Embodiments of a field emission device

Abstract
In one embodiment, the trajectory of one or more electrons is controlled in a field emission device. In another embodiment, the field emission device is configured analogously to a klystron. In another embodiment, the field emission device is configured with electrical circuitry selected to control the input and output of the device.
Description

If an Application Data Sheet (ADS) has been filed on the filing date of this application, it is incorporated by reference herein. Any applications claimed on the ADS for priority under 35 U.S.C. §§119, 120, 121, or 365(c), and any and all parent, grandparent, great-grandparent, etc. applications of such applications, are also incorporated by reference, including any priority claims made in those applications and any material incorporated by reference, to the extent such subject matter is not inconsistent herewith.


SUMMARY

In one embodiment, an apparatus comprises: a cathode; an anode, wherein the anode and cathode are receptive to a first power source to produce an anode electric potential higher than a cathode electric potential; a gate positioned between the anode and the cathode, the gate being receptive to a second power source to produce a gate electric potential selected to induce emission of a first set of electrons from the cathode; a suppressor positioned between the gate and the anode, the suppressor being receptive to a third power source to produce a suppressor electric potential selected to provide a force on an electron in a direction pointing towards the suppressor in a region between the suppressor and the anode; and at least one element arranged to at least partially determine a trajectory of each of the electrons in the first set of electrons between the cathode and the anode.


In one embodiment, a method corresponding to an apparatus including a cathode region, a gate region, a suppressor region, and an anode region, comprises: applying an anode electric potential to the anode region that is greater than a cathode electric potential of the cathode region; applying a gate electric potential to the gate region to release a set of electrons from the cathode region; passing the set of electrons from the gate region to the suppressor region; applying a suppressor electric potential to decelerate the set of electrons between the suppressor region and the anode region; inductively coupling the set of electrons to produce electromagnetic energy; and binding the set of electrons in the anode region.


In one embodiment, an apparatus comprises: a cathode; an anode, wherein the anode and cathode are receptive to a first power source to produce an anode electric potential higher than a cathode electric potential; a gate positioned between the anode and the cathode, the gate being receptive to a second power source to produce a gate electric potential selected to induce emission of a first set of electrons from the cathode; a suppressor positioned between the gate and the anode, the suppressor being receptive to a third power source to produce a suppressor electric potential selected to provide a force on an electron in a direction pointing towards the suppressor in a region between the suppressor and the anode; and circuitry operably connected to at least one of the cathode and the anode to control an output of the anode.


In one embodiment, an apparatus comprises: an array of field emission devices and circuitry operably connected to at least two field emission devices in the array of field emission devices, wherein the circuitry is configured to electrically connect the at least two field emission devices. In this embodiment, each field emission device in the array of field emission devices includes: a cathode; an anode, wherein the anode and cathode are receptive to a first power source to produce an anode electric potential higher than a cathode electric potential; a gate positioned between the anode and the cathode, the gate being receptive to a second power source to produce a gate electric potential selected to induce emission of a first set of electrons from the cathode; and a suppressor positioned between the gate and the anode, the suppressor being receptive to a third power source to produce a suppressor electric potential selected to provide a force on an electron in a direction pointing towards the suppressor in a region between the suppressor and the anode.


The foregoing is a summary and thus may contain simplifications, generalizations, inclusions, and/or omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is NOT intended to be in any way limiting. Other aspects, features, and advantages of the devices and/or processes and/or other subject matter described herein will become apparent in the teachings set forth herein.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic of an apparatus comprising a cathode, a gate, a suppressor and an anode.



FIG. 2 is a schematic of energy levels corresponding to an embodiment of the apparatus of FIG. 1.



FIG. 3 is a schematic of an apparatus comprising a cathode, a gate, a suppressor, an anode, and a screen grid.



FIG. 4 is a schematic of an apparatus comprising a cathode, a gate, a suppressor, an anode, and circuitry.



FIGS. 5-6 are flow charts depicting methods.



FIGS. 7-8 are graphs of thermodynamic efficiency versus power for a heat engine.



FIG. 9 is a schematic of a portion of a field emission device including a thin film.



FIG. 10 is a schematic of a field emission device having a cathode and anode that form a substantially interlocking structure.



FIG. 11 is a schematic of a field emission device having a substantially tubular cathode and anode.



FIG. 12 is a schematic of a field emission device, wherein the anode includes a thin coating.



FIG. 13 is a schematic of a field emission device having a gate and suppressor that are fabricated on a first substrate, and having a cathode and anode that are fabricated on a second substrate.



FIG. 14 is a schematic of a field emission device having a cathode, anode, and a gate/suppressor.



FIG. 15 is a schematic of the potential corresponding to the schematic of FIG. 14.



FIG. 16 is a schematic of a back-gated field emission device.



FIG. 17 is a schematic of electromagnetic energy incident on a field emission device.



FIG. 18 is a schematic of an anode and a suppressor with an electric field.



FIG. 19 is a schematic of a field emission device including spacers.



FIGS. 20-21 are flow charts depicting methods.



FIG. 22 is a schematic of a field emission device including a shadow grid.



FIG. 23 is a schematic of a field emission device including a control grid.



FIG. 24 is a schematic of a field emission device including an inductive coupler.





The use of the same symbols in different drawings typically indicates similar or identical items.


DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.


In one embodiment, shown in FIG. 1, an apparatus 100 comprises a cathode 102, an anode 108 arranged substantially parallel to the cathode 102, wherein the anode 108 and cathode 102 are receptive to a first power source 110 to produce an anode electric potential 202 higher than a cathode electric potential. It is the convention in this discussion to generally reference electric potentials relative to the value of the cathode electric potential, which in such circumstances can be treated as zero. The anode electric potential 202 and other electric potentials corresponding to the apparatus of FIG. 1 are shown in FIG. 2 for an embodiment of FIG. 1 corresponding to a heat engine. The apparatus 100 further comprises a gate 104 positioned between the anode 108 and the cathode 102, the gate 104 being receptive to a second power source 112 to produce a gate electric potential 204, wherein the gate electric potential 204 is selected to induce electron emission from the cathode 102 for a first set of electrons 206 having energies above a first threshold energy 208. The apparatus 100 further comprises a suppressor 106 positioned between the gate 104 and the anode 108, the suppressor 106 being receptive to a third power source 114 to produce a suppressor electric potential 210 selected to block electron emission from the anode 108 for a second set of electrons 207 having energies below a second threshold energy 209 while passing at least a portion of the first set of electrons 206. In this embodiment the anode 108 is positioned to receive the passed portion of the first set of electrons 206. In some embodiments the anode output 124 may be electrically connected to power a device.


Although conventionally a cathode is considered an electron emitter and an anode is an electron receiver, in the embodiments presented herein, the cathode and anode generally both emit and receive electrons. The net current and heat flow in the embodiments described herein may be determined by the temperatures of the cathode 102 and the anode 108, the anode electric potential 202, and the gate and suppressor electric potentials 204, 210. In some embodiments described herein, such as an electricity producing heat engine that moves heat from a higher temperature to a lower temperature, net electron flow and heat flow is from the cathode 102 to the anode 108, and in other embodiments described herein, such as an electricity consuming heat engine that moves heat from a lower temperature to a higher temperature, net electron flow and heat flow is from the anode 108 to the cathode 102. Further, in the embodiments presented herein, both the cathode 102 and the anode 108 are electron emitters, and either or both of the cathode 102 and/or the anode 108 may include field emission enhancement features 103.



FIG. 1 shows the cathode 102 having a field emission enhancement feature 103, however in some embodiments the cathode may be substantially flat and may not include the field emission enhancement feature 103. In some embodiments including one or more field emission enhancement features 103, the field emission enhancement features 103 may include a geometric tip and/or a carbon nanotube.


The apparatus 100 includes at least one region including gas through which at least a first portion of the first set of electrons 206 pass. Normally, the region between the cathode 102 and anode 108 is a gas-filled region (or, spacer region) through which at least a portion of the first set of electrons 206 passes. The gas may be comprised of at least one atomic or molecular species, partially ionized plasma, fully ionized plasma, or mixtures thereof. The gas composition and density may be chosen to be conducive to the passage of electrons. The gas density may be below atmospheric density, and may be sufficiently low as to be effectively a vacuum. This region may, in some embodiments, be air or its equivalent, wherein the pressure of the region may or may not be adjusted.


The resulting potential 215 as a function of distance from the cathode in the x-direction 126 in the apparatus 100 is shown in FIG. 2 for an embodiment of FIG. 1 corresponding to a heat engine. The potential 215 does not take into account the space charge electric potential due to the emitted electrons between the cathode and anode. It also does not take into account the image charge electric potential due to image charge effects of a flat plate (i.e., the cathode and anode). The net electric potential 216 experienced by the electrons between the cathode and anode is a function of all of the electric potentials acting on the electrons, including the space charge electric potential and the image charge electric potential. Further, electric potentials such as those shown in FIG. 2 are defined herein for negatively-charged electrons, instead of the Franklin-conventional positive test charges, such that electrons gain kinetic energy when moving from high to low potential.


In the above description and the remainder of the description, it is to be understood that electrons obey the laws of quantum mechanics and therefore, given a potential barrier such as that formed between the cathode and gate (i.e., the portion of the potential 216 that is between the cathode and gate), electrons having energies between the bottom and top of the potential barrier have some probability of tunneling through the barrier. For example, some electrons having energies above the threshold energy 208 may not be emitted from the cathode 102. Further, for the first set of electrons 206 that is emitted from the cathode, there is some probability, based on their energy and the suppressor electric potential 210, that they will tunnel through the potential barrier that is formed between the suppressor and the anode (i.e., the portion of the potential 216 that is between the suppressor and the anode).


Although the first, second and third power sources 110, 112 and 114 are shown in FIG. 1 as being different, in some embodiments the power sources 110, 112 and 114 may be included in the same unit. There are many different ways that the power sources 110, 112 and 114 may be configured relative to the elements 102, 104, 106 and 108, and one skilled in the art may determine the configuration depending on the application.


Also shown in FIG. 2, on the left and right sides of the graph of the potentials 215, 216, are graphs of the Fermi-Dirac distributions F(E, T) for the electrons in the cathode 102 and the anode 108.


On the left side is a graph of the Fermi-Dirac distribution corresponding to the cathode Fc(Ec, Tc) (222) as a function of electron energy Ec (221). Also shown is the cathode Fermi energy μc (214) and the cathode work function φc (213).


On the right side is a graph of the Fermi-Dirac distribution corresponding to the anode Fa(Ea, Ta) (226) as a function of electron energy Ea (225). Also shown is the anode Fermi energy μa (220) and the anode work function φa (219).


Electrons in a reservoir (e.g., the cathode 102 and anode 108) obey the Fermi-Dirac distribution:







F


(

E
,
T

)


=

1

1
+




(

E
-
μ

)

/
kT








where μ is the Fermi energy, k is the Boltzmann constant, and T is the temperature. The energy where the Fermi occupation of the cathode Fc(Ec, Tc) equals the Fermi occupation of the anode Fa(Ea, Ta) is the Carnot-efficiency energy Ecarnot:







E
carnot

=




μ
a



T
c


-


μ
c



T
a





T
c

-

T
a







where μc is the cathode Fermi energy 214 and μa is the anode Fermi energy 220 shown in FIG. 2, measured from the bottom of the conduction band of the cathode 102, and Tc is the cathode temperature and Ta is the anode temperature.


In cases where the cathode 102 and anode 108 are the same material, the Carnot-efficiency energy Ecarnot is the energy at which the Fermi occupation of the cathode 102 and the anode 108 are equal, and theoretically electron flow between the two occurs without change in entropy. Absent potential barrier 216, at any given electron energy above Ecarnot there are more electrons in the hotter plate, so the net flow of electrons at these energies go from hot plate to cold plate. Conversely, at any given electron energy below Ecarnot there are more electrons in the colder plate, so the net flow of electrons at these energies go from cold plate to hot plate.


In the embodiment of FIG. 1 corresponding to a heat engine, the cathode 102 is hotter than the anode 108 (Tc>Ta) and the anode 108 is biased above the cathode 102 as shown in FIG. 2. In this embodiment, μac+V0, where V0 is the anode electric potential 202. Then the Carnot-efficiency energy is equal to:







E
carnot

=


μ
c

+


V
0


η
carnot








where






η
carnot

=



T
c

-

T
a



T
c






is the Carnot efficiency. Due to the potential bias V0, every electron going from the cathode 102 to the anode 108 gains useful potential energy V0 that can be used to do work, and every electron going from the anode 108 to the cathode 102 expends potential energy V0 to transport heat instead.


Without potential barriers (such as the gate 104 and/or the suppressor 106), at any given electron energy below Ecarnot the net flow of electrons go from the anode 108 to the cathode 102, expending potential energy V0 per electron to transport heat. Therefore, in an embodiment where the apparatus is an electricity-producing heat engine, the electrons from the anode having energies less than Ecarnot are blocked by the suppressor 106, reducing the loss of thermodynamic efficiency.


An electron at energy Ecarnot takes away Ecarnot from the hot cathode 102 upon emission, and is replaced by an electron with average energy μc, so the net heat loss due to the emission of this electron at the hot plate is V0carnot. Thus, the ratio of useful-energy-gained to heat-loss is ηcarnot, and we conclude that emitted electrons of energy Ecarnot are Carnot efficient, hence the name.


Because the first set of electrons 206 has momentum in the y- and z-directions (128, 130) as well as in the x-direction (126), in an embodiment in which electron flow from the cathode 102 below the Carnot-efficiency energy Ecarnot is blocked, the gate electric potential Eg (204) is slightly below the Carnot-efficiency energy Ecarnot:







E
g




E
carnot

-

kT
c








or
,






E
g







μ
a



T
c


-


μ
c



T
a





T
c

-

T
a



-

kT
c








where kTc represents the average energy of the electrons in the y- and z-directions (128, 130) combined. The suppressor electric potential Es (210) may be selected to be the same as the gate electric potential Eg (204).


In some embodiments, the gate electric potential 204 and the suppressor electric potential 210 may have other values. For example, one or both of the gate and/or suppressor electric potentials 204, 210 may be lower than previously described. In one embodiment, the apparatus is configured such that the peak of the portion of the potential 216 that is between the cathode 102 and the gate 104 is around the Carnot-efficiency energy Ecarnot, and/or the peak of the portion of the potential 216 that is between the suppressor 106 and the anode 108 is around the Carnot-efficiency energy Ecarnot. In such an embodiment the efficiency of the apparatus may be different from previously described. These are just a few examples of potentials that may be applied to the gate 104 and/or the suppressor 106, and the actual potentials at the gate 104 and suppressor 106 may depend on the particular application and the selected energy ranges of electron emission to be screened from the cathode 102 and the anode 108. While in general, the sign of net electron-carried heat flow matches that of the net electron current flow, for some embodiments the different energy weighting of different portions of the electron distribution may result in opposite net flow of electron-carried heat and electron current.


