The present invention generally relates to implantable medical devices, and more particularly, to engagement features for mechanically releasably securing implantable medical devices to a delivery system.
Aneurysms can be intravascularly treated by delivering a treatment device to the aneurysm to fill the sac of the aneurysm with embolic material and/or block the neck of the aneurysm to inhibit blood flow into the aneurysm. When filling the aneurysm sac, the embolic material can promote blood clotting to create a thrombotic mass within the aneurysm. When treating the aneurysm neck without substantially filling the aneurysm sac, blood flow into the neck of the aneurysm can be inhibited to induce venous stasis in the aneurysm and facilitate natural formation of a thrombotic mass within the aneurysm.
In some current treatments, multiple embolic coils are used to either fill the aneurysm sac or treat the entrance of the aneurysm neck. A common challenge among embolic coil treatments is that implanted coils and implanted portions of partially implanted coils can become entangled and difficult to reposition. In some instances, a physician may not be able to retract a partially implanted coil and may be forced to position the coil in a non-ideal location. Improperly positioning embolic coils at the aneurysm neck can potentially have the adverse effect of impeding the flow of blood in the adjoining blood vessel, particularly if the entrance and/or sac is overpacked. If a portion of the non-ideally implanted coil becomes dislodged, it can enter the neighboring blood vessel and promote clot formation, which can ultimately lead to an obstruction that is tethered to the aneurysm and therefor extremely difficult to treat. Conversely, if the entrance and/or sac is insufficiently packed, blood flow can persist into the aneurysm.
In some current treatments, an embolic coil is attached to a tubular delivery member and delivered via a delivery catheter to an aneurysm. During delivery, the embolic coil can be engaged to the delivery member's implant engagement/deployment system (referred to herein equivalently as an “engagement system” or “deployment system”). When the embolic coil is in position, the deployment system can release the coil, the coil can be left implanted, and the delivery member can be retracted. Some treatments utilize a mechanical engagement/deployment system that can be actuated by a physician to release the implant by pulling one or more wires or other elongated members referred to generically herein as a “pull wire”.
Some of the challenges that have been associated with delivering and deploying embolic coils with delivery members having mechanical engagement systems include premature release of a coil and movement of the delivery member due to push back from densely packed treatment sites.
There is therefore a need for improved methods, devices, and systems to facilitate implantation of embolic coils and other implants facing similar challenges.
It is an object of the present invention to provide systems, devices, and methods to meet the above-stated needs. In some examples presented herein, separation of coil windings within an embolic coil is reduced or prevented with a stretch resistant fiber that is positioned within the lumen of the coil. Reducing or preventing the separation of coil windings can in some cases prevent an implanted portion of a partially implanted coil from being tangled with implanted coils and thereby make it possible to more easily reposition and/or extract some or all of the coil. In some examples presented herein, during delivery of the embolic coil the distal end of the pull wire is supported by an engagement/detachment feature (referred to herein equivalently as “engagement feature”, “detachment feature”, or “key”) affixed to the proximal end of the embolic coil. The support provided by the key can in some cases reduce the likelihood that the embolic coil is prematurely released. In some examples presented herein, the embolic implant can have a highly flexible proximal portion. The flexibility of the embolic implant can in some cases reduce the force on the delivery member due to push back from densely packed treatment sites and thereby reduce movement of the delivery member due to the push back.
To meet some or all of the needs, an implant having an embolic coil, a stretch resistant fiber extended through the coil, and a detachment feature/key at the coil's proximal end is provided. The stretch resistant fiber can be effective to limit separation of windings of the embolic coil. The key can provide an attachment for securing the embolic coil to an engagement system of a delivery tube and for securing the stretch resistant fiber at the proximal end of the embolic coil.
An example method for treating an aneurysm can include one or more of the following steps presented in no particular order, and the method can include additional steps not included here. Some or all of an implant having an embolic coil and a stretch resistant fiber can be positioned within the aneurysm. A portion of the embolic coil can be retracted from the aneurysm. The portion can be inhibited from lengthening by the stretch resistant fiber when the portion is retraced from the aneurysm. The embolic coil can be bent, and the stretch resistant fiber can limit separation of the windings of the embolic coil at the bend.
The stretch resistant fiber can be positioned to extend within a lumen of the embolic coil. The stretch resistant fiber can under tension along a majority of the length of the stretch resistant fiber.
