This application is related to co-pending applications U.S Ser. No. 10/664,460 entitled SLURRY FEED APPARATUS FOR STRUCTURAL CEMENT PANEL PRODUCTION and U.S. Ser. No. 10/666,294 entitled MULTI-LAYER PROCESS AND APPARATUS FOR OBTAINING INCREASED STRENGTH CEMENT PANELS, filed concurrently herewith and herein incorporated by reference.
This invention relates generally to devices for embedding fibers in settable slurries, and specifically to a device designed for embedding fibers in a settable cement slurry along a cement board or cementitious structural panel (“SCP”) production line.
Cementitious panels have been used in the construction industry to form the interior and exterior walls of residential and/or commercial structures. The advantages of such panels include resistance to moisture compared to standard gypsum-based wallboard. However, a drawback of such conventional panels is that they do not have sufficient structural strength to the extent that such panels may be comparable to, if not stronger than, structural plywood or oriented strand board (OSB).
Typically, the cementitious panel includes at least one hardened cement or plaster composite layer between layers of a reinforcing or stabilizing material. In some instances, the reinforcing or stabilizing material is fiberglass mesh or the equivalent. The mesh is usually applied from a roll in sheet fashion upon or between layers of settable slurry. Examples of production techniques used in conventional cementitious panels are provided in U.S. Pat. Nos. 4,420,295; 4,504,335 and 6,176,920, the contents of which are incorporated by reference herein. Further, other gypsum-cement compositions are disclosed generally in U.S. Pat. Nos. 5,685,903; 5,858,083 and 5,958,131.
One drawback of conventional processes for producing cementitious panels is that the fibers, applied in a mat or web, are not properly and uniformly distributed in the slurry, and as such, the reinforcing properties resulting due to the fiber-matrix interaction vary through the thickness of the board, depending on the thickness of each board layer. When insufficient penetration of the slurry through the fiber network occurs, poor bonding between the fibers and the matrix results, causing low panel strength. Also, in some cases when distinct layering of slurry and fibers occurs, improper bonding and inefficient distribution of fibers causes poor panel strength development.
Another drawback of conventional processes for producing cementitious panels is that the resulting product is too costly and as such is not competitive with outdoor/structural plywood or oriented strand board (OSB).
One source of the relatively high cost of conventional cementitious panels is due to production line downtime caused by premature setting of the slurry, especially in particles or clumps which impair the appearance of the resulting board, and interfere with the efficiency of production equipment. Significant buildups of prematurely set slurry on production equipment require shutdowns of the production line, thus increasing the ultimate board cost.
In instances, such as disclosed in commonly-assigned Ser. No. 10/666,294, entitled MULTI-LAYER PROCESS AND APPARATUS FOR OBTAINING INCREASED STRENGTH CEMENT PANELS, where loose chopped fiberglass fibers are mixed with slurry to provide a cementitious structural panel having structural reinforcement, the need arises for a way to thoroughly mix the fibers with the slurry. Such uniform mixing is important for achieving the desired structural strength of the resulting panel or board.
A design criteria of any device used to mix settable slurries of this type is that production of the board should continue uninterrupted during manufacturing runs. Any shutdowns of the production line due to the cleaning of equipment should be avoided. This is a particular problem when quick-setting slurries are created, as when fast setting agents or accelerators are introduced into the slurry.
A potential problem when creating cement structural panels in a moving production line, is for portions of the slurry to prematurely set, forming blocks or chunks of various sizes. When these chunks break free and become incorporated into the final board product, they interfere with the uniform appearance of the board, and also cause structural weaknesses. In conventional structural cement panel production lines, the entire production line must be shut down to clean clogged equipment to avoid the incorporation of prematurely set slurry particles into the resulting board.
Another design criteria of devices used to mix chopped reinforcing fibers into a slurry is that the fibers need to be mixed into the relatively thick slurry in a substantially uniform manner to provide the required strength.
Thus, there is a need for a device for thoroughly mixing fiberglass or other structural reinforcing fibers into a settable slurry in a way so that the device does not become clogged or impaired by chunks or setting slurry.
The above-listed needs are met or exceeded by the present invention that features an embedment device including at least a pair of elongate shafts disposed on the fiber-enhanced settable slurry board production line to traverse the line. The shafts are preferably disposed in spaced parallel relation to each other. Each shaft has a plurality of axially spaced disks along the shaft. During board production, the shafts and the disks rotate axially. The respective disks of the adjacent, preferably parallel shafts are intermeshed with each other for creating a “kneading” or “massaging” action in the slurry, which embeds previously deposited fibers into the slurry. In addition, the close, intermeshed and rotating relationship of the disks prevents the buildup of slurry on the disks, and in effect creates a “self-cleaning” action which significantly reduces board line downtime due to premature setting of clumps of slurry.
More specifically, the invention provides an embedment device for use in a structural panel production line wherein a slurry is transported on a moving carrier relative to a support frame, and chopped fibers are deposited upon the slurry. Included on the device is a first elongate shaft secured to the support frame and having a first plurality of axially spaced disks, a second elongate shaft secured to the support frame and having a second plurality of axially spaced disks, the first shaft being disposed relative to the second shaft so that the disks intermesh with each other.
