The invention relates to embolic coils, as well as related methods, devices, and compositions.
Therapeutic vascular occlusions (embolizations) are used to prevent or treat pathological conditions in situ. Embolic coils can be used to occlude vessels in a variety of medical applications. Delivery of embolic coils (e.g., through a catheter) can depend on the size and/or shape of the coils. Some embolic coils include fibers that can, for example, enhance thrombosis at a treatment site.
In one aspect, the invention features an embolic coil that includes a wire having a primary shape with a first outer diameter and a second outer diameter that is smaller than the first outer diameter. The embolic coil is configured to fit within the lumen of a subject.
In another aspect, the invention features a method of making an embolic coil, the method including forming a wire into a primary shape with a first outer diameter and a second outer diameter that is smaller than the first outer diameter to form the embolic coil.
In another aspect, the invention features a medical device that includes a tubular body (e.g., a catheter) with a lumen, and at least one embolic coil (e.g., multiple embolic coils) disposed within the lumen. The embolic coil includes a wire that has a primary shape with a first outer diameter and a second outer diameter that is smaller than the first outer diameter.
In another aspect, the invention features a method that includes administering at least one embolic coil (e.g., multiple embolic coils) to a subject. The embolic coil includes a wire that has a primary shape with a first outer diameter and a second outer diameter that is smaller than the first outer diameter.
In another aspect, the invention features a method of using a medical device that includes a tubular body (e.g., a catheter) with a lumen, and at least one embolic coil (e.g., multiple embolic coils) disposed within the lumen. The embolic coil includes a wire that has a primary shape with a first outer diameter and a second outer diameter that is smaller than the first outer diameter. The method includes inserting the tubular body into the lumen of a subject, and delivering the embolic coil into the lumen of the subject.
Embodiments may also include one or more of the following.
The embolic coil can have an effective column strength of from 0.005 pound to about 0.05 pound.
The first outer diameter can be at most about 0.03 inch (e.g., from about 0.014 inch to about 0.016 inch), and/or the second outer diameter can be at most about 0.025 inch (e.g., from about 0.012 inch to about 0.013 inch). In some embodiments, the difference between the first outer diameter and the second outer diameter can be at most about 0.024 inch (e.g., from 0.001 inch to 0.004 inch). In certain embodiments, the ratio of the first outer diameter to the second outer diameter can be at least about 1.05:1, and/or at most about 1.5:1. For example, the ratio of the first outer diameter to the second outer diameter can be from about 1.05:1 to about 1.5:1.
In some embodiments, a region of the wire that has the first outer diameter can have a length of at most about 35 centimeters. In certain embodiments, a region of the wire that has the second outer diameter can have a length of at most about 10 millimeters (e.g., at most about five millimeters).
The wire can have a diameter of from 0.001 inch to 0.005 inch (e.g., 0.003 inch), and/or a restrained length of at most about 250 inches. The wire in its primary shape can have a length that is at least about 20 centimeters. The wire can include a metal (e.g., platinum). The wire can have a secondary shape, such as a J, a diamond, a vortex, or a spiral.
The embolic coil can include at least one fiber that is attached (e.g., tied) to the wire (e.g., to a region of the wire that has the second outer diameter). The fiber can include polyethylene terephthalate and/or nylon. In certain embodiments, the fiber can have a length of from about 0.5 millimeter to about five millimeters.
Forming a wire into a primary shape can include applying a temperature of about 25° C. to the wire and/or winding the wire around a mandrel. The mandrel can have a third outer diameter and a fourth outer diameter that is smaller than the third outer diameter. In some embodiments, the third outer diameter can be at most about 0.03 inch. In certain embodiments, the fourth outer diameter can be at most about 0.025 inch. The mandrel can include stainless steel. The mandrel can have a lubricious coating (e.g., including polytetrafluoroethylene). The mandrel can include a shape-memory material. In some embodiments, the mandrel can be formed of an erodible or dissolvable material (e.g., an erodible or dissolvable polymer, metal, or metal alloy). In certain embodiments, the mandrel can be hollow.
The method can further include attaching (e.g., bonding) at least one fiber to the wire (e.g., to a region of the wire having the second outer diameter). In some embodiments, the fiber can be attached to the wire by compressing the fiber between a first winding of the wire and a second winding of the wire. In certain embodiments, the fiber can be adhesive bonded to the wire.
Forming a wire into a primary shape can include applying a first tension to the wire to wind a first region of the wire around a mandrel, and applying a second tension to the wire to wind a second region of the wire around the mandrel. The second tension can be greater than the first tension. In some embodiments, the first tension can be from about four grams to about 80 grams (e.g., from about 10 grams to about 80 grams, from about 25 grams to about 29 grams). In certain embodiments, the second tension can be from about 15 grams to about 100 grams (e.g., from about 30 grams to about 40 grams). The difference between the second tension and the first tension can be from about five grams to about 90 grams.
The method can further include forming the wire into a secondary shape (e.g., a J, a diamond, a vortex, or a spiral). Forming the wire into a secondary shape can include applying a temperature of about 1100° F. to the wire and/or winding the wire in its primary shape around a mandrel. The mandrel can be a stainless steel mandrel. In some embodiments, the mandrel can be plated with chrome.
The method can further include combining the embolic coil with a pharmaceutically acceptable medium.
The medical device can include a pusher wire. In some embodiments, the pusher wire can be disposed within the lumen of the tubular member or tubular body, and attached to the embolic coil.
In some embodiments, the method of administration can be by a catheter. In certain embodiments, the method of administration can be by a device that has an internal opening, and that is configured to fit within a lumen of a subject. The embolic coil can be disposed within the internal opening of the device.
The method can further include using a pusher and/or a saline flush to deliver the embolic coil from the device. In some embodiments, the method can be used to treat aneurysms, arteriovenous malformations, traumatic fistulae, tumors, and combinations thereof. In certain embodiments, the method can include embolizing a lumen of a subject. In some embodiments, the embolic coil can be used in a transarterial chemoembolization procedure. Delivering the embolic coil into the lumen of the subject can include detaching (e.g., chemically detaching, electrolytically detaching) the embolic coil from the pusher wire. The embolic coil can be mechanically detached from the pusher wire. In some embodiments, the method can further include withdrawing the embolic coil into the lumen of the tubular body.
Embodiments can include one or more of the following advantages.
In some embodiments, an embolic coil can exhibit relatively good occlusive properties when delivered to a location of interest within a subject. This can, for example, allow the embolic coil to be used to occlude a vessel (e.g., to embolize a tumor), treat an aneurysm, treat an arteriovenous malformation, and/or treat a traumatic fistula.
In certain embodiments, an embolic coil can have a relatively low likelihood of sticking to the wall of a delivery catheter. This can, for example, reduce the possibility of complications resulting from the embolic coil sticking to the wall of the delivery catheter when the embolic coil is being delivered to a location of interest within a subject.
In some embodiments, an embolic coil can have a relatively high effective column strength. This can, for example, allow the embolic coil to be delivered to a location of interest within a subject even if the embolic coil undergoes some sticking to the wall of the delivery catheter during delivery of the embolic coil.
In certain embodiments, an embolic coil can have a relatively low likelihood of sticking to the wall of a delivery catheter, while also exhibiting relatively good occlusive properties when delivered to a location of interest within a subject.
In some embodiments, an embolic coil can have a relatively high effective column strength, while also exhibiting relatively good occlusive properties when delivered to a location of interest within a subject.
In certain embodiments, an embolic coil can have a relatively low likelihood of sticking to the wall of a delivery catheter, while also having a relatively high effective column strength, so that even if the embolic coil does stick to the wall of the delivery catheter, the coil can be pushed to a sufficient extent to overcome the sticking and deliver the coil from the catheter.
In some embodiments, an embolic coil can have a relatively low likelihood of sticking to the wall of a delivery catheter, a relatively high effective column strength, and relatively good occlusive properties when delivered to a location of interest within a subject.
Features and advantages are in the description, drawings, and claims.
In general, the design of embolic coil 14 can result in embolic coil 14 having a relatively high effective column strength. The effective column strength of embolic coil 14 is the column strength (the compression load at which embolic coil 14 will buckle) of embolic coil 14 when embolic coil 14 is constrained within lumen 12 of catheter 10. The presence of regions 20 of relatively large outer diameter in embolic coil 14 can limit the likelihood that embolic coil 14 will buckle, because outer diameter “OD20” of regions 20 can be selected such that regions 20 are relatively close to wall 26 of catheter 10. Because embolic coil 14 has a relatively high effective column strength, embolic coil 14 can also have good pushability. Thus, even if fibers 24 adhere to wall 26 of lumen 12, embolic coil 14 may be sufficiently pushable to overcome the adhesion. Furthermore, an embolic coil with a relatively high effective column strength can, for example, be less likely to buckle during deployment from a delivery device than a comparable embolic coil with a relatively low effective column strength. In some embodiments (e.g., embodiments in which outer diameter “OD20” is about 0.012 inch or about 0.035 inch), embolic coil 14 can have an effective column strength of at least 0.005 pound (e.g., at least 0.007 pound, at least about 0.01 pound, at least about 0.03 pound), and/or at most about 0.05 pound (e.g., at most about 0.03 pound, at most about 0.01 pound, at most 0.007 pound).
In general, outer diameter “OD20”, the relatively large outer diameter, is selected to provide strength to embolic coil 14, while also allowing embolic coil 14 to fit within lumen 12 of catheter 10. In some embodiments, outer diameter “OD20” can be at most about 0.03 inch. In certain embodiments (e.g., for an intermediate-sized embolic coil), outer diameter “OD20” can be from about 0.014 inch to about 0.016 inch (e.g., from about 0.014 inch to about 0.015 inch). In some embodiments (e.g., for a relatively small embolic coil), outer diameter “OD20” can be at most about 0.01 inch.
Generally, outer diameter “OD22”, the relatively small outer diameter, is selected to accommodate fibers 24 and to limit the amount of contact between fibers 24 and wall 26 of lumen 12. In certain embodiments, outer diameter “OD22” can be at most about 0.025 inch. In some embodiments (e.g., for a relatively large embolic coil), outer diameter “OD22” can be from about 0.012 inch to about 0.021 inch (e.g., from about 0.012 inch to about 0.013 inch, from about 0.019 inch to about 0.021 inch). In certain embodiments (e.g., for an intermediate-sized embolic coil), outer diameter “OD22” can be from about 0.01 inch to about 0.012 inch. In some embodiments (e.g., for a relatively small embolic coil), outer diameter “OD22” can be from 0.006 inch to 0.008 inch.
Typically, as the difference between outer diameter “OD20” and outer diameter “OD22” increases, longer fibers may be accommodated on embolic coil 14. In general, as the difference between outer diameter “OD20” and outer diameter “OD22” decreases, the likelihood of kinking by embolic coil 14 may decrease. In embodiments, the difference between outer diameter “OD20” and outer diameter “OD22” typically can be at most about 0.024 inch (e.g., at most about 0.01 inch). For example, the difference between outer diameter “OD20” and outer diameter “OD22” can be from 0.001 inch to 0.004 inch (e.g., from 0.001 inch to 0.003 inch).
Generally, as the ratio of outer diameter “OD20” to outer diameter “OD22” increases, longer fibers may be accommodated on embolic coil 14. Typically, as the ratio of outer diameter “OD20” to outer diameter “OD22” decreases, the likelihood of kinking by embolic coil 14 may decrease. In some embodiments, the ratio of outer diameter “OD20” to outer diameter “OD22” can be at least about 1.05:1 (e.g., at least about 1.08:1, at least about 1.2:1, at least about 1.25:1, at least about 1.4:1), and/or at most about 1.5:1 (e.g., at most about 1.4:1, at most about 1.25:1, at most about 1.2:1, at most about 1.08:1). In certain embodiments, the ratio of outer diameter “OD20” to outer diameter “OD22” can be from about 1.05:1 to about 1.5:1 (e.g., from about 1.2:1 to about 1.4:1).