The implant can be secured to a delivery system with a key engaged to the stretch resistant fiber. To secure the implant to the delivery system, a loop wire of the delivery system can be positioned through the key, and a pull wire can be positioned through an opening in the loop wire. When the implant is secured to the delivery system, the pull wire can be supported by the key both in the proximal direction from the loop wire and the distal direction from the loop wire.
During delivery and/or positioning of the implant, the key can be visualized radiographically.
The key can be released from the delivery system, thereby releasing the implant from the delivery system. When the implant is released, the key can remain attached to the implant.
An example embolic implant can include an embolic coil, a detachment feature, and a stretch resistant fiber. The detachment feature can be affixed to the embolic coil at the proximal end of the embolic coil. The stretch resistant fiber can be engaged to the detachment feature, extend through the lumen of the embolic coil, and can be affixed to the embolic coil at the distal end of the embolic coil. Configured thusly, the stretch resistant fiber can be effective to limit separation of windings of the embolic coil as the embolic coil is reshaped.
The stretch resistant fiber can be a suture. The stretch resistant fiber can be inelastic.
The detachment feature can be radiopaque.
The detachment feature can have an opening through which the stretch resistant fiber passes. The opening can extend proximally from a proximal end of the embolic coil.
The detachment feature can have a singular opening that is sized to receive a loop wire of a mechanical delivery system and through which the stretch resistant fiber passes.
Alternatively, the detachment feature can have two separate openings: a first opening through which the stretch resistant fiber passes and a second opening sized to receive a loop wire of a mechanical delivery system. The first opening can be at least partially positioned within the lumen of the embolic coil. The second opening can be at least partially positioned in the proximal direction from the proximal end of the embolic coil.
An example system can include the example embolic implant having the detachment feature with two separate openings and a mechanical delivery system including a loop wire and a pull wire. The stretch resistant fiber can pass through one of the two openings, and the loop wire can pass through the other of the two openings. The pull wire can be positioned through an opening in the loop wire, thereby securing the implant to the mechanical delivery system with the loop wire. The detachment feature can further include a bridge positioned between the two openings of the detachment feature, and the bridge can support a portion of the pull wire that is in the distal direction from the loop opening in the loop wire.
The detachment feature can have a proximal portion disposed proximally from the lumen of the embolic coil and a distal portion disposed within the lumen. The proximal portion can have a width that measures greater than the inner diameter of the embolic coil lumen, and the distal portion can have a width that measures about equal to the inner diameter of the embolic coil lumen.
An example method for constructing or designing an embolic implant such as an example implant as described herein can include one or more of the following steps presented in no particular order, and the method can include additional steps not included here. A detachment feature can be cut from a flat sheet material. One or more openings can be cut from the detachment feature. A stretch resistant fiber can be threaded through an opening in the detachment feature. The stretch resistant fiber can be extended through a lumen of an embolic coil. The detachment feature can be affixed at one end of the embolic coil. The stretch resistant fiber can be affixed at the other end of the embolic coil. Tension can be provided along the stretch resistant fiber between the detachment feature and the second end of the embolic coil.
A portion of a mechanical deployment system can be extended through an opening in the detachment feature to engage the detachment feature to a delivery tube. The mechanical deployment system can be extended through the same opening through which the stretch resistant fiber is threaded or an opening in the detachment feature that is separate from the opening through which the stretch resistant fiber is threaded.
The detachment feature can be cut from a radiopaque flat sheet material.
A distal portion of the detachment feature can be inserted within the lumen of the embolic coil and a proximal portion of the detachment feature can be extended proximally from the proximal end of the embolic coil. The embolic coil and the detachment feature can be selected such that the proximal portion of the detachment feature is wider than the inner diameter of the embolic coil's lumen and the distal portion of the detachment feature is about equal to the inner diameter of the embolic coil's lumen.
To affix the detachment feature to the embolic coil, the detachment feature can be welded to the embolic coil.
The above and further aspects of this invention are further discussed with reference to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the invention. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation.
An object of the present invention is to attain more precise and repeatable implant detachment. More specifically, it is an object of the present invention to facilitate implantation of embolic coils and other implants facing challenges such as partially implanted implants becoming difficult to reposition, delivery systems shifting position due to push back during implantation, and/or implants releasing prematurely. To meet some or all of these needs, example implants can include a stretch resistant fiber to limit stretching and other deformation of the embolic portion (e.g. embolic coil) of the implant and a detachment feature to which the stretch resistant fiber can be secured and to which a delivery system can detachably attach.