The separations between the different elements 102, 104, 106 and 108 depend on the particular embodiment. For example, in some embodiments the apparatus 100 is a nanoscale device. In this embodiment, the cathode 102 and anode 108 may be separated by a distance 122 that is 10-1000 nm, the cathode 102 and gate 104 may be separated by a distance 116 that is 1-100 nm, and the anode 108 and the suppressor 106 may be separated by a distance 120 that is 1-100 nm. These ranges are exemplary embodiments and not meant to be limiting. In the case where the apparatus 100 is a nanoscale device, the lower limit of distances 116, 118, 120, and/or 122 may be at least partially determined by fabrication technology that is evolving. To illustrate existing technology for producing small separations, cathode-gate and suppressor-anode separations 116, 120 on the order of 1 nm may be achieved by depositing a nm scale dielectric layer on the cathode 102 and/or anode 108 and depositing the gate 104 and/or suppressor 106 on the dielectric layer. Further, in cases where the cathode 102 includes one or more field emission enhancement features 103, the cathode-gate separation 116 may be at least partially determined by the length of the feature 103 in the x-direction 126. For example, if the length of the feature 103 in the x-direction 126 was 5 nm, the cathode-gate separation 116 would be at least 5 nm.


In other embodiments the apparatus is larger than nanoscale, and exemplary separation distances 116, 118, 120, and/or 122 may range between the nanometer to millimeter scale. However, this scale is again exemplary and not limiting, and the length scales 116, 118, 120, 122 may be selected at least partially based on operating parameters of other gridded electron emitting devices such as vacuum tubes.


The cathode and anode work functions 213, 219 are determined by the material of the cathode 102 and anode 108 and may be selected to be as small as possible. The cathode and anode may comprise different materials. One or both materials can include metal and/or semiconductor, and the material(s) of the cathode 102 and/or anode 108 may have an asymmetric Fermi surface having a preferred Fermi surface orientation relative to the cathode or anode surface. An oriented asymmetric Fermi surface may be useful in increasing the fraction of electrons emitted normally to the surface and in decreasing the electron's transverse momentum and associated energy. In some embodiments, it is useful to reduce the electron current emitted from one of the surfaces (such as reducing anode emission current in an electricity producing heat engine, or reducing cathode emission current in an electricity consuming heat engine). This reduction may utilize an asymmetric Fermi surface which reduces momentum components normal to the surface. This reduction may involve minimization of the material's density of states (such as the bandgap of a semiconductor) at selected electron energies involved in the device operation.


Although the embodiments described with respect to FIG. 2 correspond to a heat engine, the device as shown in FIG. 1 may be configured, for example, as a heat pump or a refrigerator. In an embodiment where the apparatus of FIG. 1 is configured as a heat pump, the bias V0 is applied to the cathode 102 instead of to the anode 108 as shown in FIG. 2. In an embodiment where the apparatus of FIG. 1 is configured as a refrigerator to cool the anode 108, the bias V0 (202) is applied to the anode and the suppressor electric potential 210 and gate electric potential 204 may be chosen to be substantially below the Carnot-efficiency energy Ecarnot. In this case, net current flow and heat transport is from the anode to the cathode.


In some embodiments the apparatus 100 further includes a screen grid 302 positioned between the gate 104 and the suppressor 106, the screen grid 302 being receptive to a fourth power source 304 to produce a screen grid electric potential. The screen grid electric potential can be chosen to vary the electric potential 216 between the gate 104 and the suppressor 106, and to accelerate electrons to another spatial region and thus reduce the effects of the space charge electric potential on the field emission regions of the cathode and/or anode.


In an embodiment shown in FIG. 4, the apparatus 100 further comprises circuitry 402 operably connected to at least one of the first, second and third power sources 110, 112 and 114 to vary at least one of the anode, gate and suppressor electric potentials 202, 204 and 210. The circuitry 402 may be receptive to signals to determine a relative power output and/or thermodynamic efficiency of the apparatus 100 and to dynamically vary at least one of the first, gate and suppressor electric potentials 202, 204, 210 responsive to the determined relative power output and/or thermodynamic efficiency. The apparatus 100 may further comprise a meter 404 configured to measure a current at the anode 108, and wherein the circuitry 402 is responsive to the measured current to vary at least one of the first, gate and suppressor electric potentials 202, 204 and 210. The apparatus 100 may further comprise a meter 406 configured to measure a temperature at the anode 108, and wherein the circuitry 402 is responsive to the measured temperature to vary at least one of the anode, gate and suppressor electric potentials 202, 204 and 210. The apparatus 100 may further comprise a meter 408 configured to measure a temperature at the cathode 102, and wherein the circuitry 402 is responsive to the measured temperature to vary at least one of the anode, gate and suppressor electric potentials 202, 204 and 210.


In some embodiments the circuitry 402 may be configured to iteratively determine optimal anode, gate, and suppressor electric potentials 202, 204, 210. For example, the circuitry 402 may be operably connected to the meter 404 configured to measure a current at the anode 108, and may iteratively change one of the anode, gate, and suppressor potentials to maximize the current at the anode.


Further, the circuitry 402 may be configured to iteratively determine optimal cathode 102 and anode 108 temperatures. For example, as described above relative to electric potentials, the circuitry 402 may be operably connected to the meter 404 configured to measure a current at the anode 108, and may iteratively change one of the cathode 102 and anode 108 temperatures to maximize the current at the anode 108.


In some embodiments the gate and suppressor electric potentials 204, 210 may be varied as a function of time. For example, the gate electric potential 204 may be switched on to release the first set of electrons 206 from the anode, and switched off once the first set of electrons 206 has passed through the gate 104. The suppressor electric potential 210 may be switched on to accelerate the first set of electrons 206 towards the anode 108, and switched off once the first set of electrons 206 has passed through the suppressor 106. Such an embodiment assumes high switching speeds. In some embodiments, switching such as that described above occurs cyclically and responsive to the circuitry 402.


In one embodiment, depicted in the Flow Chart of FIG. 5, a method comprises: (502) applying a gate electric potential 204 to selectively release a first set of electrons 206 from a bound state in a first region (where in one embodiment the first region corresponds to the cathode 102); (504) applying a suppressor electric potential 210 to selectively release a second set of electrons from emission from a bound state in a second region different from the first region, the second region having an anode electric potential that is greater than a cathode electric potential of the first region (where in one embodiment the second region corresponds to the anode 108), the second region having an anode electric potential 202 that is greater than a cathode electric potential of the first region; and (506) passing a portion of the first set of electrons 206 through a gas-filled region and binding the passed portion of the first set of electrons 206 in the second region.


Various methods have been described herein with respect to FIGS. 1-4 and may apply to the methods depicted in the flow chart of FIG. 5. For example, methods related to the circuitry 402 and another apparatus shown in FIG. 4 apply to the method of FIG. 5, where the first region includes at least a portion of the cathode 102 and the second region includes at least a portion of the anode 108.


In one embodiment, depicted in the flow chart of FIG. 6, a method comprises (602) receiving a first signal corresponding to a heat engine, the heat engine including an anode, cathode, gas-filled region, gate and suppressor; (604) processing the first signal to determine a first power output and/or relative thermodynamic efficiency of the heat engine as a function of an anode electric potential, a gate electric potential, and a suppressor electric potential; (606) producing a second signal based on a second power output and/or thermodynamic efficiency greater than the first power output and/or thermodynamic efficiency; and (608) transmitting the second signal corresponding to the second power output and/or thermodynamic efficiency.


The method of FIG. 6 is applicable, for example, in an embodiment where a device as shown in FIG. 1 is received and the optimal parameters for a heat engine must be determined.


In one embodiment the first signal includes a user input including known dimensions, materials, and temperatures of the cathode and anode. In this embodiment, the known parameters may be used to calculate the optimal electric potentials applied to the anode 108, gate 104, and suppressor 106.


In another embodiment the first signal includes a measured parameter such as a current at the anode 108, where the electric potentials are varied to optimize the current at the anode. Such a scenario has been described with respect to the circuitry 402 shown in FIG. 4.


In one embodiment, producing the second signal may further include determining a change in at least one of the anode, gate and suppressor potentials, and the method may further comprise varying at least one of the anode, gate, and suppressor potentials in response to the determined change.


In another embodiment, producing the second signal may further include determining a change in at least one of a cathode and an anode temperature, and the method may further comprise varying at least one of the cathode and anode temperatures in response to the determined change.


In one embodiment, the anode, cathode, gate, and suppressor are separated by cathode-gate, gate-suppressor, and suppressor-anode separations, and producing the second signal may include determining a change in at least one of the cathode-gate, gate-suppressor, and suppressor-anode separations, and the method may further comprise varying at least one of the cathode-gate, gate-suppressor, and suppressor-anode separations in response to the determined change. For example, in some embodiments one or more of the cathode-gate, gate-suppressor, and suppressor-anode separations (116, 118, 120) may be variable (such as where one or more of the cathode 102, gate 104, suppressor 106, and anode 108 are mounted on a MEMS) and may be varied to optimize the efficiency of the device.


In one embodiment the received first signal corresponds to an anode current, and processing the first signal to determine a first relative thermodynamic efficiency of the heat engine as a function of an anode electric potential, a gate electric potential, and a suppressor electric potential includes determining the relative thermodynamic efficiency based on the anode current.


The “relative power output” and/or “relative thermodynamic efficiency” may be an actual power output and/or thermodynamic efficiency or it may be a quantity that is indicative of the power output and/or thermodynamic efficiency, such as the current at the anode. The relative power output and relative thermodynamic efficiency represent performance characteristics of the heat engine.


The following presents a calculation of the thermodynamic efficiency of a heat engine as described previously, and corresponding to the potentials of FIG. 2. Again, Tc and Ta are the temperatures of the cathode and anode, μc (214) and μa (220) are the Fermi levels of the cathode and anode (where, for simplicity, we take μc=0, and μac+V0=V0); and φc (213) and φa (219) are the work functions of the cathode and anode, where we assume that the cathode and anode are made from the same materials, so we set φca=φ.


In this one-dimensional model, the potential barrier (216) that is created between the cathode and anode only filters electrons with respect to their momentum in the x-direction (126), not with respect to their total momentum. Assuming ballistic, energy-conserving transport across the barrier (216), the current density J(W) as a function of energy Win the x-direction (126) is:

J(W)dW=eN(W)D(W)dW

Here, e is the electron charge. W is the electron energy associated with the component of momentum in the x-direction (126), which we will call the normal energy, and is defined by:






W
=



p
x
2


2

m


+

V


(
x
)








Where px is the electron momentum in the x-direction (126), and V(x) is the net electric potential 216.


D(W) is the transmission function and represents the probability that an electron inside the emitter (for the heat engine, both the cathode and anode are emitters) with normal energy W either crosses over or tunnels through the energy barriers defined by the net electric potential (216).


The Wentzel-Kramers-Brillouin (WKB) approximation of the tunneling transmission coefficient is given by:







D


(
W
)


=



-




x
1


x
2








8

m



2







V


(
x
)


-
W








x










Here, V(x) is the net electric potential (216), x1 and x2 are the roots of V(x)−W=0, m is the mass of an electron, and ℏ is Planck's constant h divided by 2π(ℏ=h/2π).


The potential of a single field emission barrier (e.g., one of the peaks of the net electric potential (216) forms a single field emission barrier) is of the form:








V
SB



(
x
)


=

φ
-
eFx
-



e
2


4

π





ɛ




1

4

x









Here, φ is the work function (again, here we choose the same material for the anode and cathode, so φca=φ), x is absolute value of the component of the distance from the emitter that is along the x-direction 216 (for the barrier between the cathode and gate, this is the distance from the cathode; for the barrier between the anode and suppressor, this is the distance from the anode), F is the effective electric field at the emitter (F=βFi, where β is the field enhancement factor due to the shape of the emitter and Fi is the field without enhancement), and ε0 is the permittivity of free space. The last term in the above equation for VSB(x) is the potential due to image charge effects of a flat plate, which lowers the peak of the potential barrier. This is known as the Schottky effect, which can lower the barrier peak (i.e., the peak of the potential (216)) by as much as a few tenths of an eV for applied fields on the order of 1 V/nm. Note that in our system, we have two of these barriers, one between the cathode 102 and gate 104, and the other between the suppressor (106) and anode (108).


Including the image potential, the tunneling transmission coefficient DSB(W) for a single rounded barrier (like one of the barriers formed by potential (216) ) is given by:








D
SB



(
W
)


=




-

(




b


(

φ
-
W

)


F







3
/
2


)





v


(
f
)









Where


:







b
=




4



2

m




3

ℏe




6.830890





in







eV


-
3

/
2




(

Vnm

-
1


)








v


(
f
)





1
-
f
+


1
6


f





ln





f





f



=




e
3


4

π






ɛ
0





F


(

φ
-
W

)


2










1.439964






F


(

φ
-
W

)

2







in







eV
2



(

nm
/
V

)










The equation above for DSB(W) for a single rounded barrier is only valid when the WKB approximation is valid, that is, when W is well below the peak of the barrier. Moreover, that equation gives nonsensical values for f>1, or equivalently, when:







W
>

φ
-




e
3


F


4


πɛ
0















That is, when W exceeds the peak of the barrier. For electrons that have sufficient energy to pass over the barrier, classically, it might seem reasonable to take the transmission coefficient to be unity. Therefore, we can use:











D
SB



(
W
)







-


b







(

φ
-
W

)


3
/
2



F




v


(
f
)









for





f

<
1









D
SB



(
W
)



1










for





f


1








This is not exact, since for electrons with energies above a barrier's peak there is still a non-zero probability for the approaching electron wave to be reflected back from it. However, the above expression for DSB(W) provides a good approximation. More accurate values for DSB(W) can be found using numerical methods such as the transfer matrix method, and/or using more accurate models of the potential barrier that takes into account the geometry of the emitter.


N(W)dW is the electron supply function and describes the number of electrons incident on the emitter surface per second per unit area with normal energy inside the interval defined by W and W+dW. For a metal, this is:








N


(
W
)



dW

=



4

π





mkT


h
3




log
[

1
+



-


(

W
-
μ

)

kT




]


dW






(For semiconductors and other materials, the supply function can be calculated from their band structures and density of states.)


Denoting the supply function of the hot cathode and cold anode as Nc and Na, the differential net current density from the cathode to the anode is:

Jnet(W)dW=e[Nc(W)−Na(W)]D(W)dW

Here, D(W) is the tunneling transmission coefficient that takes into account both barriers formed by the net electric potential 216. Denoting the barrier between the cathode and gate as DSBc(W) and the barrier between the anode and suppressor as DSBa(W), and taking reflections into account, D(W) is given by:







D


(
W
)


=




D
SBc



(
W
)





D
SBa



(
W
)






D
SBc



(
W
)


+


D
SBa



(
W
)


-



D
SBc



(
W
)





D
SBa



(
W
)










Not including reflections, D(W) is approximately:

D(W)≈DSBc(W)DSBa(W)

The total net current density J would then be:

Jnet=∫Jnet(W)dW

And the power (the terms “power” and “power output” are used interchangeably herein) is:

P=JnetV0


The above calculations do not take into account the space charge potential built by the electrons traversing between the cathode and anode. Below is an example method for estimating this space charge potential and its effects.


If the gate (104) and suppressor (106) are set at the same potential bias Vgrid, it is reasonable to assume that the electrons are uniformly distributed in the cathode-anode gap, with constant space charge density ρ. In this case, the space charge potential will be shaped like a parabola (and therefore, the portion of (216) between the gate (104) and the suppressor (106) will be a parabola), with its peak in the middle of the gap between the cathode (102) and anode (202), and a peak height ΔWsc that is offset from Vgrid by:







Δ






W
sc


=



e





ρ


2


ɛ
0






d
2

4







Here d is the distance between the cathode and anode. Electrons with energies lower than this peak will find the space charge potential difficult to travel through. Therefore, we approximate the effect of the space charges as an additional, uniform potential barrier, equal to the peak height of the space charge potential. The total barrier height WB will then be:







W
B

=



V
grid

+

Δ






W
sc



=


V
grid

+



e





ρ


2


ɛ

0











d
2

4








Electrons with energies below WB are assumed to have a transmission probability of zero:

D(W)≈DSBc(W)DSBa(W)θ(W−WB)

Here θ(W) is the Heaviside step function.


