The invention relates to a sensor unit and a method for sensing physical and/or chemical characteristics within a stack of silage during a conservation and preparation sequence of the silage.
Silage production is with its variety and long growth period a great benefit for the environment and its fauna. A considerable percentage, such as 25%, of the agricultural areas is in some countries used for the production of silage. In the beginning of the eighteenth century an actual silage production began with purposeful plant production with grass from selected species. Before then silage consisted of wild grass and weeds.
The name silage is herein generally applied to fodder, that has a structure suited for feeding animals such as ruminants and that has relatively low energy content. Especially when silage is mixed with further ingredients, the outcome of the mixing may be referred to as coarse fodder.
A large silage production of a high quality, with the aim to use the silage for course fodder, means a high rate of self-sufficiency and a lower need for external transport of silage and fodder both local and globally. The on-farm production of silage and fodder reduces the vulnerability of the farm to price fluctuations of free market silage and/or fodder. An essential condition for exploiting the silage in an optimal way is a high yield of good quality, and subsequent storage that preserves its nutritional.
When silage and/or course fodder has to be stored for a longer time, a conservation of the silage and/or the course fodder is necessary. The storage has to preserve the food value and the nutrient content. Respiration is the primary source of loss and it depends on the supply of oxygen, water and heat. Therefore there are three fundamental ways of conservation, the removal of oxygen, the removal of water and the removal of heat.
A successful silage process is a superior way of preserving grass and corn. The way to success is relatively simple. The goal is to press the oxygen out of the crop as fast as possible and then keep the silage airtight until it is to be used. If oxygen enters the silage a decomposition of digestible matter will start. The decomposition is not easy to see under the cover while the matter is broken down to H2O and CO2 with a release of heat during the decomposition.
In practice it has among others been found that existing devices and methods for assuring that the silage and/or the course fodder is well preserved suffers from a number of disadvantages which among others may lead to a silage process which does not always lead to a successful result.
The inventors of the present invention has appreciated that an improved wireless silage sensor unit and method of wirelessly sensing physical and/or chemical characteristics of silage is of benefit, and has in consequence devised the present invention.
It may be seen as an object of the present invention to provide an improved wireless silage sensor unit and method of wirelessly sensing physical and/or chemical characteristics of silage. Preferably, the invention alleviates, mitigates or eliminates one or more of the above or other disadvantages singly or in any combination.
Accordingly there is provided, in a first aspect, a wireless silage sensor unit comprising
wherein a size and/or a shape of the sensor unit is adapted for the sensor unit to be embedded in the silage during storage of the silage and for the sensor unit to endure a decompacting process of the silage during which the silage is decompacted and possibly mixed with further ingredients and wherein the sensor unit is furthermore adapted to be sorted out unbroken after the decompacting process.
Thus a silage sensor is provided which assures that the silage and/or the course fodder is well preserved and therefore leads to a silage process which is successful. A possible advantage by using a wireless sensor unit is that a sealing of a silage stack need not be broken as when inserting a wired sensor unit from outside the sealing. Hereby the sealing remains unbroken, it is e.g. also not needed to stand on the sealing and hereby the sealing remains intact and thereby prevents oxygen from entering the silage storage. A possible advantage by adapting the size and/or the shape of the sensor unit in accordance with the described is that a way of monitoring silage is provided in which animals eating the silage are not endangered. A further possible advantage by providing a sensor unit in accordance with the invention is that this makes it possible to monitor the silage during substantially the whole storage and preparation process.
A possible advantage by the silage being provided with the sensor unit during storage of the silage and for the sensor unit to endure a decompacting process of the silage is that the one or more sensor units can be placed in the silage during forming of a stack of silage and can remain in the silage during the storage period and/or during the decompacting process and/or after the decompacting process, hereby enabling sensing the characteristics of the silage during a complete storage and preparation period of the silage and e.g. not only at moments during the storage period when one or more wired sensor units are present in the silage by inserting a sensor with a spear or similar through a sealing of the stored silage stack and taking out the sensor again after a certain amount of time.
When the size and/or shape of the sensor unit is adapted so as to avoid the sensor unit from being trapped in and/or entering an opening between a moving element and a fixed element within a silage preparation equipment such as a mixer for cutting the silage and/or for decompacting the silage and possibly mixing the silage with further ingredients, a possible advantage is that such size and/or shape prevents the sensor unit from being trapped between the moving element and the fixed element and hereby from being broken into pieces which causes a danger to any animals swallowing the pieces. The moving element may be an element such as a rotating knife positioned in the mixer, a paddle arm in the mixer, a mixer worm or similar. Typically the fixed element is a wall of the mixer or an element fixed to the wall of the mixer and possibly an element cooperating with one or more moving elements.