While lengths “L20” and “L22” can generally be selected as desired, in some embodiments lengths “L20” and “L22” can be selected to achieve certain properties (e.g., effective column strength). In general, as the ratio of “L20” to “L22” increases, the effective column strength of embolic coil 14 increases. Alternatively or additionally, fibers 24 may be more protected from over-exposure to blood during delivery, thereby resulting in a decrease in the occurrence of premature thrombosis. Typically, as the ratio of “L20” to “L22” decreases, the effective column strength of embolic coil 14 can decrease. Generally, as the difference between “L20” and “L22” increases, the effective column strength of embolic coil 14 can increase. In general, as the difference between “L20” and “L22” decreases, the effective column strength of embolic coil 14 can decrease.
In some embodiments, length “L20” can be at least about 0.4 centimeter (e.g., at least about one centimeter, at least about two centimeters, at least about five centimeters, at least about 10 centimeters, at least about 20 centimeters, at least about 30 centimeters), and/or at most about 35 centimeters (e.g., at most about 30 centimeters, at most about 20 centimeters, at most about 10 centimeters, at most about five centimeters, at most about two centimeters, at most about one centimeter). For example, length “L20” can be from about 0.4 centimeter to about 20 centimeters (e.g., from about one centimeter to about 20 centimeters, from about five centimeters to about 10 centimeters).
In certain embodiments, length “L22” can be at least about 0.5 millimeter (e.g., at least about one millimeter, at least about two millimeters, at least about 2.5 millimeters, at least about three millimeters, at least about four millimeters, at least about five millimeters, at least about eight millimeters), and/or at most about 10 millimeters (e.g., at most about eight millimeters, at most about five millimeters, at most about four millimeters, at most about three millimeters, at most about 2.5 millimeters, at most about two millimeters, at most about one millimeter). For example, length “L22” can be from about one millimeter to about two millimeters.
The length of embolic coil 14 when fully extended within lumen 12 of catheter 10 generally can be selected to allow embolic coil 14 to fit within a delivery device such as catheter 10. In some embodiments embolic coil 14 can be relatively long yet still exhibit good effective column strength so that, for example, even though embolic coil 14 is long, it is sufficiently stiff to be delivered with little or no buckling. In some embodiments, a relatively long embolic coil (which can also exhibit good effective column strength) can be used instead of multiple shorter embolic coils. In some instances, using a single relatively long embolic coil rather than multiple shorter embolic coils can, for example, reduce the time associated with an embolization procedure, increase the efficiency of an embolization procedure, and/or reduce the likelihood of complications associated with an embolization procedure. In certain embodiments, embolic coil 14 can have a fully extended length of at least about 0.5 centimeter (e.g., at least about 2.3 centimeters, at least about five centimeters, at least about 10 centimeters, at least about 15 centimeters, at least about 20 centimeters, at least about 30 centimeters), and/or at most about 40 centimeters (e.g., at most about 30 centimeters, at most about 20 centimeters, at most about 15 centimeters, at most about 10 centimeters, at most about five centimeters, at most about 2.3 centimeters). In certain embodiments, embolic coil 14 can have a fully extended length of from about 0.5 centimeter to about 40 centimeters (e.g., from about 2.3 centimeters to about 30 centimeters, from about five centimeters to about 25 centimeters).
As shown in
The pitch of an embolic coil is the sum of the thickness of one winding of wire 16 (e.g., winding 17) and the amount of space between that winding and a consecutive winding (e.g., winding 19). In some embodiments, embolic coil 14 can have a pitch of at most about 0.01 inch (e.g., about 0.003 inch). Because the windings of embolic coil 14 are flush with each other, the pitch of embolic coil 14 is equal to the diameter of wire 16.
The diameter of wire 16 can be selected, for example, based on the desired properties (e.g., size, strength) and/or applications of embolic coil 14. In some embodiments, wire 16 can have a diameter of from 0.001 inch to 0.005 inch (e.g., from 0.0015 inch to 0.005 inch, from 0.002 inch to 0.003 inch, from 0.00225 inch to 0.003 inch). In certain embodiments, wire 16 can have a diameter of 0.003 inch. In some embodiments (e.g., embodiments in which embolic coil 14 is used for peripheral vascular applications), wire 16 can have a diameter of at least about 0.004 inch. In certain embodiments (e.g., embodiments in which embolic coil 14 is used for neurological applications), wire 16 can have a diameter of at most about 0.002 inch. Alternatively or additionally, wire 16 can have a restrained length of at most about 250 inches (e.g., at most about 200 inches, at most about 185 inches, at most about 150 inches, at most about 100 inches, at most about 50 inches).
Wire 16 can be formed of, for example, one or more metals or metal alloys, such as platinum, a platinum alloy (e.g., a platinum-tungsten alloy), stainless steel, nitinol, and Elgiloy® (from Elgiloy Specialty Metals).
Fibers 24 are typically formed of one or more materials that can enhance thrombosis (e.g., at a target site). Examples of materials from which fibers 24 can be made include polyethylene terephthalate (e.g., Dacron®), nylon, and collagen. Fibers 24 can have a length of from about 0.5 millimeter to about five millimeters (e.g., about 2.5 millimeters). In some embodiments, the length of fibers 24 can be selected so that fibers 24 can fit within regions 22 of relatively small outer diameter without bunching up.
Embolic coils can generally be used in a number of different applications, such as neurological application and/or peripheral applications. In some embodiments, embolic coils can be used to occlude a vessel, and/or to treat an aneurysm (e.g., an intercranial aneurysm), an arteriovenous malformation (AVM), or a traumatic fistula. In some embodiments, embolic coils can be used to embolize a tumor (e.g., a liver tumor). In certain embodiments, embolic coils can be used in transarterial chemoembolization (TACE).
In general, embolic coil 14 has a primary shape and a secondary shape. Embolic coil 14 exhibits only its primary shape when embolic coil 14 is fully extended within lumen 12 of catheter 10 (as shown in
As
As shown in
Mandrel 210, also shown in
After coil 270 has been formed, chucks 220 and 230, and moving device 260, are deactivated, and portion 280 of wire 250. Mandrel 210 is then released from chuck 220, and coil 270 is pulled off of mandrel 210. In some embodiments, mandrel 210 can be coated with a lubricious coating (e.g., polytetrafluoroethylene, such as Teflon®) in one or more sections in order to aid in the removal of coil 270 (e.g., to reduce friction and/or snagging). In certain embodiments, the middle section of mandrel 210 is coated, while the ends of mandrel 210 remained uncoated. In some embodiments, mandrel 210 can be hollow, such that after coil 270 has been formed on mandrel 210, pressure can be applied to mandrel 210, causing mandrel 210 to collapse, and thereby making it easier to pull coil 270 off of mandrel 210. Alternatively or additionally, mandrel 210 may be formed of a shape-memory material, such that the size of mandrel 210 can be decreased by cooling mandrel 210. In some such embodiments, mandrel 210 can be cooled prior to removal of coil 270, thereby making it easier to remove coil 270 from mandrel 210. In certain embodiments, mandrel 210 can be formed of an erodible or dissolvable material (e.g., an erodible or dissolvable polymer, metal, or metal alloy). In some such embodiments, after coil 270 has been formed, mandrel 210 can be eroded or dissolved (e.g., by applying an eroding or dissolving agent to mandrel 210), leaving coil 270.
While coil 270 might lose some of its primary shape as it is pulled off of mandrel 210, coil 270 can generally return to its primary shape shortly thereafter, because of memory imparted to coil 270 during formation. In some embodiments, after coil 270 has been removed from mandrel 210, one or both of the ends of coil 270 can be heated and melted to form rounder, more biocompatible (e.g., atraumatic) ends.
In some embodiments, outer diameter “OD212” of regions 212 of relatively small outer diameter can be at most about 0.025 inch (e.g., from about 0.012 inch to about 0.013 inch). Alternatively or additionally, length “L212” of regions 212 of relatively small outer diameter can be at most about five millimeters.
In certain embodiments, outer diameter “OD214” of regions 214 of relatively large outer diameter can be at most about 0.03 inch (e.g., about 0.015 inch). Alternatively or additionally, length “L214” of regions 214 of relatively large outer diameter can be at most about 35 centimeters.
In some embodiments, the difference between outer diameter “OD214” and outer diameter “OD212” can be at most about 0.024 inch (e.g., 0.003 inch). Alternatively or additionally, the ratio of outer diameter “OD214” to outer diameter “OD212” can be from about 1.05:1 to about 1.5:1 (e.g., from about 1.2:1 to about 1.4:1).
Mandrel 210 can be formed of, for example, a metal or a metal alloy, such as stainless steel. In some embodiments, mandrel 210 can be formed of one or more polymers, such as Teflon® (polytetrafluoroethylene) or Delrin® (polyoxymethylene). As described above, in some embodiments, mandrel 210 can be formed of a shape-memory material. An example of a shape memory material is Nitinol.
Mandrel 210 can be formed, for example, by a wire extrusion process. In certain embodiments, mandrel 210 can be formed by grinding the mandrel material into the shape of mandrel 210 (e.g., using a centerless grind). In some embodiments, mandrel 210 can be formed by using a lathe and/or laser to cut or ablate sections of the mandrel material (e.g., to form regions 212 of relatively small outer diameter). Alternatively or additionally, mandrel 210 can be formed by etching the mandrel material (e.g., using photochemical etching). In certain embodiments, mandrel 210 can be formed by polymeric or metal injection molding.
While mandrel 210 is shown as having relatively sharp edges 211, in some embodiments, mandrel 210 can have relatively rounded edges.
The tension of mandrel 210 as it is held between chucks 220 and 230 preferably is sufficiently high to avoid vibration of mandrel 210 during the winding process, and sufficiently low to avoid stretching of mandrel 210 during the winding process. In some instances, significant stretching of mandrel 210 during the winding process could cause coil 270 to have a smaller primary shape than desired, and/or could make it relatively difficult to remove coil 270 from mandrel 210. In embodiments, the tension of mandrel 210 can be from about 100 grams to about 1,000 grams (e.g., from about 300 grams to about 600 grams, from about 400 grams to about 500 grams). For example, the tension of mandrel 210 can be about 506 grams.
Wire 250 typically can be wound around mandrel 210 at a tension of from about 10 grams to about 100 grams (e.g., from about four grams to about 50 grams, from about six grams to about 40 grams, from about 22 grams to about 32 grams, about 27 grams).
In embodiments, the length of coil 270 in its primary shape and while under tension on mandrel 210 can be from about 10 centimeters to about 250 centimeters (e.g., from about 50 centimeters to about 200 centimeters, from about 130 centimeters to about 170 centimeters, from about 144 centimeters to about 153 centimeters, from about 147 centimeters to about 153 centimeters). For example, the length of coil 270 in its primary shape and while under tension on mandrel 210 can be about 132 centimeters or about 147 centimeters. Coil 270 may recoil to some extent (e.g., by at most about five centimeters) when portion 280 of wire 250 is severed, such that coil 270 will be somewhat smaller once it has been removed from mandrel 210. In embodiments, coil 270 can have a length of from about five centimeters to about 225 centimeters (e.g., from about 25 centimeters to about 170 centimeters, from about 120 centimeters to about 140 centimeters, from about 137 centimeters to about 140 centimeters) after being removed from mandrel 210. After coil 270 has been removed from mandrel 210, coil 270 can be cut into smaller coils.
Once coil 270 has been formed in its primary shape, coil 270 can be further shaped into a secondary shape, as shown in
Mandrel 310 can be formed from, for example, a metal such as stainless steel. In some embodiments, mandrel 310 can be formed of a plated metal (e.g., chrome-plated stainless steel).