WB is a function of ρ, but the charge density ρ(W) as a function of the normal energy W depends on the sum of the cathode-emitted and anode-emitted current:








ρ


(
W
)



dW

=




J
sum



(
W
)



dW




2
m



(

W
-

W
B


)









Here the summed current is:

Jsum(W)dW=e[Nc(W)+Na(W)]D(W)dW

Hence, the summed current depends on the transmission probability D(W), which itself is dependent on WB. Therefore, we can solve for these quantities self-consistently using iterative numerical methods. For example, we can find ρ by solving for ρ in this equation:






ρ
=





V
grid

+



e





ρ


2


ɛ
0






d
2

4










J
sum



(
W
)



dW




2
m



(

W
-

V
grid

-



e





ρ


2


ɛ
0






d
2

4



)










We can then determine the total barrier height WB, including the contribution of the space charge potential, and calculate its influence on the current, power, and thermodynamic efficiency of the device.


The exiting heat flux density {dot over (Q)} due to the transfer of electrons at the cathode and anode may be approximated by:

{dot over (Q)}c=∫0[(W+kTa−μc)Na(W)−(W+kTc−μc)Nc(W)]D(W)dW
{dot over (Q)}a=∫0[(W+kTc−μa)Nc(W)−(W+kTa−μa)Na(W)]D(W)dW

Here, W+kT is the total energy of the emitted electron, including the kinetic energy in all directions, and we assume that the replacement electron comes in at the Fermi energy μ. For an electricity-generating heat engine, the cathode (102) should be losing heat energy while the anode should be receiving some heat, hence {dot over (Q)}c>0 and {dot over (Q)}a<0.


The thermodynamic efficiency η is the ratio between work gained to heat used, or, equivalently, the ratio of the useful power gained (JnetV0) to the total heat flux density expended (|{dot over (Q)}c|+{dot over (Q)}other):






η
=



J
net



V
0







Q
.

c



+


Q
.

other








{dot over (Q)}other is all heat loss other than {dot over (Q)}c. For the heat engine having a cathode-anode separation distance 122 (d), {dot over (Q)}other can be mainly due to the heat transfer between the cathode (102) and anode (108) via evanescent waves (Wevanescent). This can be approximated by:








Q
.

other



W
evanescent



4
×

10

-
12




(

1

d
2


)







in Watt/nm2/K, for d<1000 nm.


We can include other forms of heat transfer, for example heat conduction, in {dot over (Q)}other if needed.


Using the equations provided herein for power (P) and thermodynamic efficiency (η), these parameters are graphed as a function of varying anode electric potential 202 in FIG. 7.



FIG. 7 corresponds to a cathode (102) and an anode (108) having field emission enhancement features (103), such that β>1. For FIG. 7, the cathode temperature Tc=1000 K, the anode temperature Ta=300 K, the work functions of the cathode and anode φ=2.1 eV, the cathode-anode separation (122) is 50 nm, the cathode-gate separation (116) and the suppressor-anode separation 120 are both 5 nm, and the field enhancement factors β=5 for each of the cathode (102) and anode (108), and the gate and suppressor electric potentials 204, 210 are set to Ecarnot−kTc.



FIG. 7 shows how the thermodynamic efficiency and power of a heat engine are related. By graphing this relationship the tradeoffs between thermodynamic efficiency and power are illustrated. The applied anode bias may be selected to maximize the thermodynamic efficiency, or it may be selected to maximize the power, or the anode electric potential 202 may be selected to correspond to some other point on the graph, such as between the maximum thermodynamic efficiency and the maximum power.


There are a number of embodiments for which a graph such as FIG. 7 (or simply the corresponding data) may be created. For example, in an embodiment where the heat engine device has fixed dimensions, such as where the device has already been created, a user may want to select the applied voltage V0 based on a maximum thermodynamic efficiency, power, or optimal but not necessarily maximized values for each.


Further, although FIG. 7 shows results of varying the anode potential V0 of the heat engine, there are a number of other parameters of the device on which the thermodynamic efficiency and power output depend. These include, but are not limited to, the cathode temperature Tc, the anode temperature Ta, the cathode and anode work functions φc and φa, the gate and suppressor electric potentials 204, 210, the cathode-gate separation 116, suppressor-anode separation 120, and cathode-anode separation 122, and field enhancement factors of the cathode 102 and anode 108.


In different embodiments some of these values may be fixed and other may be variable. For example, in some embodiments the temperature of the cathode 102 and/or anode 108 may be determined by the operating conditions of the device such as ambient temperature and/or a temperature of the heat source that provides heat to the cathode. Further, these values may change in time. Therefore, in embodiments where the operating conditions determine the values of one or more parameters of the heat engine, other values may be selected to optimize the performance of the heat engine for the given parameters.


Further, in some embodiments more than one parameter may be optimized. For example, the anode electric potential 202 may be selected according to optimal values of thermodynamic efficiency and power as shown in FIG. 7, and the thermodynamic efficiency and power calculated as a function of varying gate and suppressor electric potentials 204, 210.



FIG. 8 shows the thermodynamic efficiency plotted versus power for varying gate and suppressor electric potentials 204, 210. FIG. 8 corresponds to a cathode (102) and an anode (108) having no field emission enhancement features (103), such that β=1. For FIG. 8, the cathode temperature Tc=1000 K, the anode temperature Ta=300 K, the work functions of the cathode and anode φ=2.1 eV, the cathode-anode separation (122) is 50 nm, the cathode-gate separation (116) and the suppressor-anode separation 120 are both 2 nm, and the anode electric potential 202 is 4k(Tc−Ta).


In one embodiment a method of optimizing the performance of a heat engine comprises: determining substantially fixed parameters of the heat engine, the substantially fixed parameters including at least one of a cathode-gate separation, a suppressor-anode separation, and a cathode-anode separation; calculating a first relative thermodynamic efficiency and/or a first relative power output of the heat engine as a function of the substantially fixed parameters and as a function of a first set of values for variable parameters of the heat engine, the variable parameters including a cathode temperature, an anode temperature, an anode electric potential, a gate electric potential, and a suppressor electric potential; calculating a second relative thermodynamic efficiency and/or a second relative power output of the heat engine as a function of the substantially fixed parameter and as a function of a second set of values for the variable parameters, wherein at least one variable parameter has a different value in the first and second sets of values; and setting the at least one variable parameter according to the calculated first and second relative thermodynamic efficiencies and/or according to the calculated first and second relative power outputs.


A method of the embodiment as described above may be employed when, for example, a device including a heat engine is received and the device has been manufactured with a substantially fixed cathode-gate separation (116), suppressor-anode separation (120), and/or cathode-anode separation (122). Or, in some embodiments, the device may not yet have been manufactured but some parameters of the device may be fixed for other reasons. Determining the substantially fixed parameters may include measuring the parameters, receiving the parameters (wherein the parameters may be, for example, listed on the device, provided in a computer program, or provided in a different way), or determining the fixed parameters in a different way. Further, the substantially fixed parameters may include a cathode and/or anode field enhancement factor (or, more generally, a cathode and/or anode geometry). The substantially fixed parameters may further include the cathode work function (213), anode work function (219), cathode and anode band structures, and/or cathode and anode emissivities. Although parameters that may be substantially fixed have been listed above, in some embodiments there may be only one substantially fixed parameter, or there may be more or different substantially fixed parameters. Which parameters are substantially fixed and which ones are variable may depend on the particular embodiment.


For one or more substantially fixed parameters of the heat engine, the relative power output and/or the relative thermodynamic efficiency may be calculated for one or more variable parameters, and the one or more variable parameters may be selected according to a chosen value for the relative power output and/or relative thermodynamic efficiency. For calculations of relative thermodynamic efficiency and/or relative power output for more than one variable parameter, the variable parameters may be varied individually or simultaneously for each calculation.


In some embodiments, the gate (104) and/or the suppressor (106) may include a thin film (904), as shown in FIG. 9 (FIG. 9 shows an embodiment with a cathode (102), dielectric (902), and thin film (904) that forms the gate (104), however a similar embodiment includes an anode (108), dielectric (902), and thin film (904) that forms the suppressor (106) ), where the thin film (904) may be metal and/or graphene, and where graphene may be a single layer or a bilayer film. The graphene may, in some embodiments, include a graphene allotrope, doped graphene, and/or functionalized graphene. The thin film (904) may be fabricated by depositing the dielectric (902) on the cathode (102) and/or anode (108), then depositing the thin film (904) of metal or graphene that forms the gate (104) and/or suppressor (106). In some embodiments, the dielectric (902) can be at least partially etched away, or in other embodiments it may be left in place. Thin film grids as described above that may be used for the gate(104) and/or suppressor (106) have been used for cathodes, such as in metal-insulator-metal tunneling cathodes, and also in metal-oxide-semiconductor cathodes. These emitters include a metal or semiconductor base electrode, an insulator, and a thin top electrode serving as the gate/suppressor. Although FIG. 9 shows a single thin film (904) that forms the gate (104), in some embodiments two or more thin films such as the film (904) may form the gate.


In an embodiment including a dielectric (902) proximate to the cathode (102) and/or anode (108), the gate (104) and/or suppressor (106) may be a thin film as described with respect to FIG. 9, or the gate (104) and/or the suppressor (106) may have a different configuration. The dielectric (902) may be used to support the gate (104) and/or suppressor (106), and/or it may serve to maintain the separation between the cathode (102) and gate (104) and/or the separation between the anode (108) and suppressor (106). In some embodiments, the dielectric (902) may be silicon oxide (SiO2), boron nitride, diamond, and/or a self-healing dielectric, e.g., glassy rather than crystalline materials.


In different embodiments, at least one of the cathode (102) and anode (108) includes at least one of: tungsten, thoriated tungsten, an oxide-coated refractory metal, a boride, lanthanum hexaboride, molybdenum, tantalum, and hafnium.


In particular, in an embodiment where the cathode (102) is heated, the cathode (102) may include thoriated tungsten, which has a work function of approximately 2.5 eV. When heated, the lower-work-function thorium in the material migrates to the surface. In another embodiment of a heated cathode (102), the cathode (102) includes an oxide-coated refractory metal, which has a work function of approximately 2 eV. In yet another embodiment of a heated cathode (102), the cathode (102) includes a boride having a work function of approximately 2.5 eV. In particular, borides such as lanthanum hexaboride are amenable to physical vapor deposition techniques, and the cathode may be relatively easily coated with these materials.


In an embodiment of a heat engine where the cathode (102) is heated, but at a relatively low temperature (e.g., scavenging waste heat), a material with a relatively low work function, such as diamond-like carbon (DLC), may be incorporated as a coating for the cathode (102). In some embodiments the DLC may be doped with nitrogen. DLC is amenable to low temperature deposition techniques, and may be directly coated on Spindt tips, for example.


In some embodiments at least one of the cathode (102) and anode (108) includes diamond, and, in particular, may be coated with diamond. A diamond coating can be deposited from a methane atmosphere. Pure diamond has a relatively high work function, however diamond can be doped (with, for example, hydrogen) to have a low work function, and may be especially useful at relatively low operating temperatures. Hydrogen-terminated diamond surfaces have been found to exhibit negative electron affinity (NEA). To further increase field emission with diamond coatings, the diamond may be selected to have small grain sizes, or nano-crystalline diamond may be used. To take full advantage of the NEA of diamond at relatively low applied fields, the diamond may be n-type doped to place its Fermi level close to the conduction band. Further, since pure diamond can withstand electric field stresses up to about 1-2 V/nm before dielectric breakdown commences, it may be used as the dielectric to support the gate (104) and/or suppressor (106) relative to the anode (102) and/or the cathode (108).


In some embodiments, the cathode (102) and/or the anode (108) may include one or more carbon nanotubes that serve as field emission enhancement feature(s) (103). There may be a single nanotube serving as a single field emission enhancement feature (103) or multiple nanotubes serving as multiple field emission enhancement features (103) depending on the particular embodiment. For embodiments including multiple nanotubes (sometimes called nanotube forests), individual nanotubes may be selectively ablated to control emission. In some embodiments one or more carbon nanobuds may serve as one or more field emission enhancement feature(s) (103).


In some embodiments the cathode (102) and/or the anode may include a semiconductor, which may include silicon. In some embodiments the semiconductor may be doped. Specifically, doping the semiconductor may change its density of states, and so a semiconductor may be doped according to a selected density of states. A semiconductor cathode (102) and/or anode (108) may further be coated in order to vary the electron affinity and/or the work function, and/or to optimize the performance and/or the stability of the heat engine. The semiconductor may further be doped to vary the electron affinity, in some cases producing negative electron affinity (NEA) material.


In some embodiments the cathode (102) and anode (108) may form a substantially interlocking structure (“interlocking combs”), as shown in FIG. 10. In FIG. 10 the gate (104) and the suppressor (106) are shown as being substantially continuous, however in some embodiments they may be discontinuous. Further, the spacings in the gate (104) and suppressor (106) shown in FIG. 10 are largely symbolic, and may be oriented differently according to a particular embodiment. Notably, the comb structure of the cathode (102) and anode (108) are relatively large in comparison with the size of a field emission enhancement structure (103), and an embodiment that employs such a comb structure may also include one or more field emission enhancement structures (103), although these are not shown in FIG. 10. The structure of FIG. 10 shows a cathode (102) having a spatially-varying slope, and an anode (108) also having a spatially varying slope that is complementary to the spatially-varying slope of the cathode (102). The spatially-varying slopes of the cathode (102) and anode (108) shown in FIG. 10 are substantially periodic, however in other embodiments they may be a-periodic and/or quasi-periodic. In some embodiments the slope of the cathode (102) and/or the slope of the anode (108) may be more smoothly varying that what is shown in FIG. 10. As shown in FIG. 10, the cathode-anode separation (122) varies slightly, however this separation is minimized. In some embodiments the cathode-anode separation (122) is substantially constant. In other embodiments, the cathode-anode separation (122) may have greater spatial variations, or in the case where the cathode (102) and anode (108) are substantially sinusoidal, the cathode-anode separation (122) may be configured with very little spatial variation.


In one embodiment, shown in FIG. 11, the cathode (102) and anode (108) are substantially tubular, wherein at least a portion of the anode (108) is substantially circumscribed by at least a portion of the cathode (102). In this embodiment electrons flow radially from the cathode (102) to the anode (108), and vice-versa. Although the cathode (102) and anode (108) are shown as being substantially cylindrical in FIG. 11, in some embodiments there may be deviations from the cylindrical structure (i.e., they may be dented, their cross-sections may be an n-gon such as a hexagon or octagon, or they may form a different type of substantially co-axial structure). In some embodiments, cathode (102) may form the inner structure and the anode (108) may form the outer structure. Further, in some embodiments a coolant or heating structure may be placed inside the inner structure (for example, where the anode (108) forms the inner structure of a heat engine, a coolant may be configured to flow through or proximate to the anode (108), or where the cathode (102) forms the inner structure of a heat engine, a heating mechanism such as a heated fluid may be configured to flow through or proximate the cathode (102) ). In some embodiments the gap between the cylinders as shown in FIG. 11 may change as a function of the temperature of the cylinders. Although the gate (104) and suppressor (106) are not shown in FIG. 11 for clarity, in most embodiments of a heat engine at least one grid would be included.


