This disclosure relates to inductors. This disclosure also relates to inductor fabrication in semiconductor substrates.
Rapid advances in electronics and communication technologies, driven by immense customer demand, have resulted in the widespread adoption of electronic devices of every kind. The inductor is a fundamental circuit component of these devices. Inductors have a wide range of circuit applications, and for instance provide a key building block for multi-phase switching voltage regulators. Improvements in inductor design will improve the design and implementation of many different types of circuits that include inductors.
Inductors are important components in a wide variety of integrated circuit applications, including voltage regulators as just one example. There is often a significant current requirement for the inductors in these applications. The current requirements may limit on-chip inductor integration due to area requirements for supporting the current and the resultant cost increases. The inductor described below has a structure that includes passive substrate traces and has high current handling capability. The inductor may be implemented inexpensively in a package substrate, and may save die and system bill of materials (BOM) costs.
As a semiconductor package (e.g., flip-chip) layer, the core layer is often used to control warpage in the substrate. Larger packages use thicker core layers. The core layer may be implemented as a rigid material. The core layer is, e.g., 400 μm-800 μm, and is typically much thicker than, for instance, package build-up layers, which are typically about 30 μm thick and deposited on both sides of the layer. Tables 1 and 2 below provide examples of core layer and build-up layer materials. The design rules for the core layers tend to be coarser that for the build-up layers. For instance, the design rules may specify a 50 μm line width and space in the core layer as compared to a 12 μm line width and space in the build-up layer.
The inductor structure may include vias (e.g., conductive, filled, plated through holes) that traverse the thicker core layer. The vias may therefore be much longer than vias used to traverse thinner layers, such as the build-up layers. In the past, longer vias were sometimes associated with increased substrate inductance and increase supply noise, and given the coarser design rules for the core layer, the core layer discouraged use for electrical purposes.
Table 3 shows some example design rules for the core layer and Table 4 shows some example design rules for the build-up layer. In the core layer, the design rules permit copper thickness between, in these examples, 19 μm and 37 μm. In contrast, the coarser design rules for the build-up layers provide a much smaller maximum copper thickness, e.g., between 15 μm and 18 μm. Note that the thicker copper, e.g., 27 μm or more, may be used in the core layers for conductive traces, and the thicker copper provides additional current capacity for the inductor structures that are fabricated in the core layer.
In addition to the common connection 110a-110b, each inductor has a terminal that provides separate signal connection.
Note that the terminals and signal connections (e.g., the connections 112, 114, 116, 118, 120) shown in the drawings for any of the inductors need not be present. Instead, connections to either end of the inductors may be made internally to the package to any particular package layer or any particular circuitry on any particular layer through, e.g., vias and conductive traces through and on build-up layers. For instance, instead of including the common terminal 112, the inductors may connect directly to the Vddc plane of the package, while terminals 114-120 may connect to die bumps to connect to a voltage regulator. When the terminals are present, they may be used for measurement, testing purposes, or other purposes (including to connect to other circuitry).
The structure of each inductor 102-108 includes one or more turns that form a loop structure or spiral structure that creates the inductor magnetic field. Each turn may be fabricated, for instance, as a first conductive segment running in a first direction, a conductive via that defines vertical spacing, and a second conductive segment disposed to run current in a direction counter to (e.g., opposite) the first direction. The second conductive segment is vertically disposed from the first conductive segment. The conductive via connects the first conductive segment and the second conductive segment. Multiple turns may be connected together to form a larger inductor.
In
As another example, the signal connection 116 provides a connection point to one end of the inductor 104. From the signal connection 116, the conductive segment 152 runs in one direction to the core via 154. The core via 154 extends vertically to the conductive segment 156. Current in the conductive segment 156 runs in a direction opposed to the conductive segment 152. The conductive segment 156 includes a horizontal displacement 158 that connects to the core via 160. The horizontal displacement 158 allows multiple conductive segments to run in parallel at the same vertical displacements in the core layer. The sequence of conductive segments 152, 154, 156, 158, and 160 form one turn or loop of the inductor 104. The second turn or loop includes the same sequence of conductive structures: segment 162, via 164, segment 166, displacement 168, and via 170. The third turn or loop includes the conductive structures: segment 172, via 174, segment 176, and displacement 178. The inductors 106 and 108 include similar sequences of conductive structures.
