The present invention relates to a medical device for placing an embolic device at a predetermined site within a vessel of the human body, and more particularly, relates to a catheter-based deployment system for delivering an embolic device.
For many years, flexible catheters have been used to place various devices within the vessels of the human body. Such devices include dilation balloons, radiopaque fluids, liquid medications, and various types of occlusion devices such as balloons and embolic coils. Examples of such catheter-based devices are disclosed in U.S. Pat. No. 5,108,407, entitled “Method and Apparatus for Placement of an Embolic Coil” and U.S. Pat. No. 5,122,136, entitled “Endovascular Electrolytically Detachable Guidewire Tip For The Electroformation Of Thrombus In Arteries, Veins, Aneurysms, Vascular Malformations And Arteriovenous Fistulas.” These patents disclose catheter-based devices for delivering embolic coils to preselected positions within vessels of the human body in order to treat aneurysms, or alternatively, to occlude blood vessels at a particular location.
Coils which are placed in vessels may take the form of helically wound coils, or alternatively, may take the form of randomly wound coils, coils wound within coils or other such coil configurations. Examples of various coil configurations are disclosed in U.S. Pat. No. 5,334,210, entitled “Vascular Occlusion Assembly” and U.S. Pat. No. 5,382,259, entitled “Vasoocclusion Coil with Attached Tubular Woven or Braided Fibrous Covering.” Embolic coils are generally formed of a radiopaque metallic material, such as platinum, gold, tungsten, or alloys of these metals. Often, several coils are placed at a given location to occlude the flow of blood through the vessel, or aneurysm, by promoting thrombus formation at the particular site.
In the past, embolic coils have been placed within the distal end of a catheter. When the distal end of the catheter is properly positioned, the coil may then be pushed out of the end of the catheter with a pusher member to release the coil at the desired location. This procedure for placement of an embolic coil is conducted under fluoroscopic visualization such that the movement of the coil through the vasculature of the body may be monitored and the coil placed at the desired location.
Another procedure involves the use of glue or solder for attaching the coil to a guidewire, which in turn, is placed within a flexible catheter for positioning the coil within the vessel at a preselected position. Once the coil is in the desired position, the coil is held in position by the catheter and the guidewire is pulled proximally to thereby cause the coil to become detached from the guidewire and released from the catheter. Such a coil positioning system is disclosed in U.S. Pat. No. 5,263,964 entitled “Coaxial Traction Detachment Apparatus and Method.”
Still another coil positioning procedure is that of having a catheter with a socket at the distal end of the catheter for retaining a ball which is, in turn, bonded to the proximal end of the coil. The ball, which is generally larger in diameter than the outside diameter of the coil, is placed in the socket within the lumen at the distal end of the catheter and the catheter is then moved into a vessel in order to place the coil at a desired position. Once the position is reached, a pusher wire with a piston at the end thereof is pushed distally from the proximal end of the catheter to push the ball out of the socket in order to release the coil at the desired position. Such a system is disclosed in U.S. Pat. No. 5,350,397, entitled “Axially Detachable Embolic Coil Assembly.”
Another procedure for placing an embolic coil within a vessel is that of using a heat releasable adhesive bond for retaining the coil at the distal end of the catheter. One such system uses laser energy transmitted through a fiber optic cable to apply heat to the adhesive bond in order to release the coil from the end of the catheter. Such a procedure is disclosed in U.S. Pat. No. 5,108,407 entitled “Method and Apparatus for Placement of an Embolic Coil.”
Yet another coil deployment system incorporates a catheter having a lumen throughout the length of the catheter and a distal tip for retaining the coil for positioning the coil at a preselected site. The distal tip of the catheter is formed of a material which exhibits the characteristic that when the lumen of the catheter is pressurized the distal tip expands radially to release the coil at the preselected site. Such a deployment system is disclosed in U.S. Pat. No. 6,113,622 entitled “Embolic Coil Hydraulic Deployment System.”
Still another coil deployment system incorporates an interlocking mechanism on the coil. The interlocking end on the embolic coil couples with a similar interlocking mechanism on a pusher assembly. A control wire which extends through the locking mechanism secures the coil to the pusher assembly. The pusher assembly and embolic coil are initially disposed within the lumen of a catheter. When the embolic coil is pushed out of the end of the catheter for placement, the control wire is retracted, and the coil disengages from the pusher assembly. Such a deployment system is disclosed in U.S. Pat. No. 5,925,059, entitled “Detachable Embolic Coil Assembly.”