In an embodiment shown in FIG. 12 a thin dielectric coating (1202) is included on the anode (108). The thin dielectric coating may, in some embodiments, include a negative electron affinity (NEA) material such as hydrogen terminated diamond, which may be deposited on a metal that forms the anode (108). Such an embodiment may lower the effective work function of the metal that forms the anode (108). This embodiment may or may not include the suppressor (106).


In one embodiment the NEA material forms the anode (108), and in this embodiment the suppressor (106) may not be included and the device may still function as a heat engine. In this embodiment the NEA material may be chosen or doped such that its electron quasi-Fermi level is close to the conduction band.


In some embodiments, one or more of the gate (104) and suppressor (106) (and/or other grids that may be incorporated in the design) may be at least partially coated with one or more insulating materials.


In one embodiment all or part of the apparatus may be fabricated, e.g. via lithography, on a substrate. For example, in one embodiment the cathode (102), gate (104), suppressor (106), and the anode (108) are formed via lithography on a substrate such that they are all substantially one-dimensional and coplanar.


In another embodiment, a cross-section of which is shown in FIG. 13, the gate (104) and the suppressor (106) are fabricated on a first substrate (1302) and the cathode (102) and anode (108) are fabricated on a second substrate (1304), wherein the first and second substrates (1302, 1304) are then positioned such that together the elements (1302, 1304, 1306, 1308) form the field emission device. In this embodiment the gate (104) and the suppressor (106) are effectively insulated from the cathode (102) and the anode (108) by the second substrate (1304). There are many other embodiments that are similar to this that may be implemented. For example, different elements such as (1302, 1304, 1306, 1308) may each be fabricated on their own substrate. Further, additional layers of insulators or other materials may be incorporated according to the particular embodiment. Further, more or fewer elements such as (1302, 1304, 1306, 1308) may be incorporated in the designs. There are many permutations that may be designed that incorporate the idea of fabricating elements on a substrate and combining the substrates to form a field emission device.


In some embodiments the gate (104) and the suppressor (106) may be created with a single grid, as shown in FIG. 14. The resulting potential (1502) as a function of distance from the cathode in the x-direction 126 is shown in FIG. 15 for the embodiment shown in FIG. 14. This embodiment is similar to that of FIG. 1, but having a single grid (the gate/suppressor 1402) that replaces the gate (104) and the suppressor (106). In this embodiment, the gate/suppressor (1402) is placed close enough to the anode (108) to be able to induce electron emission from the anode (108). Further, it can also be sufficiently close to the cathode (102) to induce electron emission from the cathode (102), and has a gate/suppressor electric potential (1504) that is selected to produce a net flow of electrons from the cathode (102) to the anode (108). There are a number of ways of constructing the apparatus of FIG. 14. In one embodiment, a gated field-emitter array such as a Spindt array is fabricated to produce the cathode (102) and the gate/suppressor (1402), and an anode (108) is arranged proximate to the gate/suppressor (1402). In another embodiment, the gate/suppressor (1402) is supported on and proximate to the anode (108), and there is no additional grid structure supported on the cathode (102), although the cathode (102) may still have field-enhancement structures.


In some embodiments the field emission device is back-gated, as shown in FIG. 16. In FIG. 16, the gate (104) and the suppressor (106) are not positioned between the cathode (102) and anode (108), rather, the cathode (102) and anode (108) are positioned between the gate (104) and suppressor (106). Although the configuration of FIG. 16 is different in this way from the configuration of FIG. 1, they both may be configured as heat engines, such that electrons are emitted from both the cathode (102) and anode (108) and produce a net flow of electrons from the cathode (102) to the anode (108). The embodiment of FIG. 16 may include a dielectric layer between the gate (104) and cathode (102), and or between the anode (108) and suppressor (106). In such an embodiment, the dielectric (an example of a dielectric included between elements is shown in FIG. 9) may be continuous or discontinuous. Further, the apparatus as shown in FIG. 16 may be configured to reduce or remove accumulations of charge that may occur, for example, as a result of a dielectric layer. As described previously with respect to other embodiments described herein, there may be more or fewer elements than shown in FIG. 16. Further, the order of the elements may be different than what is shown in FIG. 16. For example, FIG. 16 shows the order being gate (104), cathode (102), anode (108), suppressor (106). However, in other embodiments the order may be gate (104), cathode (102), suppressor (106), anode (108). Or, the elements may be in a different order.


In some embodiments, emission from the cathode (102) may be enhanced electromagnetically, as shown in FIG. 17. FIG. 17 is shown with the configuration of FIG. 1 as an example, however any of the embodiments described herein may include enhanced cathode emission via electromagnetic energy. FIG. 17 shows electromagnetic energy (1702) incident on the cathode (102). This electromagnetic energy (1702) may be used to increase the number of electrons emitted, the rate of electrons emitted, and/or the energy of the emitted electrons from the cathode (102), which may therefore increase the power density of the device. In some embodiments the properties of the cathode (102) such as the cathode thickness, the cathode materials such as dopants, may be selected such that the photo-excited electrons tend to be emitted from the cathode (102) before they thermalize, or after they thermalize in the conduction band. FIG. 17 shows the electromagnetic energy (1702) hitting the cathode (102) at a single location, however in different embodiments the electromagnetic energy (1702) may impinge on a greater area of the cathode (102). The source of the electromagnetic energy (1702) includes, but is not limited to, solar and/or ambient electromagnetic energy, radiation from a local heat source, one or more lasers, and/or a different source of electromagnetic energy. There are many sources of electromagnetic energy that may be used in an embodiment such as that shown in FIG. 17 and one skilled in the art may select the source according to the particular embodiment. The properties of the electromagnetic energy (1702) such as the frequency, polarization, propagation direction, intensity, and other properties may be selected according to a particular embodiment, and in some embodiments may be selected to enhance the performance of the device. Further, optical elements such as lenses, photonic crystals, mirrors, or other elements may be incorporated in an embodiment such as that shown in FIG. 17, for example, to adjust the properties of the electromagnetic energy. In some embodiments the emission from the cathode (102) may be enhanced sufficiently such that the position and/or electric potentials applied to the gate (104) and/or suppressor (106) may be adjusted according.


In some embodiments the suppressor (106) and the anode (108) as shown and described with respect to FIGS. 1 and 2 may be incorporated in a different device, such as a different thermionic converter, a thermionic refrigerator, a photomultiplier, an electron multiplier, low energy electron detectors, or another device. In these embodiments the suppressor (106) is placed proximate to the anode (108) (in the case of an electron multiplier, the anode (108) is usually called a dynode in conventional literature; however, for consistency with other embodiments the word anode is used herein), and the suppressor electric potential (210) and the anode electric potential (202) are selected such that the net electric field (1802) points from the anode (108) to the suppressor (106). This electric field (1802) is configured such that an electron placed in the field experiences a force in a direction pointing away from the anode (108). Although conventionally electric field lines are drawn according to the direction of force on a positive test particle, here (and in particular, in FIG. 18) they are drawn according to the direction of force on a negative test particle (e.g., electrons) since most of the embodiments herein employ electrons.


For a first set of electrons (206) having energies above a first threshold energy (208) there will be some possibility that the electrons can pass through the field (1802) and to the anode (108), such as in the direction (1806) as shown in FIG. 18. Depending on the material of the anode (108) the electrons (206) may be configured to bind to the anode (108) (such as in the embodiment of a heat engine) or the electrons may be configured to interact with the anode (108) to produce secondary electrons (such as in the embodiment of an electron multiplier). Although the first set of electrons (206) are represented symbolically in FIG. 18 as a single object, one skilled in the art will understand that this is a simplified representation and that the actual transport and spatial distribution of electrons is more complex.


For simplicity, FIG. 18 is substantially two-dimensional and the field (1802) is shown as being substantially constant and pointing in one direction. However the field (1802) may vary in one, two, or three spatial dimensions, and/or the field may have components along each of the three dimensions. For example, the field may include edge effects (not shown) near the edge(s) of the suppressor. The embodiment of FIG. 18 includes a segment of the embodiments described previously with respect to FIGS. 1, 2, and other related figures that include the suppressor (106) and the anode (108). Therefore, the embodiment of FIG. 18 may be included in previously described embodiments and/or it may be incorporated in other, different embodiments than previously described, such as in an electron multiplier. Further, components as described previously herein such as the circuitry (402) and/or the meters (404, 406, 408) may also be included in the embodiment of FIG. 18.


The suppressor electric field (1802) may be varied. For example, in some embodiments the suppressor electric field (1802) may be varied based on measurements of current, temperature, and/or other parameters. It may be varied substantially periodically or in a different way.


The suppressor electric field (1802) includes the net field between the anode (108) and the suppressor (106). Different embodiments include elements that produce an electric field, which add together to produce an electric field such as (1802) that points away from the anode (108) (i.e., the electric field (1802) provides a force on an electron in the direction of the electric field (1802) ). For example, in the embodiment of FIG. 1, an electric potential may be applied to each of the cathode (102), gate (104), suppressor (106), and anode (108). There may even be additional elements having an applied electric potential. For the embodiment as described with respect to FIG. 18, the net effect of all of the electric fields produced by the electric potentials includes an electric field that is between the anode (108) and the suppressor (106) and has at least one component that points away from the anode (108) and to the suppressor (106) (where, again, the electric field provides a force on an electron in the direction of the electric field (1802) ).


In one embodiment, any of the apparatus as described herein may be arranged in a pattern that is variable responsive to a first signal. For example, one or more of the elements (102, 104, 106, 108) may be configured on a device such as a MEMS, a piezoelectric actuator, or a different device, wherein the device is responsive to the first signal to change the position of the element relative to the other elements (102, 104, 106, 108). The gate, the suppressor, the cathode, the anode, and/or an additional grid may each be configured such that their position relative to the other elements (102, 104, 106, 108) is variable. The first signal may be from circuitry such as the circuitry 402 shown in FIG. 4. The circuitry may be configured to receive, for example, an output current at the anode and/or one or more measurements corresponding to a relative thermodynamic efficiency of the apparatus, and the circuitry may be configured to output the first signal to change the pattern of the apparatus to vary the output current and/or the relative thermodynamic efficiency according to a desired effect.


In one embodiment the device is a mechanical resonator, where the mechanical resonator is operably connected to an element in the apparatus to vary the pattern substantially periodically in response to the first signal. The mechanical resonator may have a frequency, an amplitude, and/or other properties that are tunable responsive to the first signal. Further, the mechanical resonator may be configured to receive a signal from circuitry 402 to apply or remove power to the resonator, to tune the resonator, and/or to otherwise control the resonator in a different way.


In one embodiment the apparatus includes a measurement device operably connected to at least one of the cathode, gate, suppressor, and anode, and configured to output the first signal. The measurement device may be operably connected to the anode, gate, suppressor, and/or the cathode, wherein the first signal includes an output current at the anode, gate, and/or suppressor, and/or a temperature at the anode and/or cathode. In some embodiments the measurement device may be configured to measure (with, for example, a capacitive sensor or other measuring device) a separation corresponding to the pattern and to produce the first signal, where the separation may include a cathode-gate separation (116), a suppressor-anode separation (120), a cathode-anode separation (122), and/or a gate-suppressor separation (118). The measurement device may further be connected to circuitry 402, such that the circuitry receives a signal from the measurement device. The circuitry 402 may process this signal and output a signal to vary the apparatus in some way, such as by moving one or more elements (102, 104, 106, 108) of the device relative to other elements (102, 104, 106, 108) in the device, by varying a mechanical resonator in some way as described previously, or it may vary the apparatus in a different way in order to change the operation of the device. Such feedback may be continuous, where the measurement is performed on a continuous or nearly continuous basis.


In some embodiments, especially where some dimensions of the apparatus are on the order of nanometers (for example, the cathode-gate separation 116 and/or the suppressor-anode separation 120), the dimensions of the device may be highly sensitive to voltages applied to the elements (102, 104, 106, 108), where varying one or more voltages applied to one or more elements (102, 104, 106, 108) varies the force between the elements (102, 104, 106, 108) and can vary the separation distances between the elements (102, 104, 106, 108). In this case the dimensions of the device can be tuned by varying the voltages applied to the elements (102, 104, 106, 108), i.e., the gate electric potential, suppressor electric potential, anode electric potential, or a different potential applied to one or more of the elements (102, 104, 106, 108) of the device.


In some embodiments the separation between the elements (102, 104, 106, 108) may be adjusted according to an applied magnetic field. For example, in some cases permanent magnets may be configured relative to the device to apply a force to one or more of the elements (102, 104, 106, 108) in order to maintain separation distances between the elements (102, 104, 106, 108). In some cases the magnetic field may be produced by an electromagnet, where the electromagnet may be operably connected to control circuitry 402 to vary the magnetic field produced by the electromagnet, in response to a user signal and/or to a measurement of one or more parameters of the apparatus.


In one embodiment, any of the apparatus as described herein may be arranged in a pattern that is variable responsive to a temperature. For example, in embodiments where at least one of the cathode (102), anode (108), gate (104), and suppressor (106) includes a material having a positive and/or negative thermal expansion coefficient, the dimensions of these elements (102, 104, 106, 108) and therefore the resulting pattern formed by them can be varied passively as a function of temperature. In another embodiment, one or more elements (102, 104, 106, 108) may be at least partially supported by a device (such as a MEMS or a bimetallic spring). In another embodiment, one or more of the elements (102, 104, 106, 108) may be at least partially supported by a spacer, wherein the spacer has a positive or negative thermal expansion coefficient such that the pattern formed by the elements (102, 104, 106, 108) varies as a function of temperature. Where such an embodiment includes a field enhancement feature 103, the field enhancement feature may be configured with a thermal expansion coefficient that is less than that of the spacer, such that the field enhancement feature 103 does not extend beyond the gate (104) (in the case where the field enhancement feature is part of the cathode) and/or the suppressor (106) (in the case where the field enhancement feature is part of the anode).


In one embodiment, shown in FIG. 19, the apparatus as described herein includes at least one spacer (1902) that at least partially determines at least one of the cathode-gate separation (116), the suppressor-anode separation (120), the cathode-anode separation (122), and/or the gate-suppressor separation (118). In FIG. 19 the apparatus includes, for example, several particles and a post that are used to at least partially determine the cathode-gate separation (116), the suppressor-anode separation (120), and/or the cathode-anode separation (122). However, in other embodiments the spacer (1902) may have other shapes and/or configurations. For example, the apparatus may include spacers similar to those shown in FIG. 19, but sized and positioned such that they at least partially determine the gate-suppressor separation (118). Further, in other embodiments the spacers (1902) may have a different shape as that shown in FIG. 19, such as an irregular shape. The spacers may, in some embodiments, resemble a rail, or they may form a different configuration depending on the configuration of the elements (102, 104, 106, 108). Further, in some embodiments the spacer may include a layer of material deposited on one or more of the elements (102, 104, 106, 108), where the layer of material may have one or more channels etched to allow electron transport. In some embodiments the apparatus includes a field enhancement feature (103), and in this case the spacer may be positioned to minimize interactions of electrons from the field enhancement feature with the spacer. For example, where the spacer includes a layer of material deposited on the cathode (102) and/or anode (108), the portion of material near the field enhancement feature may be etched away. Or, where the spacer includes a particle, the location of the particle may be selected such that it is not proximate to the field enhancement feature (103). In some embodiments, the spacer may include a conductive material, and in such an embodiment the conductive material may be electrically isolated from the elements (102, 104, 106, 108). In some embodiments the spacer includes a material selected according to a mechanical strength, a thermal conductivity, dielectric strength, and/or secondary electron emission characteristics. In some embodiments, the spacer includes a coating that at least partially surrounds the spacer, wherein the coating includes a material selected according to an electrostatic property, where the material may be, for example, a metal oxide, a DLC film, an amorphous silicon, and/or silicon carbide.