After coil 270 has been removed from mandrel 310, fibers can be attached to coil 270. In some embodiments, coil 270 is stretched prior to attaching fibers, so that coil 270 is in its extended primary shape, and is then loaded onto a fibering mandrel (e.g., a fibering mandrel from Sematool Mold and Die Co., Santa Clara, Calif.). In some embodiments, fibers can be tied to wire 250 and/or wrapped around wire 250. In certain embodiments, fibers can be snapped in between windings of wire 250 of coil 270. Alternatively or additionally, fibers can be bonded (e.g., adhesive bonded) to wire 250 of coil 270.
While certain embodiments have been described, the invention is not so limited.
As an example, in some embodiments, a coil with a primary shape having regions of relatively small outer diameter and regions of relatively large diameter can be formed by winding a wire around a mandrel with a constant diameter, and varying the tension that is applied to the wire. For example, a tension of from about 10 grams to about 100 grams (e.g., from about six grams to about 50 grams, from about 30 grams to about 40 grams) can be applied to form regions of relatively small outer diameter, and a tension of from about four grams to about 80 grams (e.g., from about four grams to about 40 grams, from about 25 grams to about 29 grams) can be applied to form regions of relatively large outer diameter. In certain embodiments, the difference between the tension used to form regions of relatively small outer diameter and the tension used to form regions of relatively large outer diameter can be from about five grams to about 90 grams (e.g., from about 20 grams to about 80 grams, from about 30 grams to about 50 grams).
As another example, while embodiments have been described in which an embolic coil has two different outer diameters, in certain embodiments, an embolic coil can have more than two (e.g., three, four, five, 10, 15, 20) different outer diameters. For example, an embolic coil can have regions of relatively small outer diameter, regions of intermediate outer diameter, and regions of relatively large outer diameter.
As an additional example, while embodiments have been described in which regions of an embolic coil that have the same outer diameter also have the same length, regions of an embolic coil that have the same outer diameter need not have the same length. For example, an embolic coil can have regions of relatively small outer diameter that have varying lengths. Alternatively or additionally, the embolic coil can have regions of relatively large outer diameter that have varying lengths.
As a further example, in some embodiments, consecutive windings of an embolic coil can have a space between them of at most about 0.01 inch (e.g., at most about 0.005 inch, from about 0.001 inch to about 0.005 inch). The space between consecutive windings in an embolic coil can be used, for example, to accommodate a material that enhances thrombosis, such as fibers that enhance thrombosis.
As another example, while embodiments have been described in which the pitch of an embolic coil is substantially the same in different regions of the embolic coil, in certain embodiments, the pitch of an embolic coil can differ in different regions of the embolic coil. For example, some regions of an embolic coil can have a pitch of 0.003 inch, while other regions of an embolic coil can have a pitch of 0.004 inch. In some embodiments, an embolic coil can have a region of relatively large outer diameter with a relatively small pitch (e.g., about 0.001 inch), and a region of relatively small outer diameter with a relatively large pitch (e.g., about 0.007 inch).
As a further example, while an embolic coil with two different outer diameters has been shown, in some embodiments, an embolic coil can have more than two different outer diameters. For example,
As an additional example, while a pushable embolic coil has been shown, in some embodiments an embolic coil can alternatively or additionally be a detachable embolic coil. For example, the embolic coil can be temporarily attached to a pusher wire. The embolic coil can be, e.g., mechanically detachable and/or chemically detachable. In some embodiments, the embolic coil can be electrolytically detachable. In certain embodiments, the embolic coil can be a Guglielmi Detachable Coil (GDC) or an Interlocking Detachable Coil (IDC). Detachable embolic coils are described, for example, in Twyford, Jr. et al., U.S. Pat. No. 5,304,195, and Guglielmi et al., U.S. Pat. No. 5,895,385, both of which are hereby incorporated by reference.
As a further example, in some embodiments, a saline flush can be used to deliver an embolic coil from a delivery device. In certain embodiments, the saline flush can be used in conjunction with a pusher wire.
As another example, multiple (e.g., two, three, four) embolic coils can be delivered using one delivery device.
As an additional example, in some embodiments, a treatment site can be occluded by using coils in conjunction with other occlusive devices. For example, coils can be used with embolic particles such as those described in Buiser et al., U.S. Published Patent Application No. 2003/0185896 A1, and in U.S. Patent Application Publication No. US 2004/0096662 A1, published on May 20, 2004, both of which are hereby incorporated by reference. In some embodiments, coils can be used in conjunction with one or more embolic gels. Embolic gels are described, for example, in U.S. patent application Ser. No. 10/927,868, filed on Aug. 27, 2004, and entitled “Embolization”, which is hereby incorporated by reference.
Other embodiments are in the claims.
Number | Name | Date | Kind |
---|---|---|---|
2609347 | Wilson | Sep 1952 | A |
3663470 | Nishimura et al. | May 1972 | A |
3737398 | Yamaguchi | Jun 1973 | A |
3921632 | Bardani | Nov 1975 | A |
3957933 | Egli et al. | May 1976 | A |
4025686 | Zion | May 1977 | A |
4034759 | Haerr | Jul 1977 | A |
4055377 | Erickson et al. | Oct 1977 | A |
4076640 | Forgensi et al. | Feb 1978 | A |
4094848 | Naito | Jun 1978 | A |
4096230 | Haerr | Jun 1978 | A |
4098728 | Rosenblatt | Jul 1978 | A |
4110529 | Stoy | Aug 1978 | A |
4159719 | Haerr | Jul 1979 | A |
4191672 | Salome et al. | Mar 1980 | A |
4198318 | Stowell et al. | Apr 1980 | A |
4243794 | White et al. | Jan 1981 | A |
4246208 | Dundas | Jan 1981 | A |
4266030 | Tschang et al. | May 1981 | A |
4268495 | Muxfeldt et al. | May 1981 | A |
4271281 | Kelley et al. | Jun 1981 | A |
4402319 | Handa et al. | Sep 1983 | A |
4413070 | Rembaum | Nov 1983 | A |
4427794 | Lange et al. | Jan 1984 | A |
4428869 | Munteanu et al. | Jan 1984 | A |
4429062 | Pasztor et al. | Jan 1984 | A |
4442843 | Rasor et al. | Apr 1984 | A |
4444961 | Timm | Apr 1984 | A |
4452773 | Molday | Jun 1984 | A |
4456693 | Welsh | Jun 1984 | A |
4459145 | Elsholz | Jul 1984 | A |
4472552 | Blouin | Sep 1984 | A |
4477255 | Pasztor et al. | Oct 1984 | A |
4492720 | Mosier | Jan 1985 | A |
4522953 | Barby et al. | Jun 1985 | A |
4542178 | Zimmermann et al. | Sep 1985 | A |
4551132 | Pasztor et al. | Nov 1985 | A |
4551436 | Johnson et al. | Nov 1985 | A |
4573967 | Hargrove et al. | Mar 1986 | A |
4622362 | Rembaum | Nov 1986 | A |
4623706 | Timm et al. | Nov 1986 | A |
4640807 | Afghan et al. | Feb 1987 | A |
4657756 | Rasor et al. | Apr 1987 | A |
4661137 | Garnier et al. | Apr 1987 | A |
4663358 | Hyon et al. | May 1987 | A |
4671954 | Goldberg et al. | Jun 1987 | A |
4674480 | Lemelson | Jun 1987 | A |
4675113 | Graves et al. | Jun 1987 | A |
4678710 | Sakimoto et al. | Jul 1987 | A |
4678814 | Rembaum | Jul 1987 | A |
4680320 | Uku et al. | Jul 1987 | A |
4681119 | Rasor et al. | Jul 1987 | A |
4708718 | Daniels | Nov 1987 | A |
4742086 | Masamizu et al. | May 1988 | A |
4743507 | Franses et al. | May 1988 | A |
4772635 | Mitschker et al. | Sep 1988 | A |
4782097 | Jain et al. | Nov 1988 | A |
4789501 | Day et al. | Dec 1988 | A |
4793980 | Torobin | Dec 1988 | A |
4795741 | Leshchiner et al. | Jan 1989 | A |
4801458 | Hidaka et al. | Jan 1989 | A |
4804366 | Zdeb et al. | Feb 1989 | A |
4819637 | Dormandy, Jr. et al. | Apr 1989 | A |
4822535 | Ekman et al. | Apr 1989 | A |
4833237 | Kawamura et al. | May 1989 | A |
4850978 | Dudar et al. | Jul 1989 | A |
4859711 | Jain et al. | Aug 1989 | A |
4863972 | Itagaki et al. | Sep 1989 | A |
4897255 | Fritzberg et al. | Jan 1990 | A |
4900303 | Lemelson | Feb 1990 | A |
4929400 | Rembaum et al. | May 1990 | A |
4933372 | Feibush et al. | Jun 1990 | A |
4946899 | Kennedy et al. | Aug 1990 | A |
4954399 | Tani et al. | Sep 1990 | A |
4981625 | Rhim et al. | Jan 1991 | A |
4990340 | Hidaka et al. | Feb 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
4999188 | Sloldovnik et al. | Mar 1991 | A |
5007940 | Berg | Apr 1991 | A |
5011677 | Day et al. | Apr 1991 | A |
H915 | Gibbs | May 1991 | H |
5015423 | Eguchi et al. | May 1991 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5032117 | Motta | Jul 1991 | A |
5034324 | Shinozaki et al. | Jul 1991 | A |
5047438 | Feibush et al. | Sep 1991 | A |
5079274 | Schneider et al. | Jan 1992 | A |
5091205 | Fan | Feb 1992 | A |
5106903 | Vanderhoff et al. | Apr 1992 | A |
5108407 | Geremia et al. | Apr 1992 | A |
5114421 | Polak | May 1992 | A |
5116387 | Berg | May 1992 | A |
5120349 | Stewart et al. | Jun 1992 | A |
5125892 | Drudik | Jun 1992 | A |
5147631 | Glajch et al. | Sep 1992 | A |
5147937 | Frazza et al. | Sep 1992 | A |
5149543 | Cohen et al. | Sep 1992 | A |
5158573 | Berg | Oct 1992 | A |