Yet another coil deployment system incorporates an embolic device detachably mounted on the distal portion of a pusher member and held in place with a connector thread or fiber. The fiber passes through a cutter member that may be activated to cut the connector fiber. Once the connector fiber is cut, the embolic device is released. Such a deployment system is disclosed in Published U.S. Patent Application No. 2002/0165569, entitled “Intravascular Device Deployment Mechanism Incorporating Mechanical Detachment.”
Still another coil deployment system incorporates an embolic device with a stretch resistant member there through. The distal end of the stretch resistant member attaches to the embolic coil and the proximal end of the stretch resistant member is detachably mounted on the pusher member through various means such as adhesive, or by a connector fiber adhered to or tied to the pusher member, and is detachable by the application of heat. Such a deployment system is disclosed in Published U.S. Patent Application No. 2004/0034363, entitled “Stretch Resistant Therapeutic Device.”
A yet further coil deployment system incorporates a pusher wire with a stiff wavy-shaped end segment which is coupled to the embolic coil and is placed in the lumen of the catheter. The coil is advanced through the catheter until it reaches a predetermined site in the vessel at which time the pusher wire is retracted and the embolic coil is released. Such a system is disclosed in U.S. Pat. No. 6,203,547, entitled “Vaso-occlusion Apparatus Having A Manipulable Mechanical Detachment Joint And A Method For Using The Apparatus.”
A still further embolic device deployment system for placement of an embolic device, or coil, includes a delivery catheter and a flexible pusher member. The embolic device is retained by an interlocking mechanism which includes a detachment member which extends through an aperture in an engagement member. The engagement member engages a ring on the embolic device. When the detachment member is withdrawn from the aperture, the embolic device is released. One such deployment system is disclosed in U.S. Pat. No. 7,377,932, entitled “Embolic Coil Delivery System with Mechanical Release Mechanism.”
A yet still further embolic device deployment system for placement of a stretch-resistant embolic device, or coil, includes a delivery catheter and a flexible pusher member. The embolic device is retained by an interlocking mechanism with a detachment member which extends through an aperture in an engagement member. The engagement member enables a ring on the embolic device, where a stretch-resistant member extends through the coil. When the detachment member is withdrawn from the aperture, the stretch-resistant member enables the embolic device to release without difficulty. One such deployment system is disclosed in U.S. Pat. No. 7,371,251 entitled “Stretch Resistant Embolic Coil Delivery System With Mechanical Release Mechanism.”
However, all of the above systems have their drawbacks, including some difficulty in positively and smoothly releasing the embolic coil. Thus, a system is still needed to accomplish these goals.
Thus, an example of an embolic device deployment system to place an embolic device at a predetermined site within a vessel can include an elongated flexible deployment catheter having a first lumen extending therethrough and having proximal and distal ends. A notch section can be disposed in the first lumen of the catheter and can form a second lumen. An embolic device can have a retaining ring at the proximal end and disposed distal of the catheter. An engagement member can be partially disposed in the second lumen and include a distal loop extending through the retaining ring, and a proximal loop extending into the first lumen. Further, an elongated detachment member can slide within the first lumen of the deployment catheter and be disposed through the proximal and distal loops. The detachment member can have a detachment member bump disposed between the proximal and distal loops. Therefore, when the detachment member is disposed within the distal loop and the distal loop is disposed within the retaining ring, the embolic device is in an engaged position, retaining the embolic device proximal to the tip of the catheter. However, when the detachment member is pulled proximally, the detachment member is withdrawn from the distal loop, and the detachment member bump contacts the proximal loop. These acts assist in the disengagement of the distal loop from the retaining ring to thereby release the embolic device. The embolic device can be an embolic coil.
The embolic device deployment system can also have a retainer bump disposed on a proximal end of the engagement member and located outside the second lumen. The retainer bump prevents movement of the engagement member in the distal direction. In one example, this is accomplished because the retainer bump has at least one dimension larger than the second lumen. However, the retainer bump and the detachment member bump are sized to not interfere with each other.