In one embodiment, depicted in the Flow Chart of FIG. 20, a method corresponding to an apparatus having a cathode region, a gate region, a suppressor region, and an anode region arranged in a pattern comprises: (2002) applying a gate electric potential from the gate region to selectively release a first set of electrons from a bound state in the cathode region (e.g., a region including the cathode 102); (2004) applying a suppressor electric potential from the suppressor region to selectively release a second set of electrons from emission from a bound state in the anode region (e.g., a region including the anode 108), the anode region having an anode electric potential that is greater than a cathode electric potential of the cathode region; (2006) passing a portion of the first set of electrons through a gas-filled region and binding the passed portion of the first set of electrons in the anode region; and (2008) changing the pattern.


In some embodiments the cathode region and the gate region are separated by a cathode-gate separation distance (116), and wherein changing the pattern includes changing the cathode-gate separation distance (116). In some embodiments the suppressor region and the anode region are separated by a suppressor-anode separation distance (120), and wherein changing the pattern includes changing the suppressor-anode separation distance (120). In some embodiments the cathode region and the anode region are separated by a cathode-anode separation distance (122), and wherein changing the pattern includes changing the cathode-anode separation distance (122).


In some embodiments the method further comprises measuring a current in the anode region and changing the pattern based on the measured current. This may be done after first changing the pattern such that the process is iterative. Changing the pattern may include, for example, applying a force to an element to an element in at least one of the cathode region, gate region, suppressor region, and anode region, as described previously with respect to the apparatus having a pattern that is variable responsive to a first signal. The force may be, for example: a magnetic force provided by a permanent magnet and/or an electromagnet; a mechanical force provided by a MEMS, a piezoelectric actuator, a mechanical resonator, or a different device; or the force may be provided in a different way.


In some embodiments the method comprises measuring a relative thermodynamic efficiency of the apparatus and changing the pattern based on the measured relative thermodynamic efficiency. For example, the apparatus may include one or more measurement devices that are configured to measure a condition of the apparatus, such as a current and/or temperature, and change the pattern based on the measurement.


In some embodiments changing the pattern includes applying a resonator to one or more elements (102, 104, 106, 108) such as the gate (104) and/or the suppressor (106), and changing the pattern substantially periodically with the resonator. Such an embodiment may include tuning the resonator, either via user input or according to a different signal.


In some embodiments the method includes applying a grid electric potential from a grid region to vary the trajectory of the first and/or the second set of electrons. This grid electric potential could be provided by an additional element such as the element 302 shown in FIG. 3. Although the element 302 is shown as being between the other elements (102, 104, 106, 108), in some embodiments the element 302 may be situated outside the other elements (102, 104, 106, 108). For example, in embodiments where multiple field emission devices are arranged in an array, potentials applied to one field emission device may affect neighboring devices in the array.


In some embodiments changing the pattern includes changing at least one of the gate electric potential, the suppressor electric potential, and the anode electric potential. As described previously, the electric potentials applied to the elements (102, 104, 106, 108) can vary the forces between the element and can slightly change the spacing between the elements (102, 104, 106, 108).


In some embodiments the pattern is simply maintained, such that if the pattern forms by the elements (102, 104, 106, 108) begins to deviate from initial conditions, one of more of the elements (102, 104, 106, 108) is adjusted to regain the initial conditions. In such an embodiment, a sensor may be used to measure the distances between the elements (102, 104, 106, 108), and circuitry 402 may be used to compare measurements to initial conditions to determine any movement of the elements (102, 104, 106, 108).


In one embodiment, depicted in the Flow Chart of FIG. 21, a method corresponding to an apparatus having a cathode region, a gate region, a suppressor region, and an anode region arranged in a pattern comprises: (2102) applying a gate electric potential from the gate region to selectively release a first set of electrons from a bound state in the cathode region; (2104) applying a suppressor electric potential from the suppressor region to selectively release a second set of electrons from emission from a bound state in the anode region, the anode region having an anode electric potential that is greater than a cathode electric potential of the cathode region; (2106) passing a portion of the first set of electrons through a gas-filled region and binding the passed portion of the first set of electrons in the anode region; and (2108) substantially maintaining the pattern.


In some embodiments, substantially maintaining the pattern includes substantially maintaining a pressure and/or a magnetic field corresponding to the cathode region, gate region, suppressor region, and anode region. In some embodiments, substantially maintaining the pattern includes applying a mechanical force to at least one of the cathode region, gate region, suppressor region, and anode region to substantially maintain the pattern.


In some embodiments substantially maintain the pattern includes sensing at least one separation distance corresponding to the cathode region, gate region, suppressor region, and anode region, and varying a relative position of at least one of the cathode region, gate region, suppressor region, and anode region according to the sensed separation distance.


Those skilled in the art will appreciate that the term “power source” as used herein may apply to any device configured to provide, establish, and/or maintain an electric potential to one or more of the elements relative to one or more other elements in the device. For example, the first power source 110 has been described previously herein as being configured to produce the anode electric potential 202 at the anode 108. Although the term “power source” is used, other terms (for example, “voltage source”, “potential source”, or a different term) may be used depending on the context.


In one embodiment, the apparatus is configured to vary as a function of time. For example, the gate electric potential (204) and/or the suppressor electric potential (210) may be substantially periodic, where the periodicity of the applied potential may be selected based on the travel time of the electrons between elements (102, 104, 106, 108). Further, the gate electric potential (204) and the suppressor electric potential (210) may be out of phase, where the phase difference may be determined at least partially by the travel time of the electrons between elements (102, 104, 106, 108). In embodiments that include more elements, such as the embodiment shown in FIG. 3 that includes a screen grid (302), the potential applied to this element may also be substantially periodic, and may be out of phase with the gate electric potential (204) and the suppressor electric potential (210). In the case where the potentials are substantially periodic, they may be smoothly varying similar to a sine wave, they may be a series of pulses, or they may have a different configuration.


In other embodiments, the gate electric potential (204), the suppressor electric potential (210), and/or any other potential applied to another element such as the screen grid (302) may include one or more pulses that may or may not be substantially periodic, where the timing of the pulses may be selected according to the travel time of the electrons between the elements (102, 104, 106, 108).


In the following method, the cathode region includes an area at least partially defined by the cathode 102, the gate region includes an area at least partially defined by the gate 104, the suppressor region includes an area at least partially defined by the suppressor 106, and the anode region includes an area at least partially defined by the anode 108.


In one embodiment, a method corresponding to an apparatus including a cathode region, a gate region, a suppressor region, and an anode region comprises applying an anode electric potential to the anode region that is greater than a cathode electric potential of the cathode region, applying a gate electric potential to the gate region to release a set of electrons from the cathode region; passing the set of electrons from the gate region to the suppressor region; applying a suppressor electric potential to decelerate the set of electrons between the suppressor region and the anode region; binding the set of electrons in the anode region; and varying at least one of the anode electric potential, gate electric potential, and suppressor electric potential as a function of time. The variation of the potentials may occur in a variety of ways including but not limited to those previously described.


In some embodiments, the method may further comprise receiving a signal and varying at least one of the anode electric potential (202), gate electric potential (204), and suppressor electric potential (210) responsive to the received signal. The signal may correspond to a measured quantity of the apparatus, such as an anode current, a temperature of one or more of the elements (102, 104, 106, 108), a relative thermodynamic efficiency and/or relative power output of the apparatus, or another quantity related to the apparatus.


In some embodiments where one or more potentials (such as the gate and suppressor electric potentials 204 and 210) are pulsed, the pulse may be described by a function having a pulse width and center (e.g., gate pulse duration and center time, suppressor pulse duration and center time). Further, the center times of different pulses may be different, i.e. there may be a delay between, for example the gate pulse center time and the suppressor pulse center time. Further, in an embodiment having a pulsed screen grid potential, for example, there may be another time delay between this pulse and the pulses applied to the other elements. There are many different ways that such embodiments may be configured when the elements have potentials that are pulsed, and the number and arrangement of elements and the pulses and their respective delays may be selected according to a particular embodiment, and may be determined at least in part by the travel time of the electrons emitted by the cathode. Further, optimum operating conditions may be selected by trial and error, may be selected via a computer program, or they may be determined by some combination of the two. In embodiments where the applied potentials are pulsed, the pulse may be substantially a Gaussian distribution, it may be substantially square, or it may have another distribution. Where relevant, one of skill in the art may determine the center and width of the pulse and/or delays between pulses based on established methods.


In some embodiments, an apparatus as described previously (for example, with respect to FIG. 1) may further comprise circuitry operably connected to at least one of the first, second, and third power sources (110, 112, 114) to vary at least one of the anode electric potential (202), the gate electric potential (204), and/or the suppressor electric potential (210) as a function of time as described in the preceding paragraphs. The circuitry may be receptive to signals (either user input, a signal including dimensions of the device, a signal with measured parameter of the device such as currents and/or temperatures, and/or another type of signal) to determine a relative thermodynamic efficiency, relative power density, or another quantity that is indicative of the operation of the apparatus. In an embodiment where the potentials are pulsed and/or substantially periodic, the circuitry may be configured to select quantities such as the pulse duration, center time, and/or frequency based on calculated output values such as the relative thermodynamic efficiency and relative power density, and/or based on measured values such as current, temperature, or another measured parameter of the apparatus.


In one embodiment, a method comprises receiving a first signal corresponding to a heat engine, the heat engine including an anode, cathode, spacer region, gate and suppressor, processing the first signal to determine an output parameter of the heat engine as a function of an anode electric potential applied to the anode, a gate electric potential applied to the gate, and a suppressor electric potential applied to the suppressor; producing a second signal corresponding to a selected value of the output parameter; and transmitting the second signal. In this embodiment the output parameter may include a relative thermodynamic efficiency, a relative power output, or a different measure of the operation of the apparatus. As described previously, the potentials may be pulsed and/or substantially periodic, and parameters associated with these time varying potentials may be incorporated into calculations/processing.


Other embodiments may control the flow of electrons from the cathode 102 to the anode 108 such that the anode 108 provides alternating current (AC) to a load. In some embodiments the position of one or more of the cathode, gate, suppressor, and/or anode (102, 104, 106, 108) may vary as a function of time (for example, periodically) in order to produce a substantially AC output from the anode, as has been described previously herein. In some embodiments varying the position of one or more of the elements (102, 104, 106, 108) may be achieved, for example, by operably connecting a voice coil or other acoustic driver to one or more of the elements (102, 104, 106, 108), where in these embodiments the output frequency of the apparatus may be substantially in the audio frequency band.


In some embodiments, as previously described, at least one of the anode electric potential (202), the gate electric potential (204), and/or the suppressor electric potential (210) may be varied as a function of time to produce an AC output at the anode. In such an embodiment where the time variation is substantially periodic the variation (such as a movement of one or more of the elements (102, 104, 106, 108), a variation in the electric potential provided to the one or more elements (102, 104, 106, 108), or other factor causing an AC output as described herein) may be described as having a first frequency range and the AC output may be described as having a second frequency range, where in some embodiments the second frequency range may be substantially the same as the first frequency range. Further, in some embodiments (e.g., where the first and/or second frequency ranges are narrow) the frequency range may be defined by a single frequency that is in the center of the range. In some embodiments the AC output and/or another AC signal produced (such as a current at the gate and/or suppressor) may be used as feedback to at least partially determine a signal producing the time variation as described herein, where in such an embodiment where feedback is employed, the feedback signal may be filtered, and may be used to determine the phase of the signal.


In some embodiments, an AC output at the anode may be achieved by varying the spatial position of one or more of the field emission enhancement features (103). For example, in some embodiments where the field emission enhancement feature (103) is flexible (such as with a nanotube), the field emission enhancement feature (103) may have a vibrational resonance that can be mechanically excited to temporally vary the distance from the field emission enhancement feature (103) to the gate (104). Such lateral vibrations may bring the tip of the field emission enhancement feature (103) nearer or further from the grid, varying the electric field felt by the tip of the field emission enhancement feature (103), and therefore varying the emission current from the field emission enhancement feature (103). This configuration naturally delivers variable-amplitude power at the vibrational frequency of the emitter. In embodiments where the gate (104) forms an asymmetric pattern around the emitter (for example, a square hole in a metal grid), the device may have multiple vibrational modes and the frequency range of the device may be greater than that of a device having, for example, a gate with a circular hole around the emitter. In some embodiments where the field emission enhancement feature (103) includes a nanotube, the operational frequency range of the device may be substantially in the RF portion of the electromagnetic spectrum. In such an embodiment the nanotube may be selected to have GHz vibrational resonance frequencies.


In some embodiments an array of field emission enhancement features (103) may be arranged relative to a cathode (102) to have a range of different resonant frequencies. For example, a first field emission enhancement feature (103) may have a resonant frequency f1, a second field emission enhancement feature (103) may have a resonant frequency f2, and so on. In such an embodiment, circuitry may be configured relative to the array to cause emission of electrons from the field emission enhancement feature (103) having the desired resonant frequency in order to select the frequency range of the AC output. There are many different permutations of such an embodiment which may be readily apparent to one of skill in the art, such as causing electron emission from several field emission enhancement features (103) having the same or different frequency ranges to affect the frequency range of the AC output of a device that includes the array of field emission enhancement features (103). The selection of which field emission enhancement feature(s) (103) in the array that emit at any given time may be achieved by adjusting one or more regions proximate to the field emission enhancement features (103) (for example, differentially heating the cathode), by adjusting one or more regions of the gate (for example, configuring the gate such that portions corresponding to individual field emission enhancement features (103) are separately addressable), or the field emission enhancement feature(s) (103) may be selected in a different way.


In another embodiment, oscillations (or vibrations, resonances, etc.) of one or more field emission enhancement feature(s) (103) may be produced by applying a surface acoustic wave to the cathode to acoustically oscillate the field emission enhancement feature(s) (103). By using non-rigid (or sufficiently spaced-apart) supports between the cathode and the gate, such cathode vibration can produce net relative variation in the spacing between the field emission enhancement feature(s) (103) and the gate, and hence to the current from the anode. In some embodiments the surface acoustic wave may be configured to act uniformly on the cathode, and in some embodiments standing waves may be excited such that some cathode regions are affected more than others, and in yet other embodiments traveling waves may induce variable output power across the thereby-modulated cathode surface.


There are many different ways that the elements as previously described may be arranged with respect to circuitry (for example, the circuitry 402 shown in FIG. 4) to control an apparatus such as those described herein.


In many embodiments, two or more field emission devices (e.g., the apparatus 100 and others described herein) are arranged in an array. For example, the apparatus 100 as shown in FIG. 1, which operates as a heat engine, and/or its various permutations as described herein, may be configured such that two or more such devices form an array. In such an embodiment, circuitry may be used to address individual devices in the array such that when an apparatus 100 in the array is addressed, electrons flow between the cathode and anode as previously described herein.


In some embodiments of an array of devices, each field emission enhancement feature 103 in the array may be separately addressable. For example, in an embodiment including an array of field enhancement features 103, each having a grid 104, suppressor 106, and anode 108 configured relative to it, each field emission enhancement feature 103 may be electrically and/or thermally isolated from the other field emission enhancement features 103 in the array such that it may operate substantially independently of the other field emission enhancement features 103 in the array.