To facilitate repositioning of the implant, the stretch resistant fiber can extend through the embolic coil and limit separation of windings of the coil when the coil is bent and pulled. By limiting the separation of the windings, the embolic coil is less likely to become tangled when partially implanted and less likely to be stretched or otherwise deformed when retracted when partially implanted. The embolic coil can thereby be more easily repositioned. In some examples, the detachment feature can include two separate openings, one for securing the stretch resistant fiber, and another for being engaged to an engagement system. The dual opening detachment feature can reduce potential manufacturing challenges to provide for reliable stretch resistant fiber positioning and therefore more reliably provide implants that can be more easily repositioned.
To reduce effects of push back during implantation, the detachment feature can be sized and affixed to the embolic coil to provide an embolic coil implant with a highly flexible proximal section. An embolic coil implant having a highly flexible proximal section can reduce push back force on the delivery tube and thereby mitigate the effects of the delivery tube shifting. Additionally, or alternatively, the detachment feature can be sized to mate with a delivery tube having a highly flexible distal section, and the highly flexible distal section of the delivery tube can mitigate the effects of the delivery tube shifting. When an embolic coil implant having a highly flexible proximal section is mated to a delivery tube having a highly flexible distal portion, the combination of the flexible distal section of the delivery tube and the flexible proximal section of the implant can further mitigate the effects of delivery tube shifting.
To reduce instances of premature deployment, the detachment feature can include a bridge to support a pull wire. The detachment feature can be detachably attached to a mechanical engagement/deployment system on a delivery tube. The detachment feature can include an opening through which a loop wire of a mechanical engagement system can pass. In some examples, the detachment feature can further include a bridge positioned distally from the opening on which a distal portion of the pull wire can rest. The bridge can inhibit the pull wire from deforming due to the engagement with the loop wire and can therefore reduce the likelihood that the implant is prematurely released due to bending of the pull wire.
The detachment feature 18a can be tapered as it extends further within the lumen 13 of the embolic coil 12 to allow the embolic coil 12 to have additional flexibility where the embolic coil 12 surrounds the tapered region. The detachment feature 18a can also have a substantially flat profile, providing even greater flexibility in directions into and out of the plane of the image.
The detachment feature 18a can be sufficiently secured with attachments 42 to the coil 12 without fusing any windings of the coil 12 (as illustrated) or by fusing a small number of windings (e.g. 5 or fewer windings). Compared to known solutions wherein typically ten or more windings are soldered together (with limited control over the number of fused windings), the attachments 42 to the coil 12 can be realized with significantly fewer fused coil windings. By reducing the number of windings that are fused, the proximal section of the implant 10a can have increased flexibility compared to known designs which rely on fusing windings from the proximal end of the embolic coil.
After the detachment feature 18a, 18b is formed, the stretch resistant fiber 16 can be threaded through the distal opening 24a of the dual opening detachment feature 18a or the single opening 26b of the single opening detachment feature 18b.
An advantage of the dual opening detachment feature 18a is that the stretch resistant fiber 16 is less likely to become looped over a non-optimal section of the detachment feature 18a during manufacturing of the implant 10a illustrated in
During an aneurysm occlusion treatment, lack of flexibility of the proximal section of known embolic implants and/or lack of flexibility of a distal portion of a delivery tube can cause the delivery tube to pull back from the treatment site or otherwise move out of position while the implant is being placed in the aneurysm. A delivery tube having a more flexible distal portion and an implant having a more flexible proximal section, alone or in combination, can therefore provide a more stable system for delivering the implant. Flexible structures, however can tend deform or expand when manipulated. The stretch resistant fiber 16 and/or detachment feature 18 alone or in combination can support the coil 12 and inhibit deformation and expansion of the coil 12 according to the principles described herein. An object of the present invention is to provide an implant 10 having a highly flexible proximal section and/or configured to mate with a delivery tube 300 having a highly flexible distal portion.