Another example of an embolic device deployment system functions similar to the above, including having an elongated flexible deployment catheter having a first lumen extending therethrough and having proximal and distal ends. However, this example includes an expandable member having a contracted state and an expanded state and having at least two apertures therethrough. The expandable member is disposed in the first lumen and fixed in the first lumen by the expanded state. An engagement member can be partially disposed in at least one aperture, and have a distal loop extending through the retaining ring, and a proximal loop extending into the first lumen. An elongated detachment member can be slidably disposed within the first lumen and another of the apertures. Further, it can be disposed through the proximal and distal loops. The detachment member can also have a detachment member bump disposed on the detachment member between the proximal and distal loops. Similar to the above, when the detachment member is disposed within the distal loop and the distal loop is disposed within the retaining ring, the embolic device is in an engaged position. Then, when the detachment member is pulled proximally, the detachment member is withdrawn from the distal loop, and the detachment member bump contacts the proximal loop to assist in the disengagement of the distal loop from the retaining ring to thereby release the embolic device.
The embolic device deployment system can further include a retainer bump disposed on a proximal end of the engagement member proximal to the aperture. The retainer bump can prevent movement of the engagement member in the distal direction. The retainer bump can also have at least one dimension larger than the aperture. In another example, the retainer bump and the detachment member bump are sized to prevent interference with each other.
A method of deploying an embolic device can includes the steps of disposing an engagement member having distal loop located within a retaining ring of the embolic device. The embolic device can be retained by disposing a distal end of a detachment member in the engagement member distal loop and disposing the detachment member through an engagement member proximal loop. A detachment member bump can be located between the engagement member proximal and distal loops. To deploy, proximally withdraw the detachment member from the engagement member distal loop and contacting the detachment member bump with the engagement member proximal loop, deploying the embolic device. The method can include placing a catheter and the embolic device in a body lumen and moving the catheter and embolic device to a treatment site.
Other examples dispose a retainer bump on the engagement member and restricting distal movement of the engagement member with the retainer bump. In more detail, the engagement member and the detachment member can be disposed in a catheter have a notch formed therein. A portion of the engagement member can be located in the notch and then restricting the movement includes preventing the retainer bump from passing though the notch and engaging the retainer bump and the notch to restrict distal movement.
This invention is described with particularity in the appended claims. The above and further aspects of this invention may be better understood by referring to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
The drawing figures depict one or more implementations in accord with the present teachings, by way of example only, not by way of limitation. In the figures, like reference numerals refer to the same or similar elements.
The catheter 2 may have a lumen 4 extending from a proximal end 3 to a distal end 5. The catheter 2 may have a first inner diameter ID that forms the lumen 4. The catheter 2 can also include an engagement member notch 6 formed in at least one side of the catheter 2. The engagement member notch 6 can create a reduced inner diameter ID2 as compared to the first inner diameter ID. As shown in
The catheter size is selected in consideration of the size, shape, and directionality of the aneurysm or the body lumens the catheter must pass through to get to the treatment site. The catheter 2 may have a total usable length anywhere from 80 centimeters to 165 centimeters and a distal length of anywhere between 5 centimeters to 42 centimeters. The catheter 2 may have an inner diameter ID of anywhere between 0.015 and 0.025 inches. The outer diameter ID may also range in size and may narrow at either its proximal end or distal end. The outer diameter may be 2.7 French or less. While the distal end 5 of the catheter 2 as shown contains the embolic device 16, the catheter tip may be varied in shape and may curve at an angle.
Also included in the deployment system 100 is an elongated engagement member 8. The engagement member 8 is disposed within the lumen where its ends are constrained at angles. The engagement member 8, in one example, is formed of a small diameter resilient wire, such as nitinol, and includes an engagement member proximal loop 10 and distal loop 12. The engagement member 8 may be a wire device to maintain pushability so it can be manipulated with respect to the catheter 2. In addition, the deployment system 100 may include a retainer bump 22 on the engagement member 8. The retainer bump 22 may vary in shape, size and position in the catheter 2 so it can restrain the movement of the engagement member 8. This restraint, in one example, can be that the retainer bump 22 contacts the notch 6 which stops distal motion of the engagement member 8.
A detachment member 14 can also disposed through the lumen 4 of the catheter 2. The detachment member 14, in one example, may be an elongated retractable fiber that may begin at the proximal end 3 of the catheter 2 and pass through to the distal end 5. The detachment member 14 can pass through the engagement member proximal loop 10 and through the engagement member distal loop 12. The detachment member 14 can serve to interlock the embolic device 16 at the distal end 5 of the catheter 2 until such time as the detachment member 14 is withdrawn proximally. The detachment member 14 can be attached to a surgical device at its proximal end. The detachment member 14 preferably takes the form of a small diameter elongate filament, however, other forms such as wires or tubular structures are also suitable. While the detachment member 14 is preferably formed of nitinol, other metals and materials such as stainless steel, PTFE, nylon, ceramic or glass fiber and composites may also be suitable.