In other embodiments, selected groups of field emission enhancement features 103 may be separately addressable. For example, a group of nearest-neighbor field emission enhancement features 103 may be addressed together, which may allow for selection one or more portions of the array to be functioning at any given time.


Circuitry 402 may be arranged relative to the array to control the operation of individual field emission devices in the array. This circuitry 402 may include those functions described previously with respect to a single apparatus 100, and the circuitry may further be configured to control each apparatus 100 in the array. For example, the circuitry may include one or more feedback mechanisms, and may receive signals indicative of one or more currents, temperatures, frequencies, etc.


There are many different ways of configuring an array of field emission devices such as that shown in FIG. 1, and the range of different embodiments for circuitry configurations reflects this. For example, in one embodiment, each field emission device in the array may be substantially thermally and electrically isolated from the other field emission devices in the array, and in this embodiment each field emission device in the array may be controlled by its own circuit, where the individual circuits may or may not be controlled by a master circuit. In other embodiments, parts or all of different field emission devices may be thermally and/or electrically connected. For example, in one embodiment, each field emission enhancement feature 103 in the array is thermally and electrically connected to the other field emission enhancement features 103 in the array, however, the gates 104 of each of the field emission devices are electrically isolated such that the gates 104 of each field emission device are each separately addressable. These are just two examples of the many ways of configuring an array of field emission devices, and illustrates the many ways of implementing addressing of field emission devices depending on the particular embodiment.


Addressing may include, but is not limited to, varying the temperature of the cathode 102, varying the gate electric potential 204, varying the suppressor electric potential 210, varying the anode electric potential 202, varying a frequency of an applied force, and/or varying some other parameter of the device as described herein.


In some embodiments sub-groups of field emission devices in an array of field emission devices may be electrically connected and/or configured so that they are controlled by a single circuit (i.e., that all of the field emission devices in the sub-group can be turned on, turned off, and/or otherwise adjusted together as a group). This may be done, for example, in order to limit damage to an array in the event of malfunction. For example, in the case where a single field emission device malfunctions, the device may be configured such that a detector (such as a device for measuring current at the gate 104) sends a signal to the circuitry 402 and the circuitry 402 further sends a signal to stop the operation of the other field emission devices in the sub-group of the damaged device.


In applications in which the field emission device operates in a time-varying and/or AC mode, circuitry for addressing the elements may include rectifiers. For example, in one embodiment a thyristor/silicon controlled rectifier is included behind the cathode portion (proximate to the location of the field emission enhancement feature 103 where it is included) of each field emission device.


In some embodiments emission from the cathode (102) may be enhanced electromagnetically as was shown and described with respect to FIG. 17. Further, the electromagnetic energy (the electromagnetic energy may also be described as an electromagnetic wave, photon(s), etc.) may be applied to the cathode (102) in the ways that were described with respect to FIG. 17, and/or may also be applied from behind the emitter tip (i.e., from the opposite side of the cathode 102 with respect to the anode 108). Further, in some embodiments electromagnetically enhanced emission from the cathode (102) may further be enhanced by the application of a surface plasmons at the cathode (102).


In some embodiments addressing of individual field emission devices in an array of field emission devices may be done according to an expected performance of the device(s). For example, in some embodiments one or more field emission devices in the array of field emission devices may have an optimal current range, and the number of devices in the array that are turned on at any given time may be adjusted such that the optimal current range for an individual device is not exceeded. Further, individual field emission devices may be cycled on and off in order to prolong their life, such that each individual device in the array is not in continuous operation while the array as a whole is in continuous operation.


In general the number of field emission devices in an array may be selected according to a particular embodiment, and especially in cases where the array is addressable the array may be designed with more field emission devices than are initially needed. This may be done in anticipation of the malfunction of some of the field emission devices in the array, such that if one or more field emission devices in the array is no longer functioning, other field emission devices that had previously been “off” may be turned “on” in order to replace the malfunctioning device(s).


In some embodiments the field emission device may include one or more elements configured to steer, focus, and/or otherwise determine the trajectory of the electrons in the device. In one embodiment, such an element may include a shadow grid 2202 (shown in FIG. 22) arranged between the cathode 102 and the gate 104 to block the portion of the cathode 102 that is in the shadow of that grid 2202 from emitting electrons. In another embodiment, a control grid 2302 (shown in FIG. 23) is selected to provide a force on at least one electron in the first set of electrons in a transverse direction perpendicular to a direction defined by the trajectory of the at least one electron. The control grid 2302 may, for example, be configured relative to the other elements 102, 104, 106, 108 similarly to the screen grid 302 shown in FIG. 3. In one embodiment the force on the at least one electron in the transverse direction is configured to focus a plurality of electrons in the first set of electrons. Further, the gate 104 and/or the suppressor 106 may also be configured with a spatially-varying potential selected to alter the trajectory of the electrons. In another embodiment, an element such as the gate 104, control grid 2302, suppressor 106, and/or a different element through which the electrons pass may be configured with an aperture defined by a conductive loop, where the shape of the loop at least partially determines the trajectory of the electrons that pass through the loop. For example, where the loop substantially forms a circle, the electrons passing close to the loop may experience a force in a direction pointing towards the center of the loop. In other embodiments, magnetic fields or other techniques in electron optics may be used to adjust the trajectories of the electrons.


In some embodiments the field emission device may be configured similarly to a klystron, as shown in FIG. 24, where the potentials on the gate 104 (and, in some embodiments, the suppressor 106 as well), are temporally varied in such a way as to “bunch” the electron beam in a similar way as a klystron. Further, the field emission device configured similarly to a klystron may further include an inductive coupler 2402. The inductive coupler 2402 is an electromagnetic cavity resonator (such as a toroidal cavity resonator) that is configured such that when the bunched electrons pass through the resonator, electromagnetic energy is inductively coupled into the resonator. Although FIG. 24 shows the inductive coupler 2402 as being situated between the gate 104 and the suppressor 106, in other embodiments the inductive coupler may 2402 may have a different configuration relative to the elements 102, 104, 106, 108. The configuration of klystrons and related devices are known to those of skill in the art, and embodiments incorporating elements from these configurations may be incorporated according to a particular embodiment. For example, in some embodiments of klystrons, the device may include one or more additional elements similar to the gate 104 and/or the suppressor 106 (where, for example, the additional element may be configured similarly to the control grid shown in FIG. 23), where a potential applied to the additional element may be selected to further modulate (or “bunch”) the electron beam.


In some embodiments at least one of the cathode 102 and the anode 108 is operably connected to circuitry to control an output of the anode 108. For example, in some embodiments the cathode 102 is operably connected to one or more circuit elements configured to provide the cathode with a substantially fixed current source, and may be configured so the current cannot increase beyond an upper limit. The current-regulating circuit elements may include, for example, a field effect transistor (FET), a bipolar transistor, a resistor, or a different type of element. The current limiting element(s) may be configured to regulate the current to an individual field emission device or it may be configured relative to two or more field emission devices to regulate the current to more than one device simultaneously. In some embodiments the circuitry configured to regulate the current to the cathode 102 is also configured to regulate the gate electric potential 204.


In some embodiments a field emission device may include a thermal reservoir configured to make a connection to the cathode to transfer heat to the cathode, and circuitry configured to control the connection. For example, the thermal reservoir may be configured to make mechanical contact (or near-contact, with evanescent wave transfer of energy), where the circuitry may be configured to adjust a position of the reservoir and/or of a switch to facilitate the mechanical contact (or near contact). In some embodiments the circuitry is configured to modulate a potential difference between the cathode and the thermal reservoir to transfer energy between them.


In an embodiment where the output of the field emission device is substantially DC (i.e., where the output does not vary substantially periodically), a substantially AC (i.e., substantially periodically varying) output may be created by combining two field emission devices with DC outputs to form an electrical inverter according to methods known to those of skill in the art of electronics. In some such embodiments, power MOSFETs may be employed.


In an embodiment where two or more field emission devices are incorporated together, the outputs of the devices may be combined, for example, in series. In some embodiments this configuration may be arranged to produce a higher output voltage than could be achieved with a single device.


In some embodiments one or more field emission devices may be configured relative to one or more transformers, where the output of the field emission devices may be either DC or AC, depending on the particular configuration of the device as described previously herein. For example, in one embodiment, the output of a pulsed or AC field emission device is operably connected to a high-current, low-voltage transformer. This transformer is operably connected to a lower-current higher-voltage winding. This is just one example of the many ways that a transformer may be configured relative to a field emission device.


In some embodiments, where the output of the field emission device is substantially AC, circuitry may be configured relative to the device to control the phase of the output signal.


There are many ways in which the field emission device may be configured relative to circuit elements and/or control circuitry (or simply, “circuitry”), and the foregoing present just a few examples of such configurations.


Those skilled in the art will appreciate that the foregoing specific exemplary processes and/or devices and/or technologies are representative of more general processes and/or devices and/or technologies taught elsewhere herein, such as in the claims filed herewith and/or elsewhere in the present application.


Those having skill in the art will recognize that the state of the art has progressed to the point where there is little distinction left between hardware, software, and/or firmware implementations of aspects of systems; the use of hardware, software, and/or firmware is generally (but not always, in that in certain contexts the choice between hardware and software can become significant) a design choice representing cost vs. efficiency tradeoffs. Those having skill in the art will appreciate that there are various vehicles by which processes and/or systems and/or other technologies described herein can be effected (e.g., hardware, software, and/or firmware), and that the preferred vehicle will vary with the context in which the processes and/or systems and/or other technologies are deployed. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware. Hence, there are several possible vehicles by which the processes and/or devices and/or other technologies described herein may be effected, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary. Those skilled in the art will recognize that optical aspects of implementations will typically employ optically-oriented hardware, software, and or firmware.


In some implementations described herein, logic and similar implementations may include software or other control structures. Electronic circuitry, for example, may have one or more paths of electrical current constructed and arranged to implement various functions as described herein. In some implementations, one or more media may be configured to bear a device-detectable implementation when such media hold or transmit a device detectable instructions operable to perform as described herein. In some variants, for example, implementations may include an update or modification of existing software or firmware, or of gate arrays or programmable hardware, such as by performing a reception of or a transmission of one or more instructions in relation to one or more operations described herein.


Alternatively or additionally, in some variants, an implementation may include special-purpose hardware, software, firmware components, and/or general-purpose components executing or otherwise invoking special-purpose components. Specifications or other implementations may be transmitted by one or more instances of tangible transmission media as described herein, optionally by packet transmission or otherwise by passing through distributed media at various times.


Alternatively or additionally, implementations may include executing a special-purpose instruction sequence or invoking circuitry for enabling, triggering, coordinating, requesting, or otherwise causing one or more occurrences of virtually any functional operations described herein. In some variants, operational or other logical descriptions herein may be expressed as source code and compiled or otherwise invoked as an executable instruction sequence. In some contexts, for example, implementations may be provided, in whole or in part, by source code, such as C++, or other code sequences. In other implementations, source or other code implementation, using commercially available and/or techniques in the art, may be compiled/implemented/translated/converted into a high-level descriptor language (e.g., initially implementing described technologies in C or C++ programming language and thereafter converting the programming language implementation into a logic-synthesizable language implementation, a hardware description language implementation, a hardware design simulation implementation, and/or other such similar mode(s) of expression). For example, some or all of a logical expression (e.g., computer programming language implementation) may be manifested as a Verilog-type hardware description (e.g., via Hardware Description Language (HDL) and/or Very High Speed Integrated Circuit Hardware Descriptor Language (VHDL)) or other circuitry model which may then be used to create a physical implementation having hardware (e.g., an Application Specific Integrated Circuit). Those skilled in the art will recognize how to obtain, configure, and optimize suitable transmission or computational elements, material supplies, actuators, or other structures in light of these teachings.


The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).


In a general sense, those skilled in the art will recognize that the various embodiments described herein can be implemented, individually and/or collectively, by various types of electro-mechanical systems having a wide range of electrical components such as hardware, software, firmware, and/or virtually any combination thereof; and a wide range of components that may impart mechanical force or motion such as rigid bodies, spring or torsional bodies, hydraulics, electro-magnetically actuated devices, and/or virtually any combination thereof. Consequently, as used herein “electro-mechanical system” includes, but is not limited to, electrical circuitry operably coupled with a transducer (e.g., an actuator, a motor, a piezoelectric crystal, a Micro Electro Mechanical System (MEMS), etc.), electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), electrical circuitry forming a communications device (e.g., a modem, communications switch, optical-electrical equipment, etc.), and/or any non-electrical analog thereto, such as optical or other analogs. Those skilled in the art will also appreciate that examples of electro-mechanical systems include but are not limited to a variety of consumer electronics systems, medical devices, as well as other systems such as motorized transport systems, factory automation systems, security systems, and/or communication/computing systems. Those skilled in the art will recognize that electro-mechanical as used herein is not necessarily limited to a system that has both electrical and mechanical actuation except as context may dictate otherwise.


In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, and/or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, optical-electrical equipment, etc.). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.


Those skilled in the art will recognize that at least a portion of the devices and/or processes described herein can be integrated into an image processing system. Those having skill in the art will recognize that a typical image processing system generally includes one or more of a system unit housing, a video display device, memory such as volatile or non-volatile memory, processors such as microprocessors or digital signal processors, computational entities such as operating systems, drivers, applications programs, one or more interaction devices (e.g., a touch pad, a touch screen, an antenna, etc.), control systems including feedback loops and control motors (e.g., feedback for sensing lens position and/or velocity; control motors for moving/distorting lenses to give desired focuses). An image processing system may be implemented utilizing suitable commercially available components, such as those typically found in digital still systems and/or digital motion systems.


Those skilled in the art will recognize that at least a portion of the devices and/or processes described herein can be integrated into a data processing system. Those having skill in the art will recognize that a data processing system generally includes one or more of a system unit housing, a video display device, memory such as volatile or non-volatile memory, processors such as microprocessors or digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices (e.g., a touch pad, a touch screen, an antenna, etc.), and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities). A data processing system may be implemented utilizing suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.


Those skilled in the art will recognize that it is common within the art to implement devices and/or processes and/or systems, and thereafter use engineering and/or other practices to integrate such implemented devices and/or processes and/or systems into more comprehensive devices and/or processes and/or systems. That is, at least a portion of the devices and/or processes and/or systems described herein can be integrated into other devices and/or processes and/or systems via a reasonable amount of experimentation. Those having skill in the art will recognize that examples of such other devices and/or processes and/or systems might include—as appropriate to context and application—all or part of devices and/or processes and/or systems of (a) an air conveyance (e.g., an airplane, rocket, helicopter, etc.), (b) a ground conveyance (e.g., a car, truck, locomotive, tank, armored personnel carrier, etc.), (c) a building (e.g., a home, warehouse, office, etc.), (d) an appliance (e.g., a refrigerator, a washing machine, a dryer, etc.), (e) a communications system (e.g., a networked system, a telephone system, a Voice over IP system, etc.), (f) a business entity (e.g., an Internet Service Provider (ISP) entity such as Comcast Cable, Qwest, Southwestern Bell, etc.), or (g) a wired/wireless services entity (e.g., Sprint, Cingular, Nextel, etc.), etc.


In certain cases, use of a system or method may occur in a territory even if components are located outside the territory. For example, in a distributed computing context, use of a distributed computing system may occur in a territory even though parts of the system may be located outside of the territory (e.g., relay, server, processor, signal-bearing medium, transmitting computer, receiving computer, etc. located outside the territory).


A sale of a system or method may likewise occur in a territory even if components of the system or method are located and/or used outside the territory.