The detachment feature 18 can include a bridge 28 positioned distally from the loop wire opening 405 and positioned to support a distal portion of the pull wire 140 that is distal of where the loop wire opening 405 is supported by the pull wire 140. Configured thusly, the bridge 28 can support the distal portion of the pull wire 140 such that when the loop wire 400 tugs on the pull wire 140 at the loop opening 405, the bridge 28 can inhibit the distal portion of the pull wire 140 from deforming. The proximal tab 38 can positioned to support a portion of the pull wire 140 that is proximal of where the loop wire opening 405 is supported by the pull wire 140. The combination of the bridge 28 and the proximal tab 38 can inhibit the pull wire 140 from deforming due to forces applied by the loop wire 400. The delivery tube 300 can be detachably attached to the implant 10 as illustrated in
The bridge 28 can separate a proximal opening 22a and a distal opening 24a in a dual opening implant as illustrated. It is also contemplated that a single opening implant can be adapted to include a structure that can function to support the distal portion of the pull wire 140 similar to as described in relation to the illustrated bridge 28. Alternative bridge structures are therefore intended to be within the scope of the present invention.
Compared to the implant 10a illustrated in
The implant 10c illustrated in
As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values±20% of the recited value, e.g. “about 90%” may refer to the range of values from 71% to 99%.
The descriptions contained herein are examples of embodiments of the invention and are not intended in any way to limit the scope of the invention. As described herein, the invention contemplates many variations and modifications of the implant and methods for making and using the same, including alternative materials, alternative geometries of component parts, alternative positioning of component parts in relation to each other, etc. These modifications would be apparent to those having ordinary skill in the art to which this invention relates and are intended to be within the scope of the claims which follow.
The present application is a divisional application of U.S. patent application Ser. No. 16/573,469 filed Sep. 17, 2019. The entire contents of which are hereby incorporated by reference. This application is also related to continuation in part application, U.S. patent application Ser. No. 17/375,482 filed Jul. 14, 2021.
Number | Name | Date | Kind |
---|---|---|---|
3429408 | Maker et al. | Feb 1969 | A |
5108407 | Geremia et al. | Apr 1992 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5250071 | Palermo | Oct 1993 | A |
5263964 | Purdy | Nov 1993 | A |
5334210 | Gianturco | Aug 1994 | A |
5350397 | Palermo et al. | Sep 1994 | A |
5382259 | Phelps et al. | Jan 1995 | A |
5484409 | Atkinson et al. | Jan 1996 | A |
5569221 | Houser et al. | Oct 1996 | A |
5582619 | Ken | Dec 1996 | A |
5853418 | Ken et al. | Dec 1998 | A |
5899935 | Ding | May 1999 | A |
5925059 | Palermo et al. | Jul 1999 | A |
6113622 | Hieshima | Sep 2000 | A |
6203547 | Nguyen et al. | Mar 2001 | B1 |
6391037 | Greenhalgh | May 2002 | B1 |
6454780 | Wallace | Sep 2002 | B1 |
6506204 | Mazzocchi | Jan 2003 | B2 |
6561988 | Turturro et al. | May 2003 | B1 |
7367987 | Balgobin et al. | May 2008 | B2 |
7371251 | Mitelberg et al. | May 2008 | B2 |
7371252 | Balgobin et al. | May 2008 | B2 |
7377932 | Mitelberg et al. | May 2008 | B2 |