With regard to adding more turns,
The common connections 310a-310b and the other structural components of the inductors 302-308 may be defined in whole or in part in a core layer of the package. For example, the conductive segments of each inductor may include copper traces defined in one or more core metal layers. The copper traces may use relatively thick copper allowed by the core layer design rules to increase current handling capability, as noted above.
In addition to the common connection 110a-110b, each inductor has a separate signal connection at the other end of the inductor. With regard to the inductor 304, for instance, the signal connection 316 connects signal traces on other package layers to one end of the inductor 304. One turn of the inductor 304 includes the core via 318, conductive segment 320, core via 322, and the conductive segment 324 with the horizontal displacement 326.
Referring again to
The constructive fields help to increase inductance in a given area, and thereby reduce total size of the inductors needed to achieve a given inductance. In other implementations, the inductors may be fabricated to cause current flow in the same direction, and not generate constructive magnetic fields. A time domain simulation may be run to determine the effects of coupled inductors on any given design under consideration.
Expressed another way, some inductors may be strongly coupled in the designs shown above. Larger mutual inductance may be used to increase the inductance (e.g., by 20-30% or more) based on input phase differences. This may facilitate a reduction in overall inductor size. The design reduces or minimizes the destructive magnetic field and makes the magnetic field constructive using the multi-phase inputs. As previously noted, the direction of the turns of adjacent inductors may be in opposite directions (e.g., as shown in
The inductors may use a vertically folded structure using core layer vias. This reduces the Y size dimension. The core layer vias may be, e.g., 800 μm core vias. With the inductor traces fabricated in the core layers, the traces may use thicker copper (e.g., 19 μm to 75 μm thickness) for additional current capacity.
All or part of the inductors may be fabricated in the core metal layers 702 and 704. Core vias may extend through the core layer 706 to connect the core metal layers 702 and 704. For instance, the conductive segments 324 and 326 may be fabricated in the core metal layer 702, and the conductive segment 320 may be fabricated in the core metal layer 704. The vias 318 and 322 may extend from the core metal layer 702 down to the core metal layer 704 to connect the conductive segments. In other implementations, some or all of the conductive segments may be fabricated in build-up metal layers instead.
The inductors are flexible and symmetric. They support 2x, 3x, 4x, or more series connection to increase inductance, e.g., with the ‘y’ size growing to increase inductance. Note also that the ‘x’ size may increase to increase inductance depending on the allowable area for the inductor when there is no interference with other signal routing in the substrate. The inductors may be fabricated in two core metal layers to save layer count, e.g., the two core metal layers 702 and 704. With the inductors internally defined at the core layers, instead of outer build-up layers, there is no need to de-populate solder balls adjacent the inductor structure, which reduces undesired coupling and improves reliability.
The four inductors 802 may be implemented with the inductor structure 100 or 300, for example. In that case, the conductive segments of the inductors may be fabricated in core metal layers within a package for additional current handling capability.
Table 5 shows some example characteristics of power supply designs with 1, 2, and 4 phases, using the inductor structures described above, compared against 40 nm designs using field effect transistors (FETs) on the package. The BoM cost can be reduced significantly (e.g., by 76% to 87%), using the inductor structures 100, 300 and depending on the current requirements. The cost savings is achieved in part due to the elimination of the cost of the FETs, and the change to pattern inductors from wire wound inductors.