The detachment member 14 can also include a detachment member bump 24 disposed near the distal end of the detachment member 14. As noted in
The deployment system 100 may include an embolic device 16 which, in an example, takes the form of a helically wound embolic coil disposed at the distal end 5 of the catheter 2. While the embolic device 16 as is illustrated is shown as a helically wound coil, other types of embolic devices, such as filaments, braids, foams, expandable meshes and stents, could be delivered using the present deployment system and various other coil configurations could be delivered using this system. A coil may be relatively stiff and made of stainless steel or it may be soft and made of platinum. Extremely soft coils may be made with either a spiral shape or a more complex shape to promote deployment at the desired delivery location and to promote a higher packing density. The diameter of a coil is selected in consideration of the size of the aneurismal sac. Generally, the coil device 16 may be very small and thin, ranging in a variety of shapes and sizes. The coil device 16 may come in various random loop designs to conform to the aneurysm shape, and various deployments of the coil device may be used. A coil can vary in softness and in stiffness. The coil size can range from about twice the width of a human hair to less than one hair's width. The number of loops in a coil may vary. Platinum coils may be between 0.010 inches and 0.025 inches in diameter. A coil may vary from 1 to 60 centimeters in length, with some as long as 100 centimeters. A weld, or solder, bead 18 is formed at the distal end of the embolic device 16 to provide an atraumatic tip for the embolic device 16. The proximal end of the embolic device 16 is attached to the edge of a retaining ring 20. In an example, the retaining ring 20 is coaxial with the proximal end of the embolic device 16.
The detachment member 14 extends through the lumen 4 and passes through both the engagement member proximal and distal loops 10, 12. The detachment member bump 24 of the detachment member 14 is disposed between the proximal and distal engagement member loops 10, 12. The interlocking of the detachment member 14 and the engagement member distal loop 12, when the loop 12 is extended through the retaining ring 20, holds the coil 16 in place at the tip of the catheter 2.
As shown in
The detachment member bump 24 may further assist in disengaging the engagement member 8.
Both
In an example, a Tuohy-Borst type of clamp is attached on the proximal end of the delivery system 100 and serves to prevent movement of the detachment member 14 and the engagement member 8 until the surgeon wishes to deploy the coil 16. In a further example, the detachment member 14 can be removed completely from the catheter 2, taking the engagement member 8 with it. The catheter 2, in an example, can then be used to deploy other surgical tools, however, the ID may be too small. In another example, the catheter 2 can be used to guide a second catheter (not illustrated) over its body after the coil 18 is deployed. In this example, the small ID of the catheter 2 allows it to act as a type of guidewire for a larger catheter.
In
As is apparent, there are numerous modifications of the preferred example described above which will be readily apparent to one skilled in the art, such as many variations and modifications of the embolic device including numerous coil winding configurations, or alternatively other types of embolic devices. Also, there are many possible variations in the materials and configurations of the release mechanism. These modifications would be apparent to those having ordinary skill in the art to which this invention relates and are intended to be within the scope of the claims which follow.