7708754 | Balgobin et al. | May 2010 | B2 |
7708755 | Davis, III et al. | May 2010 | B2 |
7799052 | Balgobin et al. | Sep 2010 | B2 |
7811305 | Balgobin et al. | Oct 2010 | B2 |
7819891 | Balgobin et al. | Oct 2010 | B2 |
7819892 | Balgobin et al. | Oct 2010 | B2 |
7901444 | Slazas | Mar 2011 | B2 |
7942894 | West | May 2011 | B2 |
7985238 | Balgobin et al. | Jul 2011 | B2 |
8062325 | Mitelberg et al. | Nov 2011 | B2 |
8333796 | Tompkins et al. | Dec 2012 | B2 |
8449591 | Litzenberg et al. | May 2013 | B2 |
8974488 | Tan et al. | Mar 2015 | B2 |
9155540 | Lorenzo | Oct 2015 | B2 |
9232992 | Heidner | Jan 2016 | B2 |
9314326 | Wallace et al. | Apr 2016 | B2 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9532873 | Kelley | Jan 2017 | B2 |
9533344 | Monetti et al. | Jan 2017 | B2 |
9539011 | Chen et al. | Jan 2017 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9539122 | Burke et al. | Jan 2017 | B2 |
9539382 | Nelson | Jan 2017 | B2 |
9549830 | Bruszewski et al. | Jan 2017 | B2 |
9554805 | Tompkins et al. | Jan 2017 | B2 |
9561125 | Bowman et al. | Feb 2017 | B2 |
9572982 | Burnes et al. | Feb 2017 | B2 |
9579484 | Barnell | Feb 2017 | B2 |
9585642 | Dinsmoor et al. | Mar 2017 | B2 |
9615832 | Bose et al. | Apr 2017 | B2 |
9615951 | Bennett et al. | Apr 2017 | B2 |
9622753 | Cox | Apr 2017 | B2 |
9636115 | Henry et al. | May 2017 | B2 |
9636439 | Chu et al. | May 2017 | B2 |
9642675 | Werneth et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9655645 | Staunton | May 2017 | B2 |
9655989 | Cruise et al. | May 2017 | B2 |
9662120 | Lagodzki et al. | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9662238 | Dwork et al. | May 2017 | B2 |
9662425 | Lilja et al. | May 2017 | B2 |
9668898 | Wong | Jun 2017 | B2 |
9675477 | Thompson | Jun 2017 | B2 |
9675782 | Connolly | Jun 2017 | B2 |
9676022 | Ensign et al. | Jun 2017 | B2 |
9692557 | Murphy | Jun 2017 | B2 |
9693852 | Lam et al. | Jul 2017 | B2 |
9700262 | Janik et al. | Jul 2017 | B2 |
9700399 | Acosta-Acevedo | Jul 2017 | B2 |
9717421 | Griswold et al. | Aug 2017 | B2 |
9717500 | Tieu et al. | Aug 2017 | B2 |
9717502 | Teoh et al. | Aug 2017 | B2 |
9724103 | Cruise et al. | Aug 2017 | B2 |
9724526 | Strother et al. | Aug 2017 | B2 |
9750565 | Bloom et al. | Sep 2017 | B2 |
9757260 | Greenan | Sep 2017 | B2 |
9764111 | Gulachenski | Sep 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9770577 | Li et al. | Sep 2017 | B2 |
9775621 | Tompkins et al. | Oct 2017 | B2 |
9775706 | Paterson et al. | Oct 2017 | B2 |
9775732 | Khenansho | Oct 2017 | B2 |
9788800 | Mayoras, Jr. | Oct 2017 | B2 |
9795391 | Saatchi et al. | Oct 2017 | B2 |
9801980 | Karino et al. | Oct 2017 | B2 |
9808599 | Bowman et al. | Nov 2017 | B2 |
9833252 | Sepetka et al. | Dec 2017 | B2 |
9833604 | Lam et al. | Dec 2017 | B2 |
9833625 | Waldhauser et al. | Dec 2017 | B2 |
9918718 | Lorenzo | Mar 2018 | B2 |
10034670 | Elgård et al. | Jul 2018 | B2 |
10282851 | Gorochow | May 2019 | B2 |
10285710 | Lorenzo et al. | May 2019 | B2 |
10517604 | Bowman et al. | Dec 2019 | B2 |
10653425 | Gorochow et al. | May 2020 | B1 |
10806402 | Cadieu et al. | Oct 2020 | B2 |
10806461 | Lorenzo | Oct 2020 | B2 |
10806462 | Lorenzo | Oct 2020 | B2 |
10888331 | Pederson et al. | Jan 2021 | B2 |
11051928 | Casey et al. | Jul 2021 | B2 |
20010049519 | Holman et al. | Dec 2001 | A1 |
20020072705 | Vrba et al. | Jun 2002 | A1 |
20020165569 | Ramzipoor et al. | Nov 2002 | A1 |
20040002731 | Aganon et al. | Jan 2004 | A1 |
