade 155. Thus, as content (virtual image 103) is displayed behind the blade 155, the viewer 100 via the optical axis 102, is capable of seeing the content/virtual image 103 while also looking through the windshield implemented in a vehicle.
The HUD 100 implementation in
The sensor 160 is capable of detecting light through the field of detection 161. As illustrated in
Also shown in
The following description relates to providing a system, method, and device for implementing a heads-up display (HUD) with a light sensor. Exemplary embodiments may also be directed to any of the system, the method, or an application disclosed herein, and the subsequent implementation in a vehicle application with a HUD situated in or around a front windshield.
The aspects disclosed herein are directed to an embedded sensor in a heads-up display (HUD). The HUD includes a light guide situated in the HUD, the light guide formed by introducing a reflective surface on a back portion of a transparent panel, the reflective surface being angled at a front facing surface and towards a surface perpendicular to the HUD; and a light sensor disposed on the surface perpendicular to the HUD.
Additional features of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. Other features and aspects will be apparent from the following detailed description, the drawings, and the claims.
The detailed description refers to the following drawings, in which like numerals refer to like items, and in which:
The invention is described more fully hereinafter with references to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these exemplary embodiments are provided so that this disclosure is thorough, and will fully convey the scope of the invention to those skilled in the art. It will be understood that for the purposes of this disclosure, “at least one of each” will be interpreted to mean any combination the enumerated elements following the respective language, including combination of multiples of the enumerated elements. For example, “at least one of X, Y, and Z” will be construed to mean X only, Y only, Z only, or any combination of two or more items X, Y, and Z (e.g. XYZ, XZ, YZ, X). Throughout the drawings and the detailed description, unless otherwise described, the same drawing reference numerals are understood to refer to the same elements, features, and structures. The relative size and depiction of these elements may be exaggerated for clarity, illustration, and convenience.
In conventional implementations of the heads-up display (HUD) with an integrated light sensor, the field of detection of the content is rendered not effective due to the limitations explained in the Background section. Thus, implementing a robust illumination adjustment system has not been achieved.
Disclosed herein are implementations for a system for integrating a HUD with a light sensor. By employing the aspects disclosed herein and the specific configurations and placement of the light sensor described in this disclosure, the field of detection is oriented in a manner that corresponds to the field of view of a viewer of a HUD.
Specifically, the light guide 300 creates a light path as shown. The HUD panel is provided 155 with a reflective surface 401 that directs light towards a light sensor 310, the light sensor 310 being affixed to an electronic board (for example PCB) electrically coupled to a luminance adjustment system.
Employing the aspects disclosed herein, and specifically the implementation described in
As a person skilled in the art will readily appreciate, the above description is meant as an illustration of implementation of the principles this invention. This description is not intended to limit the scope or application of this invention in that the invention is susceptible to modification, variation and change, without departing from spirit of this invention, as defined in the following claims.