5167624 | Butler et al. | Dec 1992 | A |
5171214 | Kolber et al. | Dec 1992 | A |
5171217 | March et al. | Dec 1992 | A |
5181921 | Makita et al. | Jan 1993 | A |
5190760 | Baker | Mar 1993 | A |
5190766 | Ishihara | Mar 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5202352 | Okada et al. | Apr 1993 | A |
5216096 | Hattori et al. | Jun 1993 | A |
5226911 | Chee et al. | Jul 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5253991 | Yokota et al. | Oct 1993 | A |
5256146 | Ensminger et al. | Oct 1993 | A |
5260002 | Wang | Nov 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5262176 | Palmacci et al. | Nov 1993 | A |
5263964 | Purdy | Nov 1993 | A |
5263992 | Guire | Nov 1993 | A |
5288763 | Li et al. | Feb 1994 | A |
5290310 | Makower et al. | Mar 1994 | A |
5292332 | Lee | Mar 1994 | A |
5292814 | Bayer et al. | Mar 1994 | A |
5302369 | Day et al. | Apr 1994 | A |
5304195 | Twyford, Jr. et al. | Apr 1994 | A |
5312415 | Palermo | May 1994 | A |
5314974 | Ito et al. | May 1994 | A |
5316774 | Eury et al. | May 1994 | A |
RE34640 | Kennedy et al. | Jun 1994 | E |
5320639 | Rudnick | Jun 1994 | A |
5324306 | Makower et al. | Jun 1994 | A |
5328936 | Leifholtz et al. | Jul 1994 | A |
5334216 | Vidal et al. | Aug 1994 | A |
5336263 | Ersek et al. | Aug 1994 | A |
5342394 | Matsuno et al. | Aug 1994 | A |
5344452 | Lemperle | Sep 1994 | A |
5344867 | Morgan et al. | Sep 1994 | A |
5350397 | Palermo et al. | Sep 1994 | A |
5354290 | Gross | Oct 1994 | A |
5354295 | Guglielmi et al. | Oct 1994 | A |
5369133 | Ihm et al. | Nov 1994 | A |
5369163 | Chiou et al. | Nov 1994 | A |
5382260 | Dormandy, Jr. et al. | Jan 1995 | A |
5384124 | Courteille et al. | Jan 1995 | A |
5397303 | Sancoff et al. | Mar 1995 | A |
5398851 | Sancoff et al. | Mar 1995 | A |
5403870 | Gross | Apr 1995 | A |
5411520 | Nash et al. | May 1995 | A |
5417982 | Modi | May 1995 | A |
5431174 | Knute | Jul 1995 | A |
5435645 | Faccioli et al. | Jul 1995 | A |
5443495 | Buscemi et al. | Aug 1995 | A |
5456693 | Conston et al. | Oct 1995 | A |
5468801 | Antonelli et al. | Nov 1995 | A |
5469854 | Unger et al. | Nov 1995 | A |
5476472 | Dormandy, Jr. et al. | Dec 1995 | A |
5484584 | Wallace et al. | Jan 1996 | A |
5490984 | Freed | Feb 1996 | A |
5494682 | Cohen et al. | Feb 1996 | A |
5494940 | Unger et al. | Feb 1996 | A |
5512604 | Demopolis | Apr 1996 | A |
5514090 | Kriesel et al. | May 1996 | A |
5525334 | Ito et al. | Jun 1996 | A |
5534589 | Hager et al. | Jul 1996 | A |
5540680 | Guglielmi et al. | Jul 1996 | A |
5541031 | Yamashita et al. | Jul 1996 | A |
5542935 | Unger et al. | Aug 1996 | A |
5553741 | Sancoff et al. | Sep 1996 | A |
5556391 | Cercone et al. | Sep 1996 | A |
5556610 | Yan et al. | Sep 1996 | A |
5558255 | Sancoff et al. | Sep 1996 | A |
5558822 | Gitman et al. | Sep 1996 | A |
5558856 | Klaveness et al. | Sep 1996 | A |
5559266 | Klaveness et al. | Sep 1996 | A |
5567415 | Porter | Oct 1996 | A |
5569193 | Hofstetter et al. | Oct 1996 | A |
5569449 | Klaveness et al. | Oct 1996 | A |
5569468 | Modi | Oct 1996 | A |
5571182 | Ersek et al. | Nov 1996 | A |
5580575 | Unger et al. | Dec 1996 | A |
5583162 | Li et al. | Dec 1996 | A |
5585112 | Unger et al. | Dec 1996 | A |
5595821 | Hager et al. | Jan 1997 | A |
5622657 | Takada et al. | Apr 1997 | A |
5624685 | Takahashi et al. | Apr 1997 | A |
5635215 | Boschetti et al. | Jun 1997 | A |
5637087 | O'Neil et al. | Jun 1997 | A |
5639277 | Mariant et al. | Jun 1997 | A |
5639710 | Lo et al. | Jun 1997 | A |
5648095 | Illum et al. | Jul 1997 | A |
5648100 | Boschetti et al. | Jul 1997 | A |
5650116 | Thompson | Jul 1997 | A |
5651990 | Takada et al. | Jul 1997 | A |
5653922 | Li et al. | Aug 1997 | A |
5657756 | Vrba | Aug 1997 | A |
5681576 | Henry | Oct 1997 | A |
5695480 | Evans et al. | Dec 1997 | A |
5695740 | Porter | Dec 1997 | A |
5698271 | Liberti et al. | Dec 1997 | A |
5701899 | Porter | Dec 1997 | A |
5715824 | Unger et al. | Feb 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5718884 | Klaveness et al. | Feb 1998 | A |
5723269 | Akagi et al. | Mar 1998 | A |
5725534 | Rasmussen | Mar 1998 | A |
5733925 | Kunz et al. | Mar 1998 | A |
5741331 | Pinchuk | Apr 1998 | A |
5746734 | Dormandy, Jr. et al. | May 1998 | A |
5749891 | Ken et al. | May 1998 | A |
5752974 | Rhee et al. | May 1998 | A |
5760097 | Li et al. | Jun 1998 | A |
5766147 | Sancoff et al. | Jun 1998 | A |
5770222 | Unger et al. | Jun 1998 | A |
5779668 | Grabenkort | Jul 1998 | A |
5785642 | Wallace et al. | Jul 1998 | A |
5785682 | Grabenkort | Jul 1998 | A |
5792478 | Lawin et al. | Aug 1998 | A |
5795562 | Klaveness et al. | Aug 1998 | A |
5797953 | Tekulve | Aug 1998 | A |
5800453 | Gia | Sep 1998 | A |
5800454 | Jacobsen et al. | Sep 1998 | A |
5800455 | Palermo et al. | Sep 1998 | A |
5807323 | Kriesel et al. | Sep 1998 | A |
5813411 | Van Bladel et al. | Sep 1998 | A |
5823198 | Jones et al. | Oct 1998 | A |
5827502 | Klaveness et al. | Oct 1998 | A |
5827531 | Morrison et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5833361 | Funk | Nov 1998 | A |
5840387 | Berlowitz-Tarrant et al. | Nov 1998 | A |
5846518 | Yan et al. | Dec 1998 | A |
5853752 | Unger et al. | Dec 1998 | A |
5855615 | Bley et al. | Jan 1999 | A |
5863957 | Li et al. | Jan 1999 | A |
5876372 | Grabenkort et al. | Mar 1999 | A |
5877224 | Brocchini et al. | Mar 1999 | A |
5885216 | Evans, III et al. | Mar 1999 | A |
5885547 | Gray | Mar 1999 | A |
5888546 | Ji et al. | Mar 1999 | A |
5891130 | Palermo et al. | Apr 1999 | A |
5891155 | Irie | Apr 1999 | A |
5894022 | Ji et al. | Apr 1999 | A |
5895385 | Guglielmi et al. | Apr 1999 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5895411 | Irie | Apr 1999 | A |
5899877 | Leibitzki et al. | May 1999 | A |
5902832 | Van Bladel et al. | May 1999 | A |
5902834 | Porrvik | May 1999 | A |
5922025 | Hubbard | Jul 1999 | A |
5922304 | Unger | Jul 1999 | A |
5925059 | Palermo et al. | Jul 1999 | A |
5928626 | Klaveness et al. | Jul 1999 | A |
5935553 | Unger et al. | Aug 1999 | A |
5951160 | Ronk | Sep 1999 | A |
5957848 | Sutton et al. | Sep 1999 | A |
5959073 | Schlameus et al. | Sep 1999 | A |
6003566 | Thibault et al. | Dec 1999 | A |
6015546 | Sutton et al. | Jan 2000 | A |
6027472 | Kriesel et al. | Feb 2000 | A |
6028066 | Unger | Feb 2000 | A |
6047861 | Vidal et al. | Apr 2000 | A |
6048908 | Kitagawa | Apr 2000 | A |
6051247 | Hench et al. | Apr 2000 | A |
6056721 | Shulze | May 2000 | A |
6056844 | Guiles et al. | May 2000 | A |
6059766 | Greff | May 2000 | A |
6063068 | Fowles et al. | May 2000 | A |
6071495 | Unger et al. | Jun 2000 | A |
6071497 | Steiner et al. | Jun 2000 | A |
6073759 | Lamborne et al. | Jun 2000 | A |
6090925 | Woiszwillo et al. | Jul 2000 | A |
6096344 | Liu et al. | Aug 2000 | A |
6099546 | Gia | Aug 2000 | A |
6099864 | Morrison et al. | Aug 2000 | A |
6100306 | Li et al. | Aug 2000 | A |
6117157 | Tekulve | Sep 2000 | A |
6139963 | Fujii et al. | Oct 2000 | A |
6149623 | Reynolds | Nov 2000 | A |
6159206 | Ogawa | Dec 2000 | A |
6160084 | Langer et al. | Dec 2000 | A |
6162377 | Ghosh et al. | Dec 2000 | A |
6165193 | Greene, Jr. et al. | Dec 2000 | A |
6179817 | Zhong | Jan 2001 | B1 |
6190373 | Palermo et al. | Feb 2001 | B1 |
6191193 | Lee et al. | Feb 2001 | B1 |
RE37117 | Palermo | Mar 2001 | E |
6214331 | Vanderhoff et al. | Apr 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6224794 | Amsden et al. | May 2001 | B1 |
6231586 | Mariant | May 2001 | B1 |
6235224 | Mathiowitz et al. | May 2001 | B1 |
6238403 | Greene, Jr. et al. | May 2001 | B1 |
6245090 | Gilson et al. | Jun 2001 | B1 |
6258338 | Gray | Jul 2001 | B1 |
6261585 | Sefton et al. | Jul 2001 | B1 |
6264861 | Tavernier et al. | Jul 2001 | B1 |
6267154 | Felicelli et al. | Jul 2001 | B1 |
6268053 | Woiszwillo et al. | Jul 2001 | B1 |
6277392 | Klein | Aug 2001 | B1 |
6280457 | Wallace et al. | Aug 2001 | B1 |
6291605 | Freeman et al. | Sep 2001 | B1 |
6296604 | Garibaldi et al. | Oct 2001 | B1 |
6296622 | Kurz et al. | Oct 2001 | B1 |
6296632 | Luscher et al. | Oct 2001 | B1 |
6306418 | Bley | Oct 2001 | B1 |
6306419 | Vachon et al. | Oct 2001 | B1 |
6306427 | Annonier et al. | Oct 2001 | B1 |
6312407 | Zadno-Azizi et al. | Nov 2001 | B1 |
6315709 | Garibaldi et al. | Nov 2001 | B1 |
6322576 | Wallace et al. | Nov 2001 | B1 |
6335384 | Evans et al. | Jan 2002 | B1 |
6344182 | Sutton et al. | Feb 2002 | B1 |
6355275 | Klein | Mar 2002 | B1 |
6368658 | Schwarz et al. | Apr 2002 | B1 |
6379373 | Sawhney et al. | Apr 2002 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6394965 | Klein | May 2002 | B1 |
6423332 | Huxel et al. | Jul 2002 | B1 |
6432437 | Hubbard | Aug 2002 | B1 |
6436112 | Wensel et al. | Aug 2002 | B2 |
6443941 | Slepian et al. | Sep 2002 | B1 |
6476069 | Krall et al. | Nov 2002 | B2 |
6544503 | Vanderhoff et al. | Apr 2003 | B1 |
6544544 | Hunter et al. | Apr 2003 | B2 |
6545097 | Pinchuk et al. | Apr 2003 | B2 |
6575896 | Silverman et al. | Jun 2003 | B2 |
6589230 | Gia et al. | Jul 2003 | B2 |
6602261 | Greene, Jr. et al. | Aug 2003 | B2 |
6602524 | Batich et al. | Aug 2003 | B2 |
6605111 | Bose et al. | Aug 2003 | B2 |
6629947 | Sahatjian et al. | Oct 2003 | B1 |
6632531 | Blankenship | Oct 2003 | B2 |
6635069 | Teoh et al. | Oct 2003 | B1 |
6638291 | Ferrera et al. | Oct 2003 | B1 |
6652883 | Goupil et al. | Nov 2003 | B2 |
6669652 | Anderson et al. | Dec 2003 | B2 |
6680046 | Boschetti | Jan 2004 | B1 |
6699222 | Jones et al. | Mar 2004 | B1 |