When the size and/or shape of the sensor unit is adapted so as to prevent animals from swallowing the sensor unit from the silage when the silage with any further ingredients is used as fodder, a possible advantage is the animals are not endangered by eating the sensor unit. The sensor unit may be sorted out from the fodder trough with help of equipment such as a metal detector or the like equipment.
When the size and/or shape of the sensor unit is adapted so that the animals can sort out the sensor unit when the silage with any further ingredients is used as fodder, a possible advantage is that hereby the animals may be used to sort out the sensor units e.g. for reuse. When the animal does not swallow the sensor unit the sensor unit will remain for collection. When a colour of the sensor unit is different from a typical brown or green or green-brown colour of silage or of silage with the further ingredients, a possible advantage is that collection of the sensors is easier.
When the size and/or the form of the sensor unit is adapted so that the volume of the sensor unit is larger than 0.000004 m3 is has been found that the sensor unit is not damaged during preparation of the silage in the decompacting/mixing process preparing the silage to be used as fodder, and/or is not swallowed by animals which are fed with the silage.
It has been found that a square box with flat surfaces sometimes can endure some of the equipment used in the preparation process of the silage. The dimensions of the square box may as an example be 0.02 m times 0.04 m times 0.06 m. Though, when the form and/or shape of the sensor unit is substantially a sphere, a possible advantage is that this form is not easily trapped and/or damaged in various preparation equipments of the silage such as a decompaction and/or mixing equipments. Furthermore it has been found that the sphere shape of the sensor unit prevents the sensor unit from being damaged in the decompacting process. This is as an example due to that the knives or rotors of the decompacting equipment will not easily be able to provide a continued and damaging pressure on a sphere shaped sensor unit.
When a diameter of the sphere formed sensor unit is larger than 0.02 m. a possible advantage is that this shape and minimum size has been found to prevent animals from swallowing the sensor unit and/or to prevent the sensor unit from entering an opening between a moving element and a fixed element within a mixer for decompacting and possibly mixing the silage with the further ingredients and/or to endure the decompacting process of the silage.
When substantially no free space is provided within the sensor unit and/or any components within the sensor unit are embedded in one or more materials forming the sensor unit and/or any opening in the unit is provided with a size only for enabling sensing the characteristics of the silage, a possible advantage is that a sensor unit which is rather impact proof and/or does not break into a large number of pieces if broken is provided.
In accordance with a second aspect of the invention there is provided a silage quality assurance and quality evaluation system with one or more sensor units in accordance with the invention, and a receiver for receiving wirelessly transmitted physical and/or the chemical characteristics sensed by one or more of the sensor units, and with a storage, computing and user interface means for quality assurance and quality evaluation of the silage based on the physical and/or the chemical characteristics sensed by one or more of the sensor units.
In accordance with a third aspect of the invention there is provided a method of wirelessly sensing physical and/or chemical characteristics of silage with a wireless silage sensor unit in order to determine a quality of the silage, the method including the method steps of
By firstly embedding the sensor unit in the silage by providing the silage with one or more sensor units and later sorting out the sensor units a possible advantage may be that a continued assurance of the quality of the silage during a conservation and preparation sequence of the silage can be provided while still not endangering the animals being fed with the silage and while allowing for easy collection of the sensor units.
The collection of the sensor unit can be provided by the animals trying to eat the silage with the embedded sensor units and by the sensors being e.g. sphere shaped with a diameter larger than 0.02 m. The sensors will hereby not be eaten by the animals and can be collected from the fodder troughs. In another embodiment the one or more sensor units are collected in a part of the decompacting equipment. This may as an example be provided by fitting a part of the decompacting equipment to the size of the sensor units.
Independent of the collection method, of which collection from the fodder troughs may be preferred, a possibility is that the sensor units can advantageously be reused in order to determine a quality of the silage of further batches of silage.
By wirelessly transmitting and/or sensing the characteristics with a given period of time between each transmission, such as one time every five minutes, one time each half hour or one time each second hour, one may continuously monitor the characteristics of the silage by interpolating between parameters of each of the sensed characteristics.
In general by writing that ‘it is an advantage’ of the present invention and referring to an advantage, it must be understood that this advantage may be seen as a possible advantage provided by the invention, but it may also be understood that the invention is particularly, but not exclusively, advantageous for obtaining the described advantage.
In general the various aspects and advantages of the invention may be combined and coupled in any way possible within the scope of the invention.