The inductor design helps meet challenging design requirements, including low resistance, e.g., DCR ˜10 mOhm to 100 mOhm, ACR˜100 mOhm to 300 mOhm and high inductance, e.g., 2 nH to 20 nH for processors and memory, to use a switching speed of ˜50 MHz to 200 MHz, as examples. The inductor also helps support better FISR efficiency, e.g., ˜90% target efficiency and a current capacity of e.g., 2A for a processor core and, 1A for double data rate (DDR) memory. The inductor design also helps implement multiphase designs, such as a 4 phase design with reduced output voltage ripple, with a 500 mA (processor core) and 250 mA (DDR memory) current capacity for each inductor.
The inductor design achieves the following gains, in some implementations, compared to existing fabrication techniques: Gained Inductance for processor: 7.0 nH−>8.5 nH (21.4%); Gained Inductance for DDR memory: 8.9 nH −>10.6 nH (19.1%). The proposed coupled inductor structure provides, e.g., 20-30% more inductance than conventional non-coupled inductor structures.
Table 6, below, shows example electrical characteristics for the inductor designs, fabricated at different sizes. Table 6 (and Table 7) provides just a few examples of many different variations in design possible with the inductor structures. Other designs may be implemented that have significantly different total area, width, height, maximum current, inductance, and other electrical parameters.
The results achieve 20-50% horizontal area reduction and achieve better inductance and resistance than, e.g., 15 μm build-up layer inductors. There is also a layer count reduction from four layers with 15 μm build-up layer inductors to two layers with the core layer inductors described above.
Table 7, below, shows example core layer inductor RLC values by manufacturing variation. As with the examples provided in Table 6, other designs may be implemented that have significantly different total area, width, height, maximum current, inductance, and other electrical parameters.
The assumptions made for Table 5 are: two core metal layers, copper thickness variation: ±5 μm, and trace width variation: ±20 μm. The results show excellent inductance across manufacturing variation: 7.74 nH-8.42 nH (±5%). The results also show a worst case direct current resistance of <30 mOhm and 50 MHz ACR<100 mOhm. The worst case Q Factor is greater than 37 @100 MHz. Note that the area is 2.0×3.5=7.0 square mm, which is only 30% of the area that a build-up layer inductor would occupy.
The fabrication technique 900 also includes multiple package fabrication processes to form as many build-up layers as desired on a core layer, and to fabricate an inductor that uses the core layer as part of its structure, and any of the build-up layers to define metal traces or segments of the inductor that are connected to form loops of the inductor. These processes may include, as just a few examples, providing a core layer; fabricating (e.g., drilling) vias; fabricating conductive structures for inductors in a first metal core layer; fabricating conductive structures for the indictors in a second metal core layer; connecting the conductive structures with core layer vias through the core layer to form a turn/loop of the inductors (906). The fabrication technique 900 may create as many turns as desired (908). In addition, the fabrication technique 900 may fabricate connections to inductor terminals at other package layers (910), e.g., by providing vias from build-up signal layers in the package down to the core metal layers at the inductor terminals.
The inductors provide an embedded substrate inductor solution. The inductors are fabricated with a core spiral structure to help increase inductance, and some implementations may use magnetic field coupling between inductors to boost inductance. One or more trace layers of the inductors are fabricated in core metal layers, according to the core layer design rules of the selected package manufacturing process. The core layer design rules may provide thicker trace lines and heavier copper thickness, compared to, for instance, a build-up layer or other layer defined by the package manufacturing process.
In particular, the inductor 1300 uses multiple vias in parallel to connect each conductive segment that forms the loops of the inductor, e.g., the two vias 1302 and 1304 in parallel, and the two vias 1306 and 1308 in parallel. There may be an number of such vias in parallel, and the number in parallel may vary from location to location in the inductor structure. The multiple vias in parallel reduce the resistance of the connections between the conductive segments and allow for more current, thereby improving the electrical characteristics of the inductor 1300. Parallel vias in any selected structural locations may also be present in the inductor structures shown in
This application claims priority to provisional application Ser. No. 62/171,612, filed Jun. 5, 2015, and to provisional application Ser. No. 62/145,698, filed Apr. 10, 2015, which are entirely incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62171612 | Jun 2015 | US | |
62145698 | Apr 2015 | US |