Further, implementation of at least part of a system for performing a method in one territory does not preclude use of the system in another territory.


All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in any Application Data Sheet, are incorporated herein by reference, to the extent not inconsistent herewith.


One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.


With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.


The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.


In some instances, one or more components may be referred to herein as “configured to,” “configured by,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that such terms (e.g. “configured to”) can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.


While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “ a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “ a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”


With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.


While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims
  • 1. An apparatus comprising: a cathode;an anode, wherein the anode and cathode are receptive to a first power source to produce an anode electric potential higher than a cathode electric potential;a gate positioned between the anode and the cathode, the gate being receptive to a second power source to produce a gate electric potential selected to induce emission of a first set of electrons from the cathode;a suppressor positioned between the gate and the anode, the suppressor being receptive to a third power source to produce a suppressor electric potential selected to provide a force on an electron in a direction pointing towards the suppressor in a region between the suppressor and the anode; andat least one element arranged to at least partially determine a trajectory of each of the electrons in the first set of electrons between the cathode and the anode.
  • 2. The apparatus of claim 1 wherein the at least one element includes: a shadow grid positioned between the cathode and the gate, the shadow grid being patterned to selectively block passage of a portion of the first set of electrons between the cathode and the gate.
  • 3. The apparatus of claim 1 wherein the at least one element includes: a control grid selected to provide a force on at least one electron in the first set of electrons in a transverse direction perpendicular to a direction defined by the trajectory of the at least one electron.
  • 4. The apparatus of claim 3 wherein the control grid is receptive to a fourth power source to produce a control grid electric potential, the control grid electric potential being configured to provide the force on the at least one electron in the first set of electrons in the transverse direction.
  • 5. The apparatus of claim 3 wherein the force is configured to focus a plurality of electrons in the first set of electrons.
  • 6. The apparatus of claim 3 wherein the control grid is positioned between the cathode and the gate.
  • 7. The apparatus of claim 3 wherein the control grid is positioned between the gate and the suppressor.
  • 8. The apparatus of claim 3 wherein the control grid is positioned between the suppressor and the anode.
  • 9. The apparatus of claim 3 wherein the control grid is substantially parallel to at least one of the cathode, gate, suppressor, and anode.
  • 10. The apparatus of claim 3 wherein the control grid includes an aperture defined by a continuous conductive path, the aperture having a shape, wherein the control grid is positioned relative to the cathode, gate, suppressor and anode to pass at least a portion of the first set of electrons through the aperture, and wherein the shape of the aperture is selected to at least partially define the trajectory of the passed portion of the first set of electrons.
  • 11. The apparatus of claim 10 wherein the control grid is responsive to a fourth power source to produce a control grid electric potential, and wherein the control grid electric potential is selected to at least partially define the trajectory of the passed portion of the first set of electrons.
  • 12. The apparatus of claim 10 wherein the shape of the aperture is substantially circular.
  • 13. The apparatus of claim 1 wherein the at least one element arranged to at least partially determine a trajectory of each of the electrons in the first set of electrons is configured to apply a magnetic field in a region defined by at least one trajectory corresponding to at least one electron in the first set of electrons.
  • 14. An apparatus comprising: a cathode;an anode, wherein the anode and cathode are receptive to a first power source to produce an anode electric potential higher than a cathode electric potential;a gate positioned between the anode and the cathode, the gate being receptive to a second power source to produce a gate electric potential selected to induce emission of a first set of electrons from the cathode;a suppressor positioned between the gate and the anode, the suppressor being receptive to a third power source to produce a suppressor electric potential selected to provide a force on an electron in a direction pointing towards the suppressor in a region between the suppressor and the anode;circuitry operably connected to at least one of the first, second, and third power sources to modulate the first set of electrons; andan inductive coupler configured to produce electromagnetic energy responsive to the first set of electrons.
  • 15. An apparatus comprising: a cathode;an anode, wherein the anode and cathode are receptive to a first power source to produce an anode electric potential higher than a cathode electric potential;a gate positioned between the anode and the cathode, the gate being receptive to a second power source to produce a gate electric potential selected to induce emission of a first set of electrons from the cathode;a suppressor positioned between the gate and the anode, the suppressor being receptive to a third power source to produce a suppressor electric potential selected to provide a force on an electron in a direction pointing towards the suppressor in a region between the suppressor and the anode; andcircuitry operably connected to at least one of the cathode and the anode to control an output of the anode.
  • 16. The apparatus of claim 15 wherein the circuitry operably connected to at least one of the cathode and anode to control an output of the anode includes: circuitry operably connected to the cathode to control the rate of emission of the first set of electrons from the cathode.
  • 17. The apparatus of claim 16 wherein the circuitry includes a field effect transistor.
  • 18. The apparatus of claim 16 wherein the circuitry includes a bipolar transistor.
  • 19. The apparatus of claim 16 wherein the circuitry includes a resistor.
  • 20. The apparatus of claim 16 wherein the circuitry operably connected to the cathode to control the rate of emission of the first set of electrons from the cathode is operably connected to the second power source to control the gate electric potential.
  • 21. The apparatus of claim 15 further comprising: a thermal reservoir configured to make a connection to the cathode to transfer heat to the cathode; andwherein the circuitry operably connected to at least one of the cathode and anode to control an output of the anode is includes circuitry configured to control the connection.
  • 22. The apparatus of claim 21 wherein the circuitry configured to control the connection is configured to form a mechanical connection between the thermal reservoir and the cathode.
  • 23. The apparatus of claim 21 wherein the circuitry configured to control the connection is configured to break a mechanical connection between the thermal reservoir and the cathode.
  • 24. The apparatus of claim 21 wherein the circuitry configured to control the connection is configured to vary a spacing between the thermal reservoir and the cathode.
  • 25. The apparatus of claim 21 wherein the circuitry configured to control the connection is configured to modulate a transfer of energy between the thermal reservoir and the cathode.
  • 26. The apparatus of claim 21 wherein the circuitry configured to control the connection is configured to modulate a potential difference between the cathode and the thermal reservoir.
  • 27. The apparatus of claim 15 wherein the circuitry operably connected to at least one of the cathode and anode includes circuitry operably connected to the anode to produce a substantially periodically varying signal.
  • 28. The apparatus of claim 27 wherein the circuitry includes a diode.
  • 29. The apparatus of claim 27 wherein the circuitry includes a MOSFET.
  • 30. The apparatus of claim 15 wherein the circuitry operably connected to at least one of the cathode and anode includes circuitry operably connected to produce a substantially periodically varying anode current.
  • 31. The apparatus of claim 30 wherein the circuitry operably connected to at least one of the cathode and anode includes circuitry operably connected to apply a substantially periodically varying potential between the cathode and the gate.
  • 32. The apparatus of claim 30 wherein the circuitry operably connected to at least one of the cathode and anode includes circuitry operably connected to apply a substantially periodically varying potential between the anode and the suppressor.
  • 33. The apparatus of claim 15 wherein the circuitry operably connected to at least one of the cathode and anode to control an output of the anode includes a transformer.
  • 34. The apparatus of claim 15 wherein the output of the anode is substantially periodic having a phase, and wherein the circuitry is operably connected to at least one of the cathode and anode to control the phase of the output.
  • 35. An apparatus comprising: an array of field emission devices, each field emission device in the array of field emission devices including: a cathode;an anode, wherein the anode and cathode are receptive to a first power source to produce an anode electric potential higher than a cathode electric potential;a gate positioned between the anode and the cathode, the gate being receptive to a second power source to produce a gate electric potential selected to induce emission of a first set of electrons from the cathode; anda suppressor positioned between the gate and the anode, the suppressor being receptive to a third power source to produce a suppressor electric potential selected to provide a force on an electron in a direction pointing towards the suppressor in a region between the suppressor and the anode; andcircuitry operably connected to at least two field emission devices in the array of field emission devices, wherein the circuitry is configured to electrically connect the at least two field emission devices.
  • 36. The apparatus of claim 35 wherein the circuitry is further configured to electrically connect the at least two field emission devices in series.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to and/or claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Priority Applications”), if any, listed below (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC §119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Priority Application(s)). In addition, the present application is related to the “Related Applications,” if any, listed below. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 13/374,545, entitled FIELD EMISSION DEVICE, naming RODERICK A. HYDE, JORDIN T. KARE, NATHAN P. MYHRVOLD, TONY S. PAN, and LOWELL L. WOOD, JR., as inventors, filed 30 Dec. 2011, which is currently co-pending or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application claims benefit of priority of U.S. Provisional Patent Application No. 61/631,270, entitled FIELD EMISSION DEVICE, naming RODERICK A. HYDE, JORDIN T. KARE, NATHAN P. MYHRVOLD, TONY S. PAN, and LOWELL L. WOOD, JR., as inventors, filed 29 Dec. 2011, which was filed within the twelve months preceding the filing date of the present application or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application claims benefit of priority of U.S. Provisional Patent Application No. 61/638,986, entitled FIELD EMISSION DEVICE, naming RODERICK A. HYDE, JORDIN T. KARE, NATHAN P. MYHRVOLD, TONY S. PAN, and LOWELL L. WOOD, JR., as inventors, filed 26 Apr. 2012, is related to the present application. U.S. patent application Ser. No. 13/545,504, entitled PERFORMANCE OPTIMIZATION OF A FIELD EMISSION DEVICE, naming RODERICK A. HYDE, JORDIN T. KARE, NATHAN P. MYHRVOLD, TONY S. PAN, and LOWELL L. WOOD, JR., as inventors, filed 10 Jul. 2012, is related to the present application. U.S. patent application Ser. No. 13/587,762, entitled MATERIALS AND CONFIGURATIONS OF A FIELD EMISSION DEVICE, naming JESSE R. CHEATHAM, III, PHILIP ANDREW ECKHOFF, WILLIAM GATES, RODERICK A. HYDE, MURIEL Y. ISHIKAWA, JORDIN T. KARE, NATHAN P. MYHRVOLD, TONY S. PAN, ROBERT C. PETROSKI, CLARENCE T. TEGREENE, DAVID B. TUCKERMAN, CHARLES WHITMER, LOWELL L. WOOD, JR., VICTORIA Y. H. WOOD, as inventors, filed 16 Aug. 2012, is related to the present application. U.S. patent application Ser. No. 13/666,759, entitled ANODE WITH SUPPRESSOR GRID, naming JESSE R. CHEATHAM, III, PHILIP ANDREW ECKHOFF, WILLIAM GATES, RODERICK A. HYDE, MURIEL Y. ISHIKAWA, JORDIN T. KARE, NATHAN P. MYHRVOLD, TONY S. PAN, ROBERT C. PETROSKI, CLARENCE T. TEGREENE, DAVID B. TUCKERMAN, CHARLES WHITMER, LOWELL L. WOOD, JR., VICTORIA Y. H. WOOD, as inventors, filed 1 Nov. 2012, is related to the present application. U.S. patent application Ser. No. 13/774,893, entitled VARIABLE FIELD EMISSION DEVICE, naming JESSE R. CHEATHAM, III, PHILIP ANDREW ECKHOFF, WILLIAM GATES, RODERICK A. HYDE, MURIEL Y. ISHIKAWA, JORDIN T. KARE, NATHAN P. MYHRVOLD, TONY S. PAN, ROBERT C. PETROSKI, CLARENCE T. TEGREENE, DAVID B. TUCKERMAN, CHARLES WHITMER, LOWELL L. WOOD, JR., VICTORIA Y. H. WOOD, as inventors, filed 22 Feb. 2013, is related to the present application. U.S. patent application Ser. No. 13/790,613, entitled TIME-VARYING FIELD EMISSION DEVICE, naming JESSE R. CHEATHAM, III, PHILIP ANDREW ECKHOFF, WILLIAM GATES, RODERICK A. HYDE, MURIEL Y. ISHIKAWA, JORDIN T. KARE, NATHAN P. MYHRVOLD, TONY S. PAN, ROBERT C. PETROSKI, CLARENCE T. TEGREENE, DAVID B. TUCKERMAN, CHARLES WHITMER, LOWELL L. WOOD, JR., VICTORIA Y. H. WOOD, as inventors, filed 8 Mar. 2013, is related to the present application. U.S. patent application Ser. No. 13/860,274, entitled FIELD EMISSION DEVICE WITH AC OUTPUT, naming JESSE R. CHEATHAM, III, PHILIP ANDREW ECKHOFF, WILLIAM GATES, RODERICK A. HYDE, MURIEL Y. ISHIKAWA, JORDIN T. KARE, NATHAN P. MYHRVOLD, TONY S. PAN, ROBERT C. PETROSKI, CLARENCE T. TEGREENE, DAVID B. TUCKERMAN, CHARLES WHITMER, LOWELL L. WOOD, JR., VICTORIA Y. H. WOOD, as inventors, filed 10 Apr. 2013, is related to the present application. U.S. patent application Ser. No. 13/864,957, entitled ADDRESSABLE ARRAY OF FIELD EMISSION DEVICES, naming JESSE R. CHEATHAM, III, PHILIP ANDREW ECKHOFF, WILLIAM GATES, RODERICK A. HYDE, MURIEL Y. ISHIKAWA, JORDIN T. KARE, NATHAN P. MYHRVOLD, TONY S. PAN, ROBERT C. PETROSKI, CLARENCE T. TEGREENE, DAVID B. TUCKERMAN, CHARLES WHITMER, LOWELL L. WOOD, JR., VICTORIA Y. H. WOOD, as inventors, filed 17 Apr. 2013, is related to the present application. The United States Patent Office (USPTO) has published a notice to the effect that the USPTO's computer programs require that patent applicants reference both a serial number and indicate whether an application is a continuation, continuation-in-part, or divisional of a parent application. Stephen G. Kunin, Benefit of Prior-Filed Application, USPTO Official Gazette Mar. 18, 2003. The USPTO further has provided forms for the Application Data Sheet which allow automatic loading of bibliographic data but which require identification of each application as a continuation, continuation-in-part, or divisional of a parent application. The present Applicant Entity (hereinafter “Applicant”) has provided above a specific reference to the application(s)from which priority is being claimed as recited by statute. Applicant understands that the statute is unambiguous in its specific reference language and does not require either a serial number or any characterization, such as “continuation” or “continuation-in-part,” for claiming priority to U.S. patent applications. Notwithstanding the foregoing, Applicant understands that the USPTO's computer programs have certain data entry requirements, and hence Applicant has provided designation(s) of a relationship between the present application and its parent application(s) as set forth above and in any ADS filed in this application, but expressly points out that such designation(s) are not to be construed in any way as any type of commentary and/or admission as to whether or not the present application contains any new matter in addition to the matter of its parent application(s). If the listings of applications provided above are inconsistent with the listings provided via an ADS, it is the intent of the Applicant to claim priority to each application that appears in the Priority Applications section of the ADS and to each application that appears in the Priority Applications section of this application. All subject matter of the Priority Applications and the Related Applications and of any and all parent, grandparent, great-grandparent, etc. applications of the Priority Applications and the Related Applications, including any priority claims, is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.