These and other aspects, features and/or advantages of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
Embodiments of the invention will be described, by way of example only, with reference to the drawings, in which
In
After the sensor units 102 have been placed in the silage and the stack has been compacted, the silage stack is covered with an airtight sealing 108 to prevent oxygen from entering the silage stack and thereby starting a decomposition of the silage. The sensor units 102 are typically placed in the top and side area of the stack 106. Positioning the sensors in the top and/or side areas e.g. enables detection of any inappropriate amount of e.g. oxygen as close to and inside the sealing 108 of the silage stack in order e.g. to detect oxygen from outside the sealing as soon as possible.
The time from the silage stack 106 has been covered until the silage will be feet to animals, is of interest regarding the sensor unit 102, because in this phase the sensor unit will be monitoring physical and chemical characteristics related to the quality of the silage 104.
In this phase the silage 104 is going through fermentation and the monitored characteristics will give indications regarding the actual status of the silage and/or the silage stack and/or the sealing and can be used to notify a farmer about any irregularities and possibly also notify the farmer if there are damages to the sealing 108. As an example, damage to the sealing 108 can be detected due to changes in one or more of the sensed characteristics transmitted by one or more of the sensor units. The changes can be abrupt changes and/or changes which is normally not expected during the storage and preservation process.
In
Common for all the mixer systems is a number of knifes positioned on the moving and/or the fixed elements in the mixer which knifes helps decompacting and separating the silage. These knifes are placed so that a sensor unit not suited by its size and/or its shape for this process would risk damage which could result in both a destruction of the sensor unit and in making it very difficult for an animal to avoid eating the damaged sensor unit or parts from the sensor unit.
If the animal is eating parts that the animal is not supposed to eat this can do damage to the animal. The compacting, decompacting, separating and/or mixing process of the silage may set out a preferred maximum size of the sensor unit. The last procedure for the sensor is to be separated from the silage. The animals may take care of this job in that the sensor has a size and/or shape that is not suited for eating. When the animals are finished eating, the sensor will hereby be left to collect on the feeding table or in a fodder trough.
In particular
Furthermore
It can be seen that the sensor unit also includes a transmitter 410 coupled to the one or more sensors 402, 404, 406, 408 for wirelessly transmitting the physical and/or the chemical characteristics. It can furthermore be seen that the sensor unit 102 may include powering means 411, such as a battery 411, for powering the sensors and the transmitter.
The sensors, transmitter and powering means may be provided within a sensor cabinet 412 but may also or alternatively only be embedded in one or more materials 414 forming the sensor unit. The one or more materials 414 for forming the sensor unit and/or the cabinet are preferably provided in an impact proof material such as synthetic material while still allowing for wireless transmittal of sensed characteristics.
In order for the sensor unit also to be able to sense the characteristics, the cabinet 412 and/or the one or more materials 414 for forming the sensor unit may be provided with one or more holes (not shown). Alternatively or additionally to providing the one or more holes, the material forming the sensor unit 102 and/or the cabinet 412 may be provided in a material through which material the characteristics can be sensed without providing additional holes.
It has been found that a diameter larger than approximately 0.02 m of a sphere formed sensor unit fulfils these needs. Preferably a maximum dimension of the sensor unit is 0.10 m in order e.g. for the sensor unit to withstand pressure during the compacting process of the layers in the silage stack.
It is shown that the outer shape of the sensor unit only has soft and/or smooth outer contours and no sharp edges. Furthermore the figure illustrates that the surface of the sensor unit is smooth and that no part of the sensor is able to attach to the silage in a hook like way. In order for the sensor unit to be easy detectable with an eye a colour of the sensor unit should preferably be different from a typical brown or green or green-brown colour of silage or of silage with the further ingredients. Such colour could be red, yellow or the like colours.
Although the present invention has been described in connection with preferred embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the scope of the present invention is limited only by the accompanying claims.
In this section, certain specific details of the disclosed embodiment are set forth for purposes of explanation rather than limitation, so as to provide a clear and thorough understanding of the present invention. However, it should be understood readily by those skilled in this art, that the present invention may be practised in other embodiments which do not conform exactly to the details set forth herein, without departing significantly from the spirit and scope of this disclosure. Further, in this context, and for the purposes of brevity and clarity, detailed descriptions of well-known apparatus, circuits and methodology have been omitted so as to avoid unnecessary detail and possible confusion.
In the claims, the term “comprising” does not exclude the presence of other elements or steps. Additionally, although individual features may be included in different claims, these may possibly be advantageously combined, and the inclusion in different claims does not imply that a combination of features is not feasible and/or advantageous. In addition, singular references do not exclude a plurality. Thus, references to “a”, “an”, “first”, “second” etc. do not preclude a plurality. Reference signs are included in the claims however the inclusion of the reference signs is only for clarity reasons and should not be construed as limiting the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
07011693.4 | Jun 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK2008/050118 | 5/26/2008 | WO | 00 | 6/1/2010 |