This application is a Continuation of U.S. application Ser. No. 15/891,041, filed Feb. 7, 2018 which is a Divisional of U.S. application Ser. No. 14/454,773, filed Aug. 8, 2014 and issued as U.S. Pat. No. 9,918,718 on Mar. 20, 2018. Each of the parent applications are respectively incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3429408 | Maker et al. | Feb 1969 | A |
5108407 | Geremia et al. | Apr 1992 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5234437 | Sepetka | Aug 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5263964 | Purdy | Nov 1993 | A |
5334210 | Gianturco | Aug 1994 | A |
5350397 | Palermo et al. | Sep 1994 | A |
5382259 | Phelps et al. | Jan 1995 | A |
5392791 | Nyman | Feb 1995 | A |
5484409 | Atkinson et al. | Jan 1996 | A |
5569221 | Houser et al. | Oct 1996 | A |
5899935 | Ding | May 1999 | A |
5925059 | Palermo et al. | Jul 1999 | A |
6113622 | Hieshima | Sep 2000 | A |
6203547 | Nguyen et al. | Mar 2001 | B1 |
6391037 | Greenhalgh | May 2002 | B1 |
6454780 | Wallace | Sep 2002 | B1 |
6506204 | Mazzocchi | Jan 2003 | B2 |
6561988 | Turturro et al. | May 2003 | B1 |
7367987 | Balgobin et al. | May 2008 | B2 |
7371251 | Mitelberg et al. | May 2008 | B2 |
7371252 | Balgobin et al. | May 2008 | B2 |
7377932 | Mitelberg et al. | May 2008 | B2 |
7384407 | Rodriguez et al. | Jun 2008 | B2 |
7708754 | Balgobin et al. | May 2010 | B2 |
7708755 | Davis, III et al. | May 2010 | B2 |
7799052 | Balgobin et al. | Sep 2010 | B2 |
7811305 | Balgobin et al. | Oct 2010 | B2 |
7819891 | Balgobin et al. | Oct 2010 | B2 |
7819892 | Balgobin et al. | Oct 2010 | B2 |
7901444 | Slazas | Mar 2011 | B2 |
7985238 | Balgobin et al. | Jul 2011 | B2 |
8062325 | Mitelberg et al. | Nov 2011 | B2 |
8333796 | Tompkins et al. | Dec 2012 | B2 |
8926650 | Que et al. | Jan 2015 | B2 |
8956381 | Que et al. | Feb 2015 | B2 |
9155540 | Lorenzo | Oct 2015 | B2 |
9232992 | Heidner | Jan 2016 | B2 |
9314326 | Wallace et al. | Apr 2016 | B2 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9532873 | Kelley | Jan 2017 | B2 |
9533344 | Monetti et al. | Jan 2017 | B2 |
9539011 | Chen et al. | Jan 2017 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9539122 | Burke et al. | Jan 2017 | B2 |
9539382 | Nelson | Jan 2017 | B2 |
9549830 | Bruszewski et al. | Jan 2017 | B2 |
9554805 | Tompkins et al. | Jan 2017 | B2 |
9561125 | Bowman et al. | Feb 2017 | B2 |
9572982 | Burnes et al. | Feb 2017 | B2 |
9579484 | Barnell | Feb 2017 | B2 |
9585642 | Dinsmoor et al. | Mar 2017 | B2 |
9615832 | Bose et al. | Apr 2017 | B2 |
9615951 | Bennett et al. | Apr 2017 | B2 |
9622753 | Cox | Apr 2017 | B2 |
9636115 | Henry et al. | May 2017 | B2 |
9636439 | Chu et al. | May 2017 | B2 |
9642675 | Werneth et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9655645 | Staunton | May 2017 | B2 |
9655989 | Cruise et al. | May 2017 | B2 |
9662120 | Lagodzki et al. | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9662238 | Dwork et al. | May 2017 | B2 |
9662425 | Lilja et al. | May 2017 | B2 |
9668898 | Wong | Jun 2017 | B2 |
9675477 | Thompson | Jun 2017 | B2 |
9675782 | Connolly | Jun 2017 | B2 |
9676022 | Ensign et al. | Jun 2017 | B2 |
9692557 | Murphy | Jun 2017 | B2 |
9693852 | Lam et al. | Jul 2017 | B2 |
9700262 | Janik et al. | Jul 2017 | B2 |
9700399 | Acosta-Acevedo | Jul 2017 | B2 |
9717421 | Griswold et al. | Aug 2017 | B2 |