20010001835 | Greene, Jr. et al. | May 2001 | A1 |
20010016210 | Mathiowitz et al. | Aug 2001 | A1 |
20010036451 | Goupil et al. | Nov 2001 | A1 |
20010051670 | Goupil et al. | Dec 2001 | A1 |
20020010481 | Jayaraman | Jan 2002 | A1 |
20020082499 | Jacobsen et al. | Jun 2002 | A1 |
20020197208 | Ruys et al. | Dec 2002 | A1 |
20030007928 | Gray | Jan 2003 | A1 |
20030032935 | Damiano et al. | Feb 2003 | A1 |
20030040803 | Rioux et al. | Feb 2003 | A1 |
20030108614 | Volkonsky et al. | Jun 2003 | A1 |
20030183962 | Buiser et al. | Oct 2003 | A1 |
20030185895 | Lanphere et al. | Oct 2003 | A1 |
20030185896 | Buiser et al. | Oct 2003 | A1 |
20030187320 | Freyman | Oct 2003 | A1 |
20030194390 | Krall et al. | Oct 2003 | A1 |
20030203985 | Baldwin et al. | Oct 2003 | A1 |
20030206864 | Mangin | Nov 2003 | A1 |
20030215519 | Schwarz et al. | Nov 2003 | A1 |
20030233150 | Bourne et al. | Dec 2003 | A1 |
20040076582 | DiMatteo et al. | Apr 2004 | A1 |
20040091543 | Bell et al. | May 2004 | A1 |
20040092883 | Casey, II et al. | May 2004 | A1 |
20040096662 | Lanphere et al. | May 2004 | A1 |
20040101564 | Rioux et al. | May 2004 | A1 |
20040111044 | Davis et al. | Jun 2004 | A1 |
20040127919 | Trout et al. | Jul 2004 | A1 |
20040161451 | Pierce et al. | Aug 2004 | A1 |
20040181174 | Davis et al. | Sep 2004 | A2 |
20040186377 | Zhong et al. | Sep 2004 | A1 |
20050025800 | Tan | Feb 2005 | A1 |
20050037047 | Song | Feb 2005 | A1 |
20050095428 | DiCarlo et al. | May 2005 | A1 |
20050129775 | Lanphere et al. | Jun 2005 | A1 |
20050165366 | Brustad et al. | Jul 2005 | A1 |
20050196449 | DiCarlo et al. | Sep 2005 | A1 |
20050226935 | Kamath et al. | Oct 2005 | A1 |
20050238870 | Buiser et al. | Oct 2005 | A1 |
20050263916 | Lanphere et al. | Dec 2005 | A1 |
20060079926 | Desai et al. | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
A-7618698 | Oct 1998 | AU |
233 303 | Feb 1986 | DE |
3834705 | Apr 1990 | DE |
94 14 868.6 | Dec 1994 | DE |
100 26 620 | Mar 2002 | DE |
0 067 459 | Dec 1982 | EP |
0 122 624 | Oct 1984 | EP |
0 123 235 | Oct 1984 | EP |
0 402 031 | Dec 1990 | EP |
0 422 258 | Apr 1991 | EP |
0 458 079 | Nov 1991 | EP |
0 458 745 | Nov 1991 | EP |
0 470 569 | Feb 1992 | EP |
0 547 530 | Jun 1993 | EP |
0 600 529 | Jun 1994 | EP |
0 623 012 | Nov 1994 | EP |
0 706 376 | Apr 1996 | EP |
0 730 847 | Sep 1996 | EP |
0 744 940 | Dec 1996 | EP |
0 764 047 | Mar 1997 | EP |
0 797 988 | Oct 1997 | EP |
0 820 726 | Jan 1998 | EP |
0 865 773 | Sep 1998 | EP |
0 993 337 | Apr 2000 | EP |
2 641 692 | Jul 1990 | FR |
59-196738 | Nov 1984 | JP |
62-45637 | Feb 1987 | JP |
4-74117 | Mar 1992 | JP |
6-57012 | Mar 1994 | JP |
9-110678 | Apr 1997 | JP |
9-316271 | Dec 1997 | JP |
10-130329 | May 1998 | JP |
2000189511 | Jul 2000 | JP |
2001079011 | Mar 2001 | JP |
2002-017848 | Jan 2002 | JP |
421658 | Feb 2001 | TW |
WO 9112823 | May 1991 | WO |
WO 9221327 | Dec 1992 | WO |
WO 9319702 | Oct 1993 | WO |
WO 9406503 | Mar 1994 | WO |
WO 9410936 | May 1994 | WO |
WO 9503036 | Feb 1995 | WO |
WO 9522318 | Aug 1995 | WO |
WO 9533553 | Dec 1995 | WO |
WO 9622736 | Aug 1996 | WO |
WO 9637165 | Nov 1996 | WO |
WO 9639464 | Dec 1996 | WO |
WO 9804616 | Feb 1998 | WO |
WO 9810798 | Mar 1998 | WO |
WO 9826737 | Jun 1998 | WO |
WO 9847532 | Oct 1998 | WO |
WO 9900187 | Jan 1999 | WO |
WO 9912577 | Mar 1999 | WO |
WO 9942038 | Aug 1999 | WO |
WO 9943380 | Sep 1999 | WO |
WO 9957176 | Nov 1999 | WO |
WO 0023054 | Apr 2000 | WO |
WO 0032112 | Jun 2000 | WO |
WO 0040259 | Jul 2000 | WO |
WO 0053105 | Sep 2000 | WO |
WO 0071196 | Nov 2000 | WO |
WO 0074633 | Dec 2000 | WO |
WO 0112359 | Feb 2001 | WO |
WO 0166016 | Sep 2001 | WO |
WO 0170291 | Sep 2001 | WO |
WO 0172281 | Oct 2001 | WO |
WO 0176845 | Oct 2001 | WO |
WO 0193920 | Dec 2001 | WO |
WO 0211696 | Feb 2002 | WO |
WO 0234298 | May 2002 | WO |
WO 0234299 | May 2002 | WO |
WO 0234300 | May 2002 | WO |
WO 0243580 | Jun 2002 | WO |
WO 0296302 | Dec 2002 | WO |
WO 03013552 | Feb 2003 | WO |
WO 03051451 | Jun 2003 | WO |
WO 03082359 | Oct 2003 | WO |
WO 2004019999 | Mar 2004 | WO |
WO 2004040972 | May 2004 | WO |
WO 2004073688 | Sep 2004 | WO |
WO 2005009253 | Feb 2005 | WO |
Entry |
---|
U.S. Appl. No. 10/927,868, filed Aug. 27, 2004, Richard et al. |
Abbara et al., “Transcervical Expulsion of a Fibroid as a Result of Uterine Artery Embolization for Leiomyomata”, JVIR, vol. 10, No. 4, pp. 409-411, 1999. |
Abrahams, J.M. et al., “Topic Review: Surface Modifications Enhancing Biological Activity of Guglielmi Detachable Coils in Treating Intracranial Aneurysms”, Surg. Neurol. 54:34-41, 2000. |
Abrahams, J.M. et al., “Delivery of Human Vascular Endothelial Growth Factor with Platinum Coils Enhances Wall Thickening and Coil Impregnation in a Rat Aneurysm Model”, AJNR Am. J. Neuroradiol. 22:1410-1417, Aug. 2001. |
Ahuja, A.A., “Platinum Coil Coatings to Increase Thrombogenicity: A Preliminary Study in Rabbits”, AJNR Am. J. Neuroradiol. 14:794-798; Jul./Aug. 1993. |
Antibody Labeling, http://www.altcorp.com/AffinityLabeling/ablaeling.htm, pp. 1-6, May 20, 2003. |
Bachtsi, A.R. et al., “An Experimental Investigation of Enzyme Release from Poly(vinyl alcohol) crosslinked Microspheres”, J. Microencapsulation, vol. 12, No. 1, pp. 23-35; 1995. |
Barr, J.D., et al., “Polyvinyl Alcohol Foam Particles Sizes and Concentrations Injectable through Microcatheters”, JVIR, vol. 9, No. 1, pp. 113-118; 1998. |
Barton, P. et al., “Embolization of Bone Metastases,” Journal of Vascular and Interventional Radiology, 7(1):81-88 (Jan.-Feb. 1996). |
Battinelli, L. et al., “New Class of Poly(vinyl alcohol) Polymrs as Column-Chromatography Stationary Phases for Candida rugosa Lipase Isoforms Separation”, J. Chromatogr A, vol. 753, No. 1, pp. 47-55; 1996. |
Beaujeux, R. et al., “Trisacryl Gelatin Microspheres for Therapeutic Embolization, II: Preliminary Clinical Evaluation in Tumors and Arteriovenous Malformations,” AJNR Am. J. Neuroradiol., 17:541-548, Mar. 1996. |
Berenstein, A. et al., “Catheter and Material Selection for Transarterial Embolization: Technical Considerations. II. Materials.”, Radiology, vol. 132, No. 3, pp. 631-639; 1979. |
Berenstein, A. et al., “Microembolization Techniques of Vascular Occlusion: Radiologic, Patohologic, and Clinical Correlation”, AJNR Am I Neuroradiol, vol. 2, No. 3, pp. 261-267; 1981. |
Berkowitz, R.P. et al., “Vaginal Expulsion of Submucosal Fibroids After Uterine Artery Embolization”, Journal of Reproductive Medicine, vol. 44, No. 4, pp. 373-376; Apr. 1999 http://www.reproductivemedicine.com. |
Boston Scientific Target, IDC™ Interlocking Coil, 1 page. |
Bradley, E.A. et al., “Transcatheter Uterine Artery Embolisation to Treat Large Uterine Fibroids”, British Journal of Obstetrics and Gynaecology, vol. 105, pp. 235-240; Feb. 1998. |
Brockmann, J. et al., “Radiolabeling of p-Bz-DOTA-CD-11c antibody with 88Y: Conjugation, Labeling, Biodistribution studies”, 2 pages, 2000 http://www.kernchemie.uni-mainz.de/downloads/jb2000/b14—brockmann.pdf. |
Bruix, J. et al., “Transarterial Embolization Versus Symptomatic Treatment in Patients With Advanced Hepatocellular Carcinoma: Results of a Randomized, Controlled Trial in a Single Institution”, Hepatology, Jun. 1998, vol. 27, No. 6, pp. 1578-1583, http://www.hepatitis-central.com/hcv/hcc/embolization/references.html. |
Buhle, Jr. EL, “Re: Re: Hepatic Arterial Embolization”, UCLA Medicine Online, Mar. 10, 1996, http://www.meds.com/archive/mol-cancer/1996/msg00128.html, 2 pages. |
Burczak, et al., “Long-term in vivo performance and biocompatibility of poly (vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas”, Biomaterials, vol. 17, No. 24, pp. 2351-2356, 1996. |
Burczak, et al., “Polymeric materials for biomedical purposes obtained by radiation methods. V. hybrid artificial pancreas”, Polim Med, vol. 24, No. 1-2, pp. 45-55, 1994 (Summary). |
Capozza et al., “Endoscopic treatment of vesico-ureteric reflux and urinary incontinence: technical problems in the paediatric patient,” British Journal of Urology, 75(4):538-542 (Apr. 1995). |
Carroll, B.A. et al., “Microbubbles as Ultrasonic Contrast Agents”, Investigative Radiology, vol. 14, No. 3, p. 374, Supplement to May-Jun. 1979. |
Carroll, B.A. et al., “Gelatin Encapsulated Nitrogen Microbubbles as Ultrasonic Contrast Agents”, Journal of Clinical and Laboratory Research, vol. 15, No. 1, pp. 260-266, Feb. 1980. |
Carstensen, E.L. et al., “Determination of the Acoustic Properties of Blood and its Components”, Journal of Acoustical Society of America, vol. 25, No. 2, pp. 286-289, Mar. 1953. |
Choe, et al., “An experimental study of embolic effect according to infusion rate and concentration of suspension in transarterial particulate embolization”, Invest Radiol, vol. 32, No. 5, pp. 260-270, 1997. |
Chuang et al., “Experimental Canine Hepatic Artery Embolization with Polyvinyl Alcohol Foam Particles”, Departments of Diagnostic Radiology and Veterinary Medicine, The University of Texas, M.D. Anderson Hospital and Tumor Institute at Houston, Texas, pp. 21-25, Oct. 1982. |
Cirkel, U. et al, “Experience with Leuprorelin Acetate Depot in the Treatment of Fibroids: A German Multicentre Study”, Clinical Therapeutics, vol. 14, Suppl. A, 1992. |
Clarian Health Methodist—Indiana Lions Gamma Knife Center, “Arteriovenous Malformation,” http://www.clarian.com/tyhealth/gammaknife/cond—arter.asp, 4 pages, Last Updated on Mar. 20, 2000. |
Colombo M, “Treatment of Hepatocellular Carcinoma”, Journal of Viral Hepatitis, 4(Suppl. 1):125-130 (1997),http://home.texoma.net./˜moreland/stats/hcc-9.html. |