US Referenced Citations (86)
Number Name Date Kind
2404919 Overbeck Jul 1946 A
2489850 Baker Nov 1949 A
2744960 Greefkes et al. May 1956 A
2798963 Saget Jul 1957 A
4274035 Fukuhara et al. Jun 1981 A
4427886 Martin et al. Jan 1984 A
5177402 Howard et al. Jan 1993 A
5272411 Francisco et al. Dec 1993 A
5371371 Yamazaki et al. Dec 1994 A
5386172 Komatsu Jan 1995 A
5548138 Tanimoto et al. Aug 1996 A
5578901 Blanchet-Fincher et al. Nov 1996 A
5606215 Jaskie et al. Feb 1997 A
5631524 Matsuzaki et al. May 1997 A
5717279 Imura Feb 1998 A
5834781 Fukuhara Nov 1998 A
5838096 Shinada et al. Nov 1998 A
5850120 Okamoto Dec 1998 A
5908699 Kim Jun 1999 A
5936348 Shimoi et al. Aug 1999 A
5936354 Smith et al. Aug 1999 A
5942834 Davis Aug 1999 A
5982095 Jin et al. Nov 1999 A
6031336 Rumbaugh et al. Feb 2000 A
6104143 Bonavia Aug 2000 A
6205790 Denkin et al. Mar 2001 B1
6249080 Komoda et al. Jun 2001 B1
6313587 MacLennan et al. Nov 2001 B1
6373175 Cade et al. Apr 2002 B1
6404089 Tomion Jun 2002 B1
6538367 Choi et al. Mar 2003 B1
6590320 Abanshin et al. Jul 2003 B1
6632113 Noma et al. Oct 2003 B1
6949887 Kirkpatrick et al. Sep 2005 B2
7061188 Katyl et al. Jun 2006 B1
7157849 Seon et al. Jan 2007 B2
7462979 Konishi et al. Dec 2008 B2
7710013 Tatsumi et al. May 2010 B2
7741764 Sung Jun 2010 B1
7750462 Cohn et al. Jul 2010 B1
7825591 Kimiya et al. Nov 2010 B2
7903789 Morton et al. Mar 2011 B2
8018169 Jeong et al. Sep 2011 B2
20020036452 Muroyama et al. Mar 2002 A1
20030001490 Yamamoto et al. Jan 2003 A1
20030124944 Kyogaku et al. Jul 2003 A1
20030132393 Dimitrijevic et al. Jul 2003 A1
20040004588 Kawase et al. Jan 2004 A1
20040036402 Keesmann et al. Feb 2004 A1
20040050415 Kucherov et al. Mar 2004 A1
20040118347 Groves et al. Jun 2004 A1
20040226914 Dong et al. Nov 2004 A1
20040238809 Adamec et al. Dec 2004 A1
20050001598 Belokon et al. Jan 2005 A1
20050016575 Kumar et al. Jan 2005 A1
20050057168 Song et al. Mar 2005 A1
20050151461 Tuck et al. Jul 2005 A1
20060139207 Nikonov Jun 2006 A1
20060261724 DiCarlo Nov 2006 A1
20060273301 Moddel et al. Dec 2006 A1
20060284539 Sung Dec 2006 A1
20070023621 Blick et al. Feb 2007 A1
20070046163 Sata et al. Mar 2007 A1
20070158588 Zhou et al. Jul 2007 A1
20080001513 Chen et al. Jan 2008 A1
20080017237 Bray et al. Jan 2008 A1
20080100235 Lin et al. May 2008 A1
20090011706 Wilson et al. Jan 2009 A1
20090146583 Bhadri et al. Jun 2009 A1
20090194870 Nathanson et al. Aug 2009 A1
20090303654 Fan et al. Dec 2009 A1
20100019648 Yasuda et al. Jan 2010 A1
20100026160 Terui et al. Feb 2010 A1
20100090579 Sellmair Apr 2010 A1
20100102325 Kim et al. Apr 2010 A1
20100108882 Zewail May 2010 A1
20100271003 Jensen et al. Oct 2010 A1
20100295486 Ikehashi Nov 2010 A1
20100329964 Roos Dec 2010 A1
20110037400 Kim et al. Feb 2011 A1
20110088954 DiGiovanni et al. Apr 2011 A1
20110147761 Yu et al. Jun 2011 A1
20110186805 Bowers et al. Aug 2011 A1
20110201201 Arnold et al. Aug 2011 A1
20120041370 Moberg et al. Feb 2012 A1
20130168635 Cheatham, III et al. Jul 2013 A1
Foreign Referenced Citations (1)
Number Date Country
1 063 197 Dec 2000 EP
Non-Patent Literature Citations (53)
Entry
PCT International Search Report; International App. No. PCT/US2013/038254; Aug. 26, 2013; pp. 1-2
PCT International Search Report; International App. No. PCT/US13/38476; Aug. 26, 2013; pp. 1-2.
Britnell et al.; “Electron Tunneling Through Ultrathin Boron Nitride Crystalline Barriers”; NANO Letters; bearing dates of Jan. 18, 2012, Feb. 14, 2012 and Mar. 1, 2012; pp. 1707-1710; vol. 12; American Chemical Society.
Brodie et al. “Vacuum Microelectronic Devices”; Proceedings of the IEEE; Jul. 1994; pp. 1006-1034; vol. 82, No. 7; IEEE.
Choi et al.; “A Simple Structure and Fabrication of Carbon-Nanotube Field Emission Display”; Applied Surface Science; bearing dates of Mar. 24, 2003 and Jul. 20, 2003; pp. 370-374; vol. 221; Elsevier B.V.
Chou et al.; “Sub-10 nm Imprint Lithography and Applications”; J. Vac. Sci. Technol. B; Nov./Dec. 1997; pp. 2897-2904; vol. 15, No. 6; American Vacuum Society.
Chung et al.; “Energy Exchange Processes in Electron Emission at High Fields and Temperatures”; J. Vac. Sci. Technol. B; Mar./Apr. 1994; pp. 727-736; vol. 12, No. 2; American Vacuum Society.
Dean et al.; “Current Saturation Mechanisms in Carbon Nanotube Field Emitters”; Applied Physics Letters; Jan. 17, 2000; pp. 375-377; vol. 76; No. 3; American Institute of Physics.
Desplat et al.; “Interaction of Cesium and Oxygen on W(110)”; Surface Science; 1980 (and bearing dates of Jun. 18, 1979 and Sep. 14, 1979); pp. 97-118; vol. 92; North-Holland Publishing Company.
Ding, Meng; “Field Emission from Silicon”; Paper submitted to the Department of Physics at Massachusetts Institute of Technology; Jun. 2001; 277 pp. total; Massachusetts Institute of Technology.
Fisher et al.; “Thermal and Electrical Energy Transport and Conversion in Nanoscale Electron Field Emission Processes”; Transactions of the ASME; Oct. 2002; pp. 954-962; vol. 124; ASME.
Fursey, George N.; Field Emission in Vacuum Microelectronics (1st Edition); Jan. 21, 2005; 205 pages; ISBN-10: 0306474506 and ISBN-13: 978-0306474507; Springer.
Han et al.; “Vacuum Nanoelectronics: Back to the Future?—Gate Insulated Nanoscale Vacuum Channel Transistor”; Applied Physics Letters; bearing dates of Feb. 24, 2012, Apr. 22, 2012 and May 23, 2012; pp. 213505-1-213505-4; vol. 100; American Institute of Physics.
Himpsel et al.; “Quantum Photoyield of Diamond(111)—A Stable Negative-Affinity Emitter”; Physical Review B; Jul. 15, 1979; pp. 624-627; vol. 20; No. 2; The American Physical Society.
Hishinuma et al.; “Refrigeration by Combined Tunneling and Thermionic Emission in Vacuum: Use of Nanometer Scale Design”; Applied Physics Letters; Apr. 23, 2001; pp. 2572-2574; vol. 78; No. 17; American Institute of Physics.
Hu, Chenming; “Gate Oxide Scaling Limits and Projection”; International Electron Devices Meeting 1996, IEEE, pp. 319-322.
Humphrey et al.; “Power Optimization in Thermionic Devices”; J. Phys. D: Appl. Phys.; bearing dates of Nov. 11, 2004, Jun. 3, 2005 and 2005; pp. 2051-2054; vol. 38; IOP Publishing Ltd.
Humphrey et al.; “Reversible Quantum Brownian Heat Engines for Electrons”; Physical Review Letters; Sep. 9, 2002; pp. 116801-1 -116801-4; vol. 89, No. 11; The American Physical Society.
Japanese Patent Office; Notice of Rejection; App. No. 2009-500523; Mar. 21, 2013; 6 total pages (3 pages with English Machine Translation).
Kusunoki et al.; “Highly Efficient and Long Life Metal-Insulator-Metal Cathodes”; J. Vac. Sci. Technol. B—Microelectronics and Nanometer Structures; Jul./Aug. 2012; pp. 041202-1-041202-8; vol. 30; No. 4; American Vacuum Society.
Lovicott, Dominick; “Electron Emission Thermal Energy Conversion”; Thesis presented to the Graduate School Faculty at the University of Missouri at Columbia; Jul. 2010; pp. 1-141 and 22 addit. pages which incl. title page, signature page, acknowledgements, abstract, table of contents, list of figures, list of tables, and nomenclature; University of Missouri —Columbia.
Mammana et al.; “Field Emission Device With Back Gated Structure”; J.Vac. Sci. Technol. A—Vacuum, Surfaces, and Films; Jul./Aug. 2004; pp. 1455-1460; vol. 22; No. 4; American Vacuum Society.
Marcus et al.; “Formation of Silicon Tips with <1 nm Radius”; Applied Physics Letters; Jan. 15, 1990; pp. 236-238; vol. 56; No. 3; American Institute of Physics.
Medvedev et al.; “Generation of Magnetic Fields in the Relativistic Shock of Gamma-Ray-Burst Sources”; The Astrophysical Journal; Dec. 1, 1999; pp. 697-706;vol. 526; The American Astronomical Society.
Milanovic et al.; “Micromachining Technology for Lateral Field Emission Devices”; IEEE Transactions on Electron Devices; Jan. 2001; pp. 166-173; vol. 48; No. 1; IEEE.
Mimura et al.; “Improvement of the Emission Current from a Cesiated Metal-Oxide-Semiconductor Cathode”; Applied Physics Letters; bearing dates of Oct. 6, 2005, Feb. 6, 2006 and Mar. 24, 2006; pp. 123514-1-123514-3; vol. 88; American Institute of Physics.
Mishra et al.; “Model of Work Function of Tungsten Cathodes with Barium Oxide Coating”; Journal of Applied Physics; Mar. 15, 2004; pp. 3069-3074; vol. 95, No. 6; American Institute of Physics.
Nakpathomkum et al.; “Thermoelectric Efficiency at Maximum Power in Low-Dimensional Systems”; Oct. 8, 2010; pp. 1-13.
Nasibulin et al.; “A Novel Hybrid Carbon Material;” Nature Nanotechnology; Mar. 2007; pp. 156-161; vol. 2; Nature Publishing Group.
O'Dwyer et al.; “Electronic Efficiency in Nanostructured Thermionic and Thermoelectric Devices”; Physical Review B; bearing dates of 2005, Jun. 15, 2005, Sep. 6, 2005 and Nov. 21, 2005; pp. 205330-1-205330-10; vol. 72; Issue 205330; The American Physical Society.
Ottens et al.; “Near-Field Radiative Heat Transfer Between Macroscopic Planar Surfaces”; Physical Review Letters; Jul. 1, 2011; pp. 014301-1-014301-4; vol. 107, Issue 014301; American Physical Society.
Pan et al.; “Field Emission Heat Engines”; printed on Dec. 28, 2011; 92 pp. total (incl. cover sheet, table of contents).
Pan et al.; “Field Emission Heat Engines II”; Intellectual Ventures internal white paper; created on May 15, 2012 and printed on Aug. 2, 2012; pp. 1-43.
PCT International Search Report; International App. No. PCT/US2012/071837; Mar. 11, 2013; pp. 1-3.
PCT International Search Report; Application No. PCT/US2012/071833; Mar. 8, 2013; pp. 1-3.
PCT International Search Report; International App. No. PCT/US2012/071845; Mar. 4, 2013; pp. 1-3.
PCT International Search Report; International App. No. PCT/US2012/071841; Mar. 1, 2013; pp. 1-2 (additional 4 pages of Search History).
PCT International Search Report; International App. No. PCT/US2012/071849; Feb. 27, 2013; pp. 1-3 (additional 3 pages of Search History).
Rasor, Ned S.; “Thermionic Energy Conversion Plasmas”; IEEE Transactions on Plasma Science; Dec. 1991; pp. 1191-1208; vol. 19, No. 6; IEEE.
Schwede et al.; “Photon-Enhanced Thermionic Emission for Solar Concentrator Systems”; Nature Materials; Sep. 2010; pp. 762-767; vol. 9.
Shakouri, Ali; “Nanoscale Devices for Solid State Refrigeration and Power Generation”; 20th IEEE SEMI-THERM Symposium; bearing a date of 2004 and printed on Dec. 28, 2011; pp. 1-10; IEEE.
Shaw et al.; “Method and Structure for Local Emission Regulation and Arc Prevention in Field Emitter Arrays”; J.Vac. Sci. Technol. B; Mar./Apr. 2005; pp. 836-839; vol. 23; No. 2.
Spindt et al.; “Physical Properties of Thin-Film Field Emission Cathodes with Molybdenum Cones”; Journal of Applied Physics; Dec. 1976; pp. 5248-5263; vol. 47; No. 12; American Institute of Physics.
Tsu et al.; “Tunneling in a Finite Superlattice*”; Appl. Phys. Lett.; Jun. 1, 1973; pp. 562-564; vol. 22, No. 11; American Institute of Physics.
Tuckerman et al.; High-Performance Heat Sinking for VLSI; IEEE Electron Device Letters; May 1981; pp. 126-129; vol. EDL-2, No. 5; IEEE.
Tuckerman et al.; “Microchannel Heat Transfer: Early History, Commercial Applications, and Emerging Opportunities”; Proceedings of the ASME 2011 9th International Conference on Nanochannels, Microchannels and Minichannels in Edmonton, Alberta, Canada; Jun. 19-22, 2011; pp. 1-18; ASME.
Vining, Cronin B.; “An Inconvenient Truth About Thermoelectrics”; Nature Materials; Feb. 2009; pp. 83-85; vol. 8; Macmillan Publishers Limited.
Westover, Tyler L.; “Energy Transport and Conversion in Electron Emission Processes”; A Dissertation submitted to the Faculty of Purdue University in West Lafayette, Indiana; Aug. 2008; pp. 1-238 plus addit. 20 pages incl. Dissertation Acceptance form, Research Integrity and Copyright Disclaimer form; title page, acknowledgements, table of contents, list of tables, list of figures, and abstract; ProQuest LLC, Ann Arbor, MI.
Yang et al.; “Monochromatic Electron Photoemission from Diamondoid Monolayers”; created on Aug. 2, 2012; 26 pages total (incl. Figs. & Supporting Online Material addendum of 8 pgs.).
Zhu et al.; “Large Current Density from Carbon Nanotube Field Emitters”; Applied Physics Letters; Aug. 9, 1999; pp. 873-875; vol. 75; No. 6; American Institute of Physics.
Zhu, Wei; Vacuum Microelectronics (1st Edition); Sep. 21, 2001; 396 pages; ISBN-10: 047132244X and ISBN-13: 978-04713224443; Wiley-Interscience.
PCT International Search Report; International App. No. PCT/US2013/038233; Oct. 4, 2013; pp. 1-5.
PCT International Search Report; International App. No. PCT/US13/38249; Nov. 5, 2013; pp. 1-4.
Related Publications (1)
Number Date Country
20130313980 A1 Nov 2013 US
Provisional Applications (2)
Number Date Country
61631270 Dec 2011 US
61638986 Apr 2012 US
Continuation in Parts (1)
Number Date Country
Parent 13374545 Dec 2011 US
Child 13871673 US