9717500 | Tieu et al. | Aug 2017 | B2 |
9717502 | Teoh et al. | Aug 2017 | B2 |
9724103 | Cruise et al. | Aug 2017 | B2 |
9724526 | Strother et al. | Aug 2017 | B2 |
9750565 | Bloom et al. | Sep 2017 | B2 |
9757260 | Greenan | Sep 2017 | B2 |
9764111 | Gulachenski | Sep 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9770577 | Li et al. | Sep 2017 | B2 |
9775621 | Tompkins et al. | Oct 2017 | B2 |
9775706 | Peterson et al. | Oct 2017 | B2 |
9775732 | Khenansho | Oct 2017 | B2 |
9788800 | Mayoras, Jr. | Oct 2017 | B2 |
9795391 | Saatchi et al. | Oct 2017 | B2 |
9801980 | Karino et al. | Oct 2017 | B2 |
9808599 | Bowman et al. | Nov 2017 | B2 |
9833252 | Sepetka et al. | Dec 2017 | B2 |
9833604 | Lam et al. | Dec 2017 | B2 |
9833625 | Waldhauser et al. | Dec 2017 | B2 |
9918718 | Lorenzo | Mar 2018 | B2 |
10149676 | Mirigian et al. | Dec 2018 | B2 |
10285710 | Lorenzo et al. | May 2019 | B2 |
10292851 | Gorochow | May 2019 | B2 |
10420563 | Hebert et al. | Sep 2019 | B2 |
10517604 | Bowman et al. | Dec 2019 | B2 |
10668258 | Calhoun et al. | Jun 2020 | B1 |
10806402 | Cadieu et al. | Oct 2020 | B2 |
10806461 | Lorenzo | Oct 2020 | B2 |
20010049519 | Holman et al. | Dec 2001 | A1 |
20020072705 | Vrba et al. | Jun 2002 | A1 |
20020165569 | Ramzipoor et al. | Nov 2002 | A1 |
20030009208 | Snyder et al. | Jan 2003 | A1 |
20040034363 | Wilson et al. | Feb 2004 | A1 |
20040059367 | Davis et al. | Mar 2004 | A1 |
20040087964 | Diaz et al. | May 2004 | A1 |
20060025801 | Lulo et al. | Feb 2006 | A1 |
20060064151 | Guterman | Mar 2006 | A1 |
20060100687 | Fahey et al. | May 2006 | A1 |
20060116711 | Elliott et al. | Jun 2006 | A1 |
20060116714 | Sepetka et al. | Jun 2006 | A1 |
20060135986 | Wallace et al. | Jun 2006 | A1 |
20060206139 | Tekulve | Sep 2006 | A1 |
20060241685 | Wilson et al. | Oct 2006 | A1 |
20060247677 | Cheng et al. | Nov 2006 | A1 |
20060276824 | Mitelberg et al. | Dec 2006 | A1 |
20060276825 | Mitelberg et al. | Dec 2006 | A1 |
20060276826 | Mitelberg et al. | Dec 2006 | A1 |
20060276827 | Mitelberg et al. | Dec 2006 | A1 |
20060276830 | Balgobin et al. | Dec 2006 | A1 |
20060276833 | Balgobin et al. | Dec 2006 | A1 |
20070010850 | Balgobin et al. | Jan 2007 | A1 |
20070055302 | Henry et al. | Mar 2007 | A1 |
20070083132 | Sharrow | Apr 2007 | A1 |
20070233168 | Davis et al. | Oct 2007 | A1 |
20070270903 | Davis, III et al. | Nov 2007 | A1 |
20080027561 | Mitelberg et al. | Jan 2008 | A1 |
20080045997 | Balgobin et al. | Feb 2008 | A1 |
20080097462 | Mitelberg et al. | Apr 2008 | A1 |
20080119887 | Que et al. | May 2008 | A1 |
20080269721 | Balgobin et al. | Oct 2008 | A1 |
20080281350 | Sepetka | Nov 2008 | A1 |
20080300616 | Que et al. | Dec 2008 | A1 |
20080306503 | Que | Dec 2008 | A1 |
20090062726 | Ford et al. | Mar 2009 | A1 |
20090099592 | Buiser et al. | Apr 2009 | A1 |
20090312748 | Johnson et al. | Dec 2009 | A1 |
20100094395 | Kellett | Apr 2010 | A1 |
20100114017 | Lenker et al. | May 2010 | A1 |
20100206453 | Leeflang et al. | Aug 2010 | A1 |
20100324649 | Mattsson | Dec 2010 | A1 |
20110092997 | Kang | Apr 2011 | A1 |
20110118776 | Chen et al. | May 2011 | A1 |
20110202085 | Loganathan et al. | Aug 2011 | A1 |
20110295303 | Freudenthal | Dec 2011 | A1 |
20120035707 | Mitelberg et al. | Feb 2012 | A1 |
20120041472 | Tan et al. | Feb 2012 | A1 |
20120083868 | Shrivastava et al. | Apr 2012 | A1 |
20120172913 | Kurrus et al. | Jul 2012 | A1 |
20120172921 | Yamanaka et al. | Jul 2012 | A1 |
20120179194 | Wilson et al. | Jul 2012 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20120289772 | O'Connell et al. | Nov 2012 | A1 |