20040034363 | Wilson et al. | Feb 2004 | A1 |
20040059367 | Davis et al. | Mar 2004 | A1 |
20040087964 | Diaz et al. | May 2004 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20060025802 | Sowers | Feb 2006 | A1 |
20060064151 | Guterman | Mar 2006 | A1 |
20060116711 | Elliott et al. | Jun 2006 | A1 |
20060135021 | Calhoun et al. | Jun 2006 | A1 |
20060276824 | Mitelberg et al. | Dec 2006 | A1 |
20060276825 | Mitelberg et al. | Dec 2006 | A1 |
20060276826 | Mitelberg et al. | Dec 2006 | A1 |
20060276827 | Mitelberg et al. | Dec 2006 | A1 |
20060276830 | Balgobin et al. | Dec 2006 | A1 |
20060276833 | Balgobin et al. | Dec 2006 | A1 |
20070010850 | Balgobin et al. | Jan 2007 | A1 |
20070083132 | Sharrow | Apr 2007 | A1 |
20070233168 | Davis et al. | Oct 2007 | A1 |
20070270903 | Davis III et al. | Nov 2007 | A1 |
20080027561 | Mitelberg et al. | Jan 2008 | A1 |
20080035160 | Woodson et al. | Feb 2008 | A1 |
20080045997 | Balgobin et al. | Feb 2008 | A1 |
20080082113 | Bishop et al. | Apr 2008 | A1 |
20080097462 | Mitelberg et al. | Apr 2008 | A1 |
20080119887 | Que et al. | May 2008 | A1 |
20080281350 | Sepetka | Nov 2008 | A1 |
20080300616 | Que et al. | Dec 2008 | A1 |
20080306503 | Que et al. | Dec 2008 | A1 |
20090062726 | Ford et al. | Mar 2009 | A1 |
20090099592 | Buiser et al. | Apr 2009 | A1 |
20090312748 | Johnson et al. | Dec 2009 | A1 |
20100094395 | Kellett | Apr 2010 | A1 |
20100114017 | Lenker et al. | May 2010 | A1 |
20100160944 | Teoh et al. | Jun 2010 | A1 |
20100324649 | Mattsson | Dec 2010 | A1 |
20110092997 | Kang | Apr 2011 | A1 |
20110295303 | Freudenthal | Dec 2011 | A1 |
20120035707 | Mitelberg et al. | Feb 2012 | A1 |
20120041472 | Tan et al. | Feb 2012 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20130066413 | Jin et al. | Mar 2013 | A1 |
20130338701 | Wilson et al. | Dec 2013 | A1 |
20140058435 | Jones et al. | Feb 2014 | A1 |
20140135812 | Divino et al. | May 2014 | A1 |
20140200607 | Sepetka et al. | Jul 2014 | A1 |
20140207175 | Aggerholm | Jul 2014 | A1 |
20140277085 | Mirigian et al. | Sep 2014 | A1 |
20140277092 | Teoh et al. | Sep 2014 | A1 |
20140277093 | Guo et al. | Sep 2014 | A1 |
20150182227 | Le et al. | Jul 2015 | A1 |
20150230802 | Lagodzki et al. | Aug 2015 | A1 |
20150335333 | Jones et al. | Nov 2015 | A1 |
20160022275 | Garza | Jan 2016 | A1 |
20160157869 | Elgård et al. | Jun 2016 | A1 |
20160228125 | Pederson, Jr. et al. | Aug 2016 | A1 |
20160310304 | Mialhe | Oct 2016 | A1 |
20160346508 | Williams et al. | Dec 2016 | A1 |
20170007264 | Cruise et al. | Jan 2017 | A1 |
20170007265 | Guo et al. | Jan 2017 | A1 |
20170020670 | Murray et al. | Jan 2017 | A1 |
20170020700 | Bienvenu et al. | Jan 2017 | A1 |
20170027640 | Kunis et al. | Feb 2017 | A1 |
20170027692 | Bonhoeffer et al. | Feb 2017 | A1 |
20170027725 | Argentine | Feb 2017 | A1 |
20170035436 | Morita | Feb 2017 | A1 |
20170035567 | Duffy | Feb 2017 | A1 |
20170042548 | Lam | Feb 2017 | A1 |
20170049596 | Schabert | Feb 2017 | A1 |
20170071737 | Kelley | Mar 2017 | A1 |
20170072452 | Monetti et al. | Mar 2017 | A1 |
20170079671 | Morero et al. | Mar 2017 | A1 |
20170079680 | Bowman | Mar 2017 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170079812 | Lam et al. | Mar 2017 | A1 |
20170079817 | Sepetka et al. | Mar 2017 | A1 |
20170079819 | Pung et al. | Mar 2017 | A1 |
20170079820 | Lam et al. | Mar 2017 | A1 |
20170086851 | Wallace et al. | Mar 2017 | A1 |
20170086996 | Peterson et al. | Mar 2017 | A1 |