Concentric Medical, Inc.—Product Information (3 pages), 2002. |
Cruise et al., “In Vitro and In Vivo Characterization of a Hydrogel-Based Aneurysm Embolization System,” Society for Biomaterials 28th Annual Meeting Transactions, p. 203 (2002). |
Deasy, P. B., “Microencapsulation and Related Drug Processes”, New York, NY, Marcel Dekker, Inc., 345 pages, 1984 (Table of Contents only). |
de Gast, A.N. et al., “Transforming Growth Factor β-coated Platinum Coils for Endovascular Treatment of Aneurysms: An Animal Study”, Neurosurgery, vol. 49, No. 3, pp. 690-696, Sep. 2001. |
Derdeyn, et al., “Collagen-coated acrylic microspheres for embolotherapy: in vivo and in vitro characteristics”, American Journal of Neuroradiology, vol. 18, No. 4, pp. 647-653, 1997. |
Derdeyn, et al., “Polyvinyl alcohol particle size and suspension characteristics”, American Journal of Neuroradiology, vol. 16, pp. 1335-1343, 1995. |
DiLuccio et al., “Sustained-Release Oral Delivery of Theophylline by Use of Polyvinyl Alcohol and Polyvinyl Alcohol-Methyl Acrylate Polymers”, Journal of Pharmaceutical Sciences, vol. 83, No. 1, pp. 104-106, Jan. 1994. |
Duckwiler et al., “Catheters, embolic agents spark neurointervention,” Diagnostic Imaging, 16(5):66-72 (May 1994). |
Eskridge, “Interventional Neuroradiology,” Radiology, 172:991-1006 (Nov. 1989). |
Feldman, L. et al., “Transcatheter Vessel Occlusion: Angiographic Results Versus Clinical Success”, Radiology, vol. 147, pp. 1-5, Apr. 1983. |
Ferrofluids, Physical Properties and Applications Ferrofluidics Corp., Nashua, NH, 5 pages, 1986. |
FeRx Incorporated, FERX Profile http://www.biotechshares.com/FERX.htm, 4 pages (Retrieved from the intemet on Jun. 26, 2003). |
“Fibroid Treatment Collective—Fibroid Embolization,” 2 pages, http://www.fibroids.org. |
Fritzsch, T. et al., “SH U 508, A Transpulmonary Echocontrast Agent”, Investigative Radiology, vol. 25, Supplement 1, pp. S160-S161, Sep. 1990. |
Fujimoto, S. et al., “Biodegradable Mitomycin C Microspheres Given Intra-Arterially for Inoperable Hepatic Cancer”, Cancer, vol. 56, pp. 2404-2410, 1985. |
Gander, et al., “Effect of polymeric network structure on drug release from cross-linked poly(vinyl alcohol) micromatrices”, Pharm Res, vol. 6, No. 7, pp. 578-584, 1989. |
Germano, et al., “Histopathological follow-up study of 66 cerebral arteriovenous malformations after therapeutic embolization with polyvinyl alcohol”, J Neurosurg, vol. 76, No. 4, pp. 607-614, 1992. |
Geschwind et al., “Chemoembolization of Liver Tumor in a Rabbit Model: Assessment of Tumor Cell Death with Diffusion-Weighted MR Imaging and Histologic Analysis”, Journal of Vascular and Interventional Radiology, vol. 11, No. 10, pp. 1244-1255, Dec. 2000. |
Gilbert, W.M. et al., “Angiographic Embolization in the Management of Hemorrhagic Complications of Pregnancy”, American Journal of Obstetrics and Gynecology, vol. 166, No. 2, pp. 493-497, Feb. 1992. |
Gohel, et al., “Formulation design and optimization of modified-release microspheres of diclofenac sodium”, Drug Dev Ind Pharm, vol. 25, No. 2, pp. 247-251, 1999. |
Goldberg, B.B., “Ultrasonic Cholangiography”, Radiology, vol. 118, pp. 401-404, Feb. 1976. |
Goodwin, et al., “Overview of embolic agents and their indications”, Eleventh Annual International Symposium on Endovascular Therapy, pp. 303-306, 1999. |
Goodwin, et al., “Preliminary experience with uterine artery embolization for uterine fibroids”, Journal of Vascular and Interventional Radiology, vol. 8, No. 4, pp. 517-526, 1997. |
Gramiak et al., “Echocardiography of the Aortic Root,” Investigative Radiology, 3(5):356-366 (Sep.-Oct. 1968). |
Gramiak, R. et al., “Ultrasound Cardiography: Contrast Studies in Anatomy and Function”, Radiology, vol. 92, No. 5, pp. 939-948, Apr. 1969. |
Grandfils, et al., “Preparation of poly (D,L) lactide microspheres by emulsion solvent evaporation, and their clinical implications as a convenient embolic material”, J Biomed Mater Res, vol. 26, No. 4, pp. 467-479, 1992. |
Greenwood, L.H. et al., “Obstetric and Nonmalignant Gynecologic Bleeding: Treatment with Angiographic Embolization”, Radiology, vol. 164, No. 1, pp. 155-159, Jul. 1987. |
Guglielmi Detachable Coils (GDC); http://www.neurosurgery.pitt.edu/endovascular/treatments/gdc.html, Jun. 2005, pp. 1-3. |
Gupta et al., “Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films,” Biomaterials, 23:863-871 (2002). |
Halstenberg et al., “Biologically Engineered Protein-graft-Poly(ethylene glycol) Hydrogels: A Cell Adhesive and Plasmin-Degradable Biosynthetic Material for Tissue Repair,” Biomacromolecules, 3(4):710-723 (2002). |
Hamada et al., “Embolization with Cellulose Porous Beads, II: Clinical Trial,” AJNR Am. J. Neuroradiol., 17:1901-1906 (Nov. 1996). |
Hirano et al., “Transcutaneous Intrafold Injection for Unilateral Vocal Fold Paralysis: Functional Results,” Ann. Otol. Rhinol Laryngol., 99(8):598-604 (Aug. 1990). |
Horak et al., “Hydrogels in endovascular embolization. 1. Spherical particles of poly (2-hydroxyethyl methacrylate) and their medico-biological properties”, Biomaterials, 7(3):188-192 (May 1986). |
Horak et al., “Hydrogels in endovascular embolization. H. Clinical use of spherical particles”, Biomaterials, 7(6):467-470 (Nov. 1986). |
Huang, et al., “Percutaneous endovascular embolization of intracerebral arteriovenous malformations. Experience in 72 cases”, Chin Med J, vol. 108, No. 6, pp. 413-419, 1995. |
“Injectable Tissue Implant Could Repair Ravages of Surgery”, Clemson University, Biotech Week, Oct. 22, 2003, p. 117. |
Jack, et al., “Radiolabeled polyvinyl alcohol particles: a potential agent to monitor embolization procedures”, Int J Rad Appl Instrum B, vol. 13, No. 3, pp. 235-243, 1986. |
Jiaqi, Y. et al., “A New Embolic Material: Super Absorbent Polymer (SAP) Microsphere and Its Embolic Effects,” Nippon Acta Radiologica, 56:19-24 (1996) (Abstract). |
Jones, S.K. et al., “Experimental Examination of a Targeted Hyperthermia System Using Inductively Heated Ferromagnetic Microspheres in Rabbit Kidney”, Phys. Med. Biol., vol. 46, No. 2, pp. 385-398, Feb. 2001, www.iop.org/Journals/pb. |
Joy C, et al., “Use of Preoperative Embolization in the Treatment of Vascular Metastatic Lesions of the Spine,” http://www.aaos.org/wordhtml/anmeet9l/scipro/ppr472.htm, Mar. 12, 1991. |
Kai, et al., “The utility of the microcrystalline cellulose sphere as a particulate embolic agent: an experimental study”, American Journal of Radiology, vol. 21, No. 6, pp. 1160-1163, 2000. |
Kallmes, D.F. et al., “In Vitro Proliferation and Adhesion of Basic Fibroblast Growth Factor-producing Fibroblasts on Platinum Coils”, Radiology, vol. 206, No. 1, pp. 237-243, Jan. 1998. |
Kan, et al., “In vivo microscopy of the liver after injection of lipiodol into the hepatic artery and portal vein in the rat”, Acta Radiologica, vol. 30, pp. 419-425, 1989. |
Kerber, C., “Balloon Catheter with a Calibrated Leak”, Radiology, vol. 120, pp. 547-550, Sep. 1976. |
Kerber et al., “Polyvinyl Alcohol Foam: Prepackaged Emboli for Therapeutic Embolization”, American Journal Roentgenol, vol. 130, pp. 1193-1194, Jun. 1978. |
Kerber, “Flow-Controlled Therapeutic Embolization: A Physiologic and Safe Technique”, AJR, vol. 134, pp. 557-561, Mar. 1980. |
Kim, et al., “Composite poly(vinyl alcohol) beads for controlled drug delivery”, Pharm Res, vol. 9. No. 1, pp. 10-16, 1992. |
Kim et al., “Poly(vinyl alcohol) beads with core-shell structure for drug delivery,” Cosmetic and Pharmaceutical Applications of Polymers, Plenum Press, New York, pp. 209-214 (1991). |
Kochan, J.P. et al., “Interventional Neuroradiology: Current Practices and Techniques at Temple University Hospital,” http://www.temple.edu/radiology/stroke.html, 5 pages. |
Krinick et al., “A polymeric drug delivery system for the simultaneous delivery of drugs activatable by enzymes and/or light,” J. Biomater. Sci. Polymer Edn, 5(4):303-324 (1994). |
Kuhn, R. et al., “Embolic Occlusion of the Blood Supply to Uterine Myomas: Report of 2 Cases”, Aust. NZ. J. Obstet. Gynaecol., vol. 39, No. 1, pp. 120-122, Feb. 1999. |
Kurata, et al., “Preoperative embolization for meningiomas using PVA particles”, No Shinkei Geka, vol. 20, No. 4, pp. 367-373, 1992 (Abstract). |
Kurbatova, G.T. et al., “Magnetically-guided Anesthetics Based on Highly Dispersed Iron Powders Coated by Polyacrylamide”, Biofizika, vol. 47, No. 2, pp. 331-337, Mar.-Apr. 2002 http://intapp.medscape.com/px/medlineapp (Abstract). |
Kurosaki et al., “Evaluation of PVA-Gel Spheres as GI-Transit Time Controlling Oral Drug Delivery System”, Proceedings of the 19th International Symposium on Controlled Release of Bioactive Materials, Orlando, Florida pp. 273-274, Jul. 26-31, 1992. |
Kusano, et al., “Low-dose particulate polyvinylalcohol embolization in massive small artery intenstinal hemorrahage. Experimental and clinical results”, Invest Radiol, vol. 22, No. 5, pp. 388-392, 1987. |
Labarre et al., “Complement activation by substituted polyacrylamide hydrogels for embolisation and implantation”, Biomaterials, vol. 23, pp. 2319-2327, 2002. |
Lammer, et al., “Transcatheteral embolization with polyvinyl alcohol—technic and experimental studies”, Rontgenblatter, vol. 36, No. 1, pp. 10-14, 1983 (Abstract). |
Latchaw et al., “Polyvinyl Foam Embolization of Vascular and Neoplastic Lesions of the Head, Neck, and Spine”, Radiology, vol. 131, pp. 669-679, Jun. 1979. |
Laurent, “Materials and biomaterials for interventional radiology,” Biomed. & Pharmacother., 52:76-88 (1998). |