20130066413 | Jin et al. | Mar 2013 | A1 |
20130296915 | Bodewadt | Nov 2013 | A1 |
20130325054 | Watson | Dec 2013 | A1 |
20140058435 | Jones et al. | Feb 2014 | A1 |
20140135812 | Divino et al. | May 2014 | A1 |
20140200607 | Sepetka et al. | Jul 2014 | A1 |
20140243883 | Tsukashima et al. | Aug 2014 | A1 |
20140277084 | Mirigian et al. | Sep 2014 | A1 |
20140277085 | Mirigian et al. | Sep 2014 | A1 |
20140277092 | Teoh et al. | Sep 2014 | A1 |
20140277093 | Guo et al. | Sep 2014 | A1 |
20140277100 | Kang | Sep 2014 | A1 |
20150005808 | Chouinard et al. | Jan 2015 | A1 |
20150025562 | Dinh et al. | Jan 2015 | A1 |
20150182227 | Le et al. | Jul 2015 | A1 |
20150230802 | Lagodzki et al. | Aug 2015 | A1 |
20150335333 | Jones et al. | Nov 2015 | A1 |
20160008003 | Kleshinski et al. | Jan 2016 | A1 |
20160022275 | Garza | Jan 2016 | A1 |
20160022445 | Ruvalcaba et al. | Jan 2016 | A1 |
20160045347 | Smouse et al. | Feb 2016 | A1 |
20160157869 | Elgård et al. | Jun 2016 | A1 |
20160228125 | Pederson, Jr. et al. | Aug 2016 | A1 |
20160278782 | Anderson et al. | Sep 2016 | A1 |
20160310304 | Mialhe | Oct 2016 | A1 |
20160331383 | Hebert et al. | Nov 2016 | A1 |
20160346508 | Williams et al. | Dec 2016 | A1 |
20170007264 | Cruise et al. | Jan 2017 | A1 |
20170007265 | Guo et al. | Jan 2017 | A1 |
20170020670 | Murray et al. | Jan 2017 | A1 |
20170020700 | Bienvenu et al. | Jan 2017 | A1 |
20170027640 | Kunis et al. | Feb 2017 | A1 |
20170027692 | Bonhoeffer et al. | Feb 2017 | A1 |
20170027725 | Argentine | Feb 2017 | A1 |
20170035436 | Morita | Feb 2017 | A1 |
20170035567 | Duffy | Feb 2017 | A1 |
20170042548 | Lam | Feb 2017 | A1 |
20170049596 | Schabert | Feb 2017 | A1 |
20170071737 | Kelley | Mar 2017 | A1 |
20170072452 | Monetti et al. | Mar 2017 | A1 |
20170079671 | Morero et al. | Mar 2017 | A1 |
20170079680 | Bowman | Mar 2017 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170079812 | Lam et al. | Mar 2017 | A1 |
20170079817 | Sepetka et al. | Mar 2017 | A1 |
20170079819 | Pung et al. | Mar 2017 | A1 |
20170079820 | Lam et al. | Mar 2017 | A1 |
20170086851 | Wallace et al. | Mar 2017 | A1 |
20170086996 | Peterson et al. | Mar 2017 | A1 |
20170095258 | Tassoni et al. | Apr 2017 | A1 |
20170095259 | Tompkins et al. | Apr 2017 | A1 |
20170100126 | Bowman et al. | Apr 2017 | A1 |
20170100141 | Morero et al. | Apr 2017 | A1 |
20170100143 | Granfield | Apr 2017 | A1 |
20170100183 | Iaizzo et al. | Apr 2017 | A1 |
20170105739 | Dias et al. | Apr 2017 | A1 |
20170113023 | Steingisser et al. | Apr 2017 | A1 |
20170147765 | Mehta | May 2017 | A1 |
20170151032 | Loisel | Jun 2017 | A1 |
20170165062 | Rothstein | Jun 2017 | A1 |
20170165065 | Rothstein et al. | Jun 2017 | A1 |
20170165454 | Tuohy et al. | Jun 2017 | A1 |
20170172581 | Bose et al. | Jun 2017 | A1 |
20170172766 | Vong et al. | Jun 2017 | A1 |
20170172772 | Khenansho | Jun 2017 | A1 |
20170189033 | Sepetka et al. | Jul 2017 | A1 |
20170189035 | Porter | Jul 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170216484 | Cruise et al. | Aug 2017 | A1 |
20170224350 | Shimizu et al. | Aug 2017 | A1 |
20170224355 | Bowman et al. | Aug 2017 | A1 |
20170224467 | Piccagli et al. | Aug 2017 | A1 |
20170224511 | Dwork et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170231749 | Perkins et al. | Aug 2017 | A1 |
20170245864 | Franano et al. | Aug 2017 | A1 |
20170245885 | Lenker | Aug 2017 | A1 |
20170252064 | Staunton | Sep 2017 | A1 |
20170258476 | Hayakawa et al. | Sep 2017 | A1 |
20170265983 | Lam et al. | Sep 2017 | A1 |