In the preferred embodiment, each adjacent pair of the main or relatively larger diameter disks are separated on the respective shaft by a relatively small diameter spacer disk. The intermeshed relationship includes a closely adjacent disposition of opposing peripheries of small diameter spacer disks and relatively large diameter main disks, which also facilitates the self-cleaning action.
Referring now to
While other sequences are contemplated depending on the application, in the present invention, a layer of slurry 16 is deposited upon the moving carrier web 14 to form a uniform slurry web. While a variety of settable slurries are contemplated, the present embedment device is particularly designed for use in producing structural cement panels. As such, the slurry is preferably made up of varying amounts of Portland cement, gypsum, aggregate, water, accelerators, plasticizers, foaming agents, fillers and/or other ingredients well known in the art. The relative amounts of these ingredients, including the elimination of some of the above or the addition of others, may vary to suit the application. A supply of chopped fibers 18, which in the preferred embodiment are chopped fiberglass fibers, are dropped or sprinkled upon the moving slurry web 16.
The present embedment device, generally designated 20, is disposed on the support frame 12 to be just “downstream” or after the point at which the fibers 18 are deposited upon the slurry web 16. Included in the device 20 are at least two elongate shafts 22, 24 each having ends 26 engaged in a bracket 28 located on each side of the support frame 12. Although two shafts 22, 24 are depicted, additional shafts may be provided if desired. One set of shaft ends 26 is preferably provided with toothed sprockets or pulleys 30 (best seen in
Each of the shafts 22, 24 is provided with a plurality of axially spaced main or relatively large disks 32, with adjacent disks being axially spaced from each other. The spacing is maintained by a second plurality of relatively smaller diameter spacer disks 34 (
It will also be seen from
While the relative dimensions of the disks, 32, 34 may vary to suit the application, in the preferred embodiment, the main disks 32 are ¼″ thick and are spaced 5/16″ apart. Thus, there is a close, yet relatively rotational tolerance created when the adjacent disks 32 of the shafts, 22, 24 intermesh with each other (best seen in
The self-cleaning property of the present embedment device 20 is further enhanced by the materials used for the construction of the shafts 22, 24 and the disks 32, 34. In the preferred embodiment, these components are made of stainless steel which has been polished to obtain a relatively smooth surface. Also, stainless steel is preferred for its durability and corrosion resistance, however other durable, corrosion resistant and non-stick materials are contemplated, including Plexiglas material or other engineered plastic materials.
Further, the height of the shafts 22, 24 relative to the moving web 14 is preferably adjustable to promote embedment of the fibers 18 into the slurry 16. It is preferred that the disks 32 not contact the carrier web 14, but extend sufficiently into the slurry 16 to promote embedment of the fibers 18 into the slurry. The specific height of the shafts 22, 24 above the carrier web 14 may vary to suit the application, and will be influenced, among other things, by the diameter of the main disks 32, the viscosity of the slurry, the thickness of the slurry layer 16 and the desired degree of embedment of the fibers 18.
Referring now to
Immediately after leaving the vicinity of the disks 32 of the first shaft 22, the slurry 16 encounters the disks 32 of the second shaft 24 (shown in phantom), which proceed to create a second trough pattern 52. Due to the laterally offset position of the disks 32 of the respective shafts 22, 24, at any selected point, the second trough pattern 52 is opposite to the pattern 44, in that hills 54 replace the valleys 46, and valleys 56 replace the hills 48. In that the trough patterns 44, 52 generally resemble sinusoidal waves, it may also be stated that the trough patterns 44, 52 are out of phase relative to each other. This transversely offset trough pattern 52 further churns the slurry 16, enhancing the embedment of the fibers 18. In other words, a slurry massaging or kneading action is created by the rotation of the intermeshed disks 32 of the shafts 22, 24.
Thus, the present embedment device provides a mechanism for incorporating or embedding chopped fiberglass fibers into a moving slurry layer. An important feature of the present device is that the disks of the respective shafts are intermeshed with, and overlap each other for providing a kneading, massaging or churning action to the slurry in a way which minimizes the opportunity for slurry to clog or become trapped in the device.
While a particular embodiment of an embedment device for a fiber-enhanced slurry has been shown and described, it will be appreciated by those skilled in the art that changes and modifications may be made thereto without departing from the invention in its broader aspects and as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2655978 | Gonda et al. | Oct 1953 | A |
3901634 | Webb et al. | Aug 1975 | A |
4420295 | Clear et al. | Dec 1983 | A |
4504335 | Galer | Mar 1985 | A |
4514090 | Neubauer et al. | Apr 1985 | A |
5020916 | Fritsch | Jun 1991 | A |
5325954 | Crittenden et al. | Jul 1994 | A |
5340518 | Paul | Aug 1994 | A |
5685903 | Stav et al. | Nov 1997 | A |
5858083 | Stav et al. | Jan 1999 | A |
5958131 | Asbridge et al. | Sep 1999 | A |
6176920 | Murphy et al. | Jan 2001 | B1 |
Number | Date | Country |
---|---|---|
1266198 | Apr 1968 | DE |
Number | Date | Country | |
---|---|---|---|
20050064055 A1 | Mar 2005 | US |