Lendlein, A. et al., “Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications”, Science, vol. 296, pp. 1673-1676, May 31, 2002. |
Leung et al., “Determinants of Postembolization Syndrome after Hepatic Chemoembolization”, Journal of Vascular and Interventional Radiology, vol. 12, No. 3, pp. 320-326, Mar. 2001. |
Leventon, William, “Hemocompatible Coatings for Blood-Contacting Devices”, Medical Device & Diagnostic Industry: Coating Technologies—New Methods to Ensure Blood Compatibility, vol. 25, No. 8, pp. 62-67, Aug. 2003. |
Levy et al., “Transcatheter Uterine Artery Embolization for the Treatment of Symptomatic Uterine Fibroid Tumors,” Journal of Women's Imaging, 2(4):168-175 (2000). |
Lipman, “Uterine artery embolization for the treatment of symptomatic uterine fibroids: A review,” Applied Radiology, 29(7):15-20 (Jul. 2000). |
Lowery, C.L. et al., “Screening Tests for Intrauterine Growth Retardation: A Comparison of Umbilical Artery Doppler to Real-Time Ultrasound”, Echocardiography, vol. 7, No. 2, pp. 159-164, Mar. 1990. |
Marich, K.W. et al., “Real-Time Imaging with a New Ultrasonic Camera: Part I, In Vitro Experimental Studies on Transmission Imaging of Biological Structures”, Journal of Clinical Ultrasound, vol. 3, No. 1, pp. 5-16, Mar. 1975. |
Markoff, et al., “Uterine arteriovenous malformation successfully embolized with a liquid polymer, isobutyl 2-cyanoacrylate”, Am. J. Obstet. Gynecol., 155:659-660 (Sep. 1986). |
Markus et al., “Experimental Aspects of High-Intensity Transient Signals in the Detection of Emboli,” J. Clin. Ultrasound., 23(2):81-87 (Feb. 1995). |
Maruhashi, “Modified Polyvinyl Alcohols I and II,” Polyvinyl Alcohol—Developments, John Wiley & Sons, Chichester, England, pp. 160-161 and pp. 186-191 (1992). |
Marx, W. F. et al., “Endovascular Treatment of Experimental Aneurysms by Use of Biologically Modified Embolic Devices: Coil-mediated Intraaneurysmal Delivery of Fibroblast Tissue Allografts”, AJNR. Am. J. Neuroradiol., vol. 22, pp. 323-333, Feb. 2001. |
Mather, P.T., Research Group Homepage, Basic Goals and Methods, http://www.ims.uconn.edu/˜mather, 4 pages. |
Matsumaru, et al., “Embolic materials for endovascular treatment of cerebral lesions”, J Biomater Sci Polym Ed, vol. 8, No. 7, pp. 555-569, 1997. |
Matsumoto, H. et al., “Basic Fibroblast Growth Factor Released from a Platinum Coil with a Polyvinyl Alcohol Core Enhances Cellular Proliferation and Vascular Wall Thickness: An In Vitro and In Vivo Study”, Neurosurgery, vol. 53, No. 2, pp. 402-408, Aug. 2003. |
Matsumoto, Y. et al., “Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide”, Science, vol. 291, pp. 854-856, Feb. 2, 2001 www.sciencemag.org. |
Mavligit, G. et al., “Gastrointestinal Leiomyosarcoma Metastatic to the Liver,” Cancer, 75(8):2083-2088 (Apr. 15, 1995). |
McIvor, J. et al., “Pregnancy After Uterine Artery Embolization to Control Haemorrhage from Gestational Trophoblastic Tumour”, British Journal of Radiology, vol. 69, No. 823, pp. 624-629, Jul. 1996. |
MeroceIXL Sponge with Hytrol http://www.xomed.com/newproducts/merocelxl/merocelxl—earwick.asp, 3 pages, 2001. |
Mid-America Interventional Radiological Society, “New Treatment for Uterine Fibroids Avoids Surgery,” http://www.mirs.org/fibroids.htm, 6 pages, Submitted in Oct. 1999. |
Moroz, P. et al., “Arterial Embolization Hyperthermia in Porcine Renal Tissue”, Journal of Surgical Research, vol. 105, No. 2, pp. 209-214, Jun. 15, 2002. |
Moroz, P. et al., “Hepatic Clearance of Arterially Infused Ferromagnetic Particles”, Int. J. Hyperthermia, vol. 19, No. 1, pp. 23-24, Feb. 2003, http://www.tandf.co.uk/journals. |
Nakabayashi, et al., “Evaluation of particulate embolic materials with MR imaging, scanning electron microscopy, and phase-contrast microscopy”, American Journal of Neuroradiology, vol. 18, No. 3, pp. 485-491, 1997. |
Nakstad, et al., “Embolization of intracranial arteriovenous malformations and fistulas with polyvinyl alcohol particles and platinum fibre coils”, Neuroradiology, vol. 34, No. 4, pp. 348-351, 1992. |
Namiki, “Application of Teflon Paste for Urinary Incontinence—Report of 2 Cases,” Uro. Int., 39:280-282 (1984). |
Nash, et al., “Modifications of polystyrenic matrices for the purification of proteins. II. Effect of the degree of glutaraldehyde-poly(vinyl alcohol) crosslinking on various dye ligand chromatography systems”, J Chromatogr A, vol. 776, No. 1, pp. 55-63, 1997. |
Nikishin LF et al., “Interventional radiology in diffuse toxic goiter”, European Congress of Radiology, Abstract 9041, 1999, http://www.ecr.org/conferences/ecr1999/sciprg/abs/p090041.htm, 7 pages. |
Ophir, et al., “Ultrasonic backscatter from contrast producing collagen microspheres”, Ultrasonic Imaging, vol. 2, pp. 67-77, 1980. |
Oregon Health Sciences University, “Fibroid Embolization,” http://www.uhmc.edu/dotter-fibroid, 34 pages. |
Orsini, L. F. et al., “Pelvic Organs in Premenarcheal Girls: Real-Time Ultrasonography”, Radiology, vol. 153, No. 1, pp. 113-116, Oct. 1984. |
Parker, et al., “A particulate contrast agent with potential for ultrasound imaging of liver”, Ultrasound in Medicine and Biology, vol. 13, No. 9, pp. 555-566, 1987. |
Pedley et al., “Hydrogels in Biomedical Applications,” British Polymer Journal, 12:99-110 (Sep. 1980). |
Pesant A.C. et al., “Dural fistulas involving the cavernous sinus: Treatment by embolization—7 cases”, European Congress of Radiology, Abstract 3-088, 1997, http://www.ecr.org/conferences/ecr1997/sciprg/abs/9703088p.htm, 1 page. |
Phillips, D. R. et al., “Experience with Laparoscopic Leiomyoma Coagulation and Concomitant Operative Hysteroscopy”, J. Am. Assoc. Gynecol. Laparosc, vol. 4, No. 4, pp. 425-533, Aug. 1997. |
Physicians' Desk Reference Family Guide to Women's Health, “Chapter 7—Common Disorders of the Reproductive System,” http://www.healthsquare.com/pdrfg/wh/chapters/wh1ch01.htm, 24 pages. |
Politano et al., “Periurethral Teflon Injection for Urinary Incontinence,” The Journal of Urology, 111:180-183 (1974). |
Poppe, W. et al., “Pregnancy after Transcatheter Embolization of a Uterine Arteriovenous Malformation”, Am. J. Obstet. Gynecol., vol. 156, No. 5, pp. 1179-1180, May 1987. |
Pritchard, et al., “Poly(Vinyl Alcohol): Basic Properties and Uses”, London, England: Gordon and Breach Science Publishers, pp. 95-97, 1970. |
Progelhof et al., “Table 4.21. Properties of electrical insulating films (101),” Polymer Engineering Principles: Properties, Processes, and Tests for Design, Hanser Publishers, Munich, p. 383 (1993). |
Pryor J. and Berenstein A., “Epistaxis (Nose-bleeds),” http://www.wehealny.org/inn/Radiology/nosebleeds.html, 1 page. |
“Pulmonary artery pseudoaneurysm/aneurysm,” http://www.mamc.amedd.army.mil/williams/chest/vascular/paaneurysm/paaneyrysm.htm, 2 pages. |
Purdy, et al., “Arteriovenous malformations of the brain: choosing embolic materials to enhance safety and ease of excision”, J Neurosurg, vol. 77, No. 2, pp. 217-222, 1992. |
Quisling, et al., “Histopathology analysis of intraarterial polyvinyl alcohol microemboli in rat cerebral cortex”, American Journal of Neuroradiology, vol. 5, pp. 101-104, 1984. |
Rajan et al., “Sarcomas Metastatic to the Liver: Response and Survial after Cisplatin, Doxorubicin, Mitomycin-C, Ethiodol, and Polyvinyl Alcohol Chemoembolization”, Journal of Vascular and Interventional Radiology, vol. 12, No. 2, pp. 187-193, Feb. 2001. |
Ramos, et al., “Tumor vascular signals in renal masses: detection with Doppler US”, Radiology, vol. 168, No. 3, pp. 633-637, 1988. |
Ravina, J.H. et al., “Advantage of Pre-Operative Embolization of Fibroids: About a Multicentric Set of 31 Cases”, Contracept. Fertil. Sex., vol. 23, No. 1, pp. 45-49, Jan. 1995 (abstract). |
Ravina, J.H. et al., “Arterial Embolisation to Treat Uterine Myomata”, Lancet, vol. 346, pp. 671-674, Sep. 9, 1995. |
Ravina, J.H. et al., “Interest of Particulate Arterial Embolization in the Treatment of Some Uterine Myoma”, Bull. Acad. Nagle. Med., vol. 181, No. 2, pp. 233-246, Feb. 4, 1997 (Summary). |
Repa, I. et al., “Mortalities Associated with Use of a Commercial Suspension of Polyvinyl Alcohol,” Radiology, 170(2):395-399 (Feb. 1989). |
Rhine et al., “Polymers for Sustained Macromolecule Release: Procedures to Fabricate Reproducible Delivery Systems and Control Release Kinetics,” Journal of Pharmaceutical Sciences, 69(3):265-270 (Mar. 1980). |
Rump, A. et al., “Pharmacokinetics of Intraarterial Mitomycin C in the Chemoembolisation Treatment of Liver Metastases,” Gen. Pharmac., 27(4):669-671 (1996). |
Schetky, “Shape-Memory Alloys,” Encyclopedia of Chemical Technology, Third Edition, vol. 20, John Wiley & Sons, New York, pp. 726-736 (1982). |
Schlief, R. et al., “Enhanced Color Doppler Echocardiography of the Left Heart After Intravenous Injection of a New Saccharide Based Agent in Humans”, Circulation, vol. 82, No. 2, p. 28, Oct. 1990 (Abstract). |
Schlief, R. et al., “Successful Opacification of the Left Heart Chamber on Echocardiographic Examination after Intravenous Injection of a New Saccharide Based Contrast Agent”, Echocardiography, vol. 7, No. 1, pp. 61-64, Jan. 1990. |
Schwarz et al., “The acoustic filter: An ultrasonic blood filter for the heart-lung machine,” J. Thorac. Cardiovasc. Surg., 104(6):1647-1653 (Dec. 1992). |
Shafik, “Intraesophageal Polytef injection for the treatment of reflux esophagitis,” Surg. Endosc., 10:329-331 (1996). |
Shape Shifters, http://www.sciam.com/tehbiz/0501scicit6.html, 3 pages, 2001. |
Shung, K.K. et al., “Scattering of Ultrasound by Blood”, IEEE Transactions on Biomedical Engineering, vol. BME-23, No. 6, pp. 460-467, Nov. 1976. |
Sigelmann, R.A. et al., “Analysis and Measurement of Ultrasound Backscattering from an Ensemble of Scatters Excited by Sine-Wave Bursts”, Journal of Acoustical Society of America, vol. 53, No. 4, pp. 1351-1355, Apr. 1973. |
SIR-Spheres (Yttrium-90 Microspheres), pp. 1-12. |
SIR-Spheres, Radioactive Implant (Yttrium-90 Microspheres), Sirex Medical, Inc., San Diego, CA, Nov. 6, 2000, pp. 1-15. |
Sirtex Medical Limited—Product Description http://www.sirtex.com/?p=72, 3 pages (Retrieved from the internet on May 27, 2003). |
Sirtex Medical Limited—Targeted Radiotherapy with SIR-Spheres http://www.sirtex.com/?p=57, 2 pages (Retrieved from the internet on May 27, 2003). |
Skotland, T. et al., “In Vitro Stability Analyses as a Model for Metabolism of Ferromagnetic Particles (Clariscan™), a Contrast Agent for Magnetic Resonance Imaging”, J. Pharm. Biomed. Anal., vol. 28, No. 2, pp. 323-329, Apr. 15, 2002. |
“Smart Sutures Tie Themselves”, Apr. 26, 2002, http://www.sciam.com/article.cfm?articleID=00047706-121F-1CD0-B4A8809EC588, 2 pages. |
Smith et al., “Evaluation of Polydimethylsiloxane as an alternative in the Endoscopic Treatment of Vesicoureteral Reflux,” The Journal of Urology, 152:1221-1224 (Oct. 1994). |
Smith et al., “Left Heart Opacification with Peripheral Venous Injection of a New Saccharide Echo Contrast Agent in Dogs”, JACC, vol. 13, No. 7, pp. 1622-1628, Jun. 1989. |
Spickler, et al., “The MR appearance of endovascular embolic agents in vitro with clinical correlation”, Comput Med Imaging Graph, vol. 14, No. 6, pp. 415-423, 1990. |
Spies JB, “Georgetown University Medical Center. Uterine Fibroid Embolization (UFE). An alternative to surgery for patients with uterine fibroids. Literature Review,” http://www.fibroidoptions.com/pr-lit.htm, 6 pages, Sep. 1, 2001. |
Stancato-Pasik, A. et al., “Obstetric Embolotherapy: Effect on Menses and Pregnancy”, Radiology, vol. 204, No. 3, pp. 791-793, Sep. 1997. |
Stein, R. et al., “Targeting Human Cancer Xenografts with Monoclonal Antibodies Labeled Using Radioiodinated, Diethylenetriaminepentaacetic Acid-appended Peptides”, Clinical Cancer Research, vol. 5, No. 10, pp. 3079-3087, Oct. 1999 (Supplement). |
Strasnick et al., “Transcutaneous Teflon® Injection for Unilateral Vocal Cord Paralysis: An Update,” The Laryngoscope, 101:785-787 (Jul. 1991). |
Stridbeck, H. et al, “Collateral Circulation Following Repeated Distal Embolization of the Hepatic Artery in Pigs,” Invest. Radiol., 19(3):179-183 (1984). |
Strunk, et al., “Treatment of congenital coronary arteriovenous malformations with microparticle embolization”, Cathet Cardiovasc Diagn, vol. 22, No. 2, pp. 133-136, 1991. |
Swanson DA et al., “The role of embolization and nephrectomy in the treatment of metastatic renal carcinoma”, Urologic Clinics of North America, 7(3):719-730, 1980. University of Pennsylvania Cancer Center—Oncolink, http://www.oncolink.upenn.edu/pdg—html/cites/00/00585.html. |
Tabata et al., “Tumor accumulation of poly(vinyl alcohol) of different sizes after intravenous injection”, Journal of Controlled Release, vol. 50, pp. 123-133, Jan. 2, 1998. |
Tadavarthy et al., “Polyvinyl Alcohol (Ivalon)—A New Embolic Material”, The American Journal of Roentgenology Radium Therapy and Nuclear Medicine, vol. 125, No. 3, pp. 609-616, Nov. 1975. |
Tadavarthy et al., “Polyvinyl Alcohol (Ivalon) as an Embolizing Agent”, Seminars in Interventional Radiology, vol. 1, No. 2, pp. 101-109, Jun. 1984. |
Tamatani, S. et al., “Histological Interaction of Cultured Endothelial Cells and Endovascular Embolic Materials Coated with Extracellular Matrix”, J. Neurosurg., vol. 86, No. 1, pp. 109-112, Jan. 1997. |
Tamatani et al., “Radiologic and Histopathologic Evaluation of Canine Artery Occlusion after Collagen-Coated Platinum Microcoil Delivery,” American Journal of Neuroradiology, 20:541-545 (1999). |
Tanaka et al., “Radiologic Placement of Side-Hole Catheter With Tip Fixation for Hepatic Arterial Infusion Chemotherapy,” JVIR, vol. 4, pp. 63-68, 2003. |
Tao, et al., “Study of microspheres for embolization of hepatic artery”, Acta Pharmaceutica Sinica, vol. 23, No. 1, pp. 55-60, 1988. |
Tao, et al., “Study of microspheres for embolization of hepatic artery”, (Translation) Acta Pharmaceutica Sinica, vol. 23, No. 1, pp. 55-60, 1988. |
Terada, et al., “Preoperative embolization of meningiomas fed by ophthalmic branch arteries”, Surg Neurol, vol. 45, No. 2, pp. 161-166, 1996. |
Thanoo, et al., “Controlled release of oral drugs from cross-linked polyvinyl alcohol microspheres”, J Pharm Pharmacol, vol. 45, No. 1, pp. 16-20, 1993. |
Thanoo, B. C. et al., “Preparation and Properties of Barium Sulphate and Methyl Iothalamate Loaded Poly(vinyl Alcohol) Microspheres as Radiopaque Particulate Emboli,” Journal of Applied Biomaterials, 2:67-72 (1991). |
Thanoo, et al., “Tantalum loaded silicone micropsheres as particulate emboli”, J Microencapsul, vol. 8, No. 1, pp. 95-101, 1991. |
Thelen, V.M. et al., “Catheter Embolisation of Metastasising Renal Carcinomas Using Butyle-2-cyano-acrylate”, Fortschr. Rontgenstr., vol. 124, No. 3, pp. 232-235, Mar. 1976 (Abstract). |
The Fibroid Embolization Center of the New York United Hospital Medical Center, “Fibroid Facts,” http://www.uhmc.com/fibro2.htm, 9 pages. |
The Vanderbilt-Ingram Cancer Center, “Kidney Cancer,” http://www.mc.Vanderbilt.Edu/cancer/cancerinfo/kidney.html, 1 page, 2001. |
Tikkakoski, et al., “Preoperative embolization in the management of neck paragangliomas”, Laryngoscope, vol. 107, pp. 821-826, 1997. |
Toon, “Improving a Key Weapon Against Cancer,” Research Horizons, pp. 11-12, Spring/Summer 2001. |
Touho, et al., “Intravascular treatment of spinal arteriovenous malformations using a microcatheter—with special reference to serial xylocaine tests and intravascular pressure monitoring”, Surgical Neurology, vol. 42, No. 2, pp. 148-156, 1994. |
UCLA Radiological Sciences, “A summary of terms appearing in this text,” http://www.radsci.ucla.edu:8000/aneurysm/terms.html, 1 page. |
University Medical Center SUNY Stony Brook, Department of Urology, “Variococele and its treatment,” http://www.hsc.sunysb.edu/urology/male—inf...variocoele—and—its—treatment.html, 8 pages, Last Updated on Mar. 12, 2001. |
Vivas S et al., “Arterioportal fistula and hemobilia in a patient with hepatic transplant”, Gastroenterol Hepatol, 21(2):88-9, http://www.doyma.es/copiani/revistas/gastro/abstr/abs—p080.html, Feb. 1998 (Abstract). |
Vogel F, “Nonsurgical Management of Uterine Fibroids,” http://www.holyname.org/brochure/fibroids.html, 5 pages. |
Wakhloo, et al., “Extended preoperative polyvinyl alcohol microembolization of intracranial meningiomas: Assessment of two embolization techniques”, American Journal of Neuroradiology, vol. 14, pp. 571-582, 1993. |
Walker WJ, “Non Surgical Treatment of Fibroids in the UK by Uterine Artery Embolisation—An Alternative to Hysterectomy, Myomectomy and Myolysis,” http://www.fibroids.co.uk/thepaper.html, 2 pages, 2002. |
Walsh RM et al., “Role of Angiography and Embolization for Acute Massive Upper Gastronintestinal Hemorrhage,” J. Gastrointest. Surg., 3:61-66 (1999). |
Waltman, A.C. et al., “Technique for Left Gastric Artery Catheterization”, Radiology, vol. 109, No. 3, pp. 732-734, Dec. 1973. |
White, Jr., “Embolotherapy in Vascular Disease,” American Journal of Roentgenology, 142:27-30 (Jan. 1984). |
Widder, K.J. et al., “Selective Targeting of Magnetic Microspheres Containing Adriamycin: Total Remission in Yoshida Sarcoma-Bearing Rats”, Proceedings of the 16th Annual Meeting of American Society of Clinical Oncology, May 26-27, 1980, San Diego, CA, p. 261. |
Widder, K. et al., “Magnetic Microspheres: Synthesis of a Novel Parenteral Drug Carrier”, Journal of Pharmaceutical Sciences, vol. 68, No. 1, pp. 79-82, Jan. 1979. |
Wikholm G et al., “Embolization of Cerebral Arteriovenous Malformations: Part 1—Technique, Morphology, and Complications”, Neurosurgery, 39(3):448-459 (Sep. 1996). |
Winters et al., “Periurethral injection of collagen in the treatment of intrinsic sphincteric deficiency in the female patient,” The Urologic Clinics of North America, 22(3):673-678 (Aug. 1995). |
Worthington-Kirsch RL, “Interventionalists offer management option for uterine fibroids,” Diagnostic Imaging, 21(3):47-49, Mar. 1999, http://www.dimag.com/references/9903wrtrefs.html. |
Worthington-Kirsch, et al., “Uterine arterial embolization for the management of leiomyomas: Quality-of-life assessment and clinical response”, Radiology, vol. 208, No. 3, 625-629, 1998. |
Wright, K.C. et al., “Partial Splenic Embolization Using Polyvinyl Alcohol Foam, Dextran, Polystyrene, or Silicone,” Radiology, 142:351-354, Feb. 1982. |
Wu, A.M., “Engineered Antibodies for Breast Cancer Imaging and Therapy,” http://www.cbcrp.org/research/PageGrant.asp?grant—id=111, 3 pages, 1996. |
Yamada, T. et al., “Extended Intraarterial Cisplatin Infusion for Treatment of Gynecologic Cancer After Altercation of Intrapelvic Blood Flow and Implantation of a Vascular Access Device”, Cardiovasc. Intervent. Radiol., vol. 19, pp. 139-145, 1996. |
Yamashita, Y. et al., “Transcatheter Arterial Embolization of Obstetric and Gynaecological Bleeding: Efficacy and Clinical Outcome”, British Journal of Radiology, vol. 67, pp. 530-534, Jun. 1994. |
Yoon et al., “Surface Immobilization of Galactose onto Aliphatic Biodegradable Polymers for Hepatocyte Culture,” Biotechnol. Bioeng., 78