20170281192 | Tieu et al. | Oct 2017 | A1 |
20170281331 | Perkins et al. | Oct 2017 | A1 |
20170281344 | Costello | Oct 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170281912 | Melder et al. | Oct 2017 | A1 |
20170290593 | Cruise et al. | Oct 2017 | A1 |
20170290654 | Sethna | Oct 2017 | A1 |
20170296324 | Argentine | Oct 2017 | A1 |
20170296325 | Marrocco et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170304041 | Argentine | Oct 2017 | A1 |
20170304097 | Corwin et al. | Oct 2017 | A1 |
20170304595 | Nagasrinivasa et al. | Oct 2017 | A1 |
20170312109 | Le | Nov 2017 | A1 |
20170312484 | Shipley et al. | Nov 2017 | A1 |
20170316561 | Helm et al. | Nov 2017 | A1 |
20170319826 | Bowman et al. | Nov 2017 | A1 |
20170333228 | Orth et al. | Nov 2017 | A1 |
20170333236 | Greenan | Nov 2017 | A1 |
20170333678 | Bowman et al. | Nov 2017 | A1 |
20170340383 | Bloom et al. | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20170348514 | Guyon et al. | Dec 2017 | A1 |
20170367712 | Johnson et al. | Dec 2017 | A1 |
20180028779 | von Oepen et al. | Feb 2018 | A1 |
20180036508 | Ozasa et al. | Feb 2018 | A1 |
20180078263 | Stoppenhagen et al. | Mar 2018 | A1 |
20180228493 | Aguilar et al. | Aug 2018 | A1 |
20180250150 | Majercak et al. | Sep 2018 | A1 |
20180280667 | Keren | Oct 2018 | A1 |
20180289375 | Hebert et al. | Oct 2018 | A1 |
20180296222 | Hebert et al. | Oct 2018 | A1 |
20180325706 | Hebert et al. | Nov 2018 | A1 |
20190142565 | Follmer et al. | May 2019 | A1 |
20190159784 | Sananes et al. | May 2019 | A1 |
20190192162 | Lorenzo et al. | Jun 2019 | A1 |
20190231566 | Tassoni et al. | Aug 2019 | A1 |
20190255290 | Snyder et al. | Aug 2019 | A1 |
20190314033 | Mirigian et al. | Oct 2019 | A1 |
20190328398 | Lorenzo | Oct 2019 | A1 |
20200138448 | Dasnurkar et al. | May 2020 | A1 |
20200147347 | Cottone | May 2020 | A1 |
20200187951 | Blumenstyk | Jun 2020 | A1 |
20200229957 | Bardsley et al. | Jul 2020 | A1 |
20200397444 | Montidoro et al. | Dec 2020 | A1 |
20210001082 | Lorenzo et al. | Jan 2021 | A1 |
20210045759 | Mehri et al. | Feb 2021 | A1 |
20210085498 | Nygaard et al. | Mar 2021 | A1 |
20210186513 | Hoshino et al. | Jun 2021 | A1 |
20210196281 | Blumenstyk et al. | Jul 2021 | A1 |
20210353299 | Hamel et al. | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
1985244 | Oct 2008 | EP |
2498691 | Sep 2012 | EP |
2014-399 | Jan 2014 | EP |
3092956 | Nov 2016 | EP |
3501427 | Jun 2019 | EP |
3799803 | Apr 2021 | EP |
3854321 | Jul 2021 | EP |
1188414 | Mar 2022 | EP |
4119065 | Jan 2023 | EP |
2006-334408 | Dec 2006 | JP |
2012-523943 | Oct 2012 | JP |
2013-78584 | May 2013 | JP |
WO 2008064209 | May 2008 | WO |
WO 2009132045 | Oct 2009 | WO |
WO 2012158152 | Nov 2012 | WO |
WO 2016014985 | Jan 2016 | WO |
WO 2017066386 | Apr 2017 | WO |
WO 2018022186 | Feb 2018 | WO |
WO 2020148768 | Jul 2020 | WO |
Entry |
---|
Extended European Search Report dated Nov. 18, 2020 in European Patent Application No. 20178690. |
Extended European Search Report dated Dec. 18, 2020 in European Patent Application No. 20181340. |
Notification of Reasons for Refusal issued in corresponding Japanese Patent Application No. 2015-156969 dated May 5, 2019 (English translation only). |
European Search Report dated Dec. 16, 2015, issued in corresponding Application No. 15180230.3-1654. |
Number | Date | Country | |
---|---|---|---|
20210022748 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14454773 | Aug 2014 | US |
Child | 15891041 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15891041 | Feb 2018 | US |
Child | 17065612 | US |