20170095259 | Tompkins et al. | Apr 2017 | A1 |
20170100126 | Bowman et al. | Apr 2017 | A1 |
20170100141 | Morero et al. | Apr 2017 | A1 |
20170100143 | Granfield | Apr 2017 | A1 |
20170100183 | Iaizzo et al. | Apr 2017 | A1 |
20170105739 | Dias et al. | Apr 2017 | A1 |
20170113023 | Steingisser et al. | Apr 2017 | A1 |
20170147765 | Mehta | May 2017 | A1 |
20170151032 | Loisel | Jun 2017 | A1 |
20170165062 | Rothstein | Jun 2017 | A1 |
20170165065 | Rothstein et al. | Jun 2017 | A1 |
20170165454 | Tuohy et al. | Jun 2017 | A1 |
20170172581 | Bose et al. | Jun 2017 | A1 |
20170172766 | Vong et al. | Jun 2017 | A1 |
20170172772 | Khenansho | Jun 2017 | A1 |
20170189033 | Sepetka et al. | Jul 2017 | A1 |
20170189035 | Porter | Jul 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170216484 | Cruise et al. | Aug 2017 | A1 |
20170224350 | Shimizu et al. | Aug 2017 | A1 |
20170224355 | Bowman et al. | Aug 2017 | A1 |
20170224467 | Piccagli et al. | Aug 2017 | A1 |
20170224511 | Dwork et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170231749 | Perkins et al. | Aug 2017 | A1 |
20170245864 | Franano et al. | Aug 2017 | A1 |
20170245885 | Lenker | Aug 2017 | A1 |
20170252064 | Staunton | Sep 2017 | A1 |
20170258476 | Hayakawa et al. | Sep 2017 | A1 |
20170265983 | Lam et al. | Sep 2017 | A1 |
20170281192 | Tieu et al. | Oct 2017 | A1 |
20170281331 | Perkins et al. | Oct 2017 | A1 |
20170281344 | Costello | Oct 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170281912 | Melder et al. | Oct 2017 | A1 |
20170290593 | Cruise et al. | Oct 2017 | A1 |
20170290654 | Sethna | Oct 2017 | A1 |
20170296324 | Argentine | Oct 2017 | A1 |
20170296325 | Marrocco et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170304041 | Argentine | Oct 2017 | A1 |
20170304097 | Corwin et al. | Oct 2017 | A1 |
20170304595 | Nagasrinivasa et al. | Oct 2017 | A1 |
20170312109 | Le | Nov 2017 | A1 |
20170312484 | Shipley et al. | Nov 2017 | A1 |
20170316561 | Helm et al. | Nov 2017 | A1 |
20170319826 | Bowman et al. | Nov 2017 | A1 |
20170333228 | Orth et al. | Nov 2017 | A1 |
20170333236 | Greenan | Nov 2017 | A1 |
20170333678 | Bowman et al. | Nov 2017 | A1 |
20170340383 | Bloom et al. | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20170348514 | Guyon et al. | Dec 2017 | A1 |
20180028779 | von Oepen et al. | Feb 2018 | A1 |
20180250150 | Majercak et al. | Sep 2018 | A1 |
20180280667 | Keren | Oct 2018 | A1 |
20180289375 | Hebert et al. | Oct 2018 | A1 |
20180325706 | Hebert et al. | Nov 2018 | A1 |
20190192162 | Lorenzo et al. | Jun 2019 | A1 |
20190255290 | Snyder et al. | Aug 2019 | A1 |
20190328398 | Lorenzo | Oct 2019 | A1 |
20210001082 | Lorenzo et al. | Jan 2021 | A1 |
Number | Date | Country |
---|---|---|
1728478 | Dec 2006 | EP |
1985244 | Oct 2008 | EP |
3092956 | Nov 2016 | EP |
3501427 | Jun 2019 | EP |
3760139 | Jan 2021 | EP |
2006-334408 | Dec 2006 | JP |
2012-523943 | Oct 2012 | JP |
2013-78584 | May 2013 | JP |
WO 2012158152 | Nov 2012 | WO |
Entry |
---|
Extended European Search Report for European Application No. 20196478.0, mailed Jan. 25, 2021, 11 Pages. |
Extended European Search Report for European Application No. 22184571.2, mailed Dec. 8, 2022, 8 pages. |
Extended European Search Report for European Application No. 22184574.6, mailed Dec. 6, 2022, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20220387045 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16573469 | Sep 2019 | US |
Child | 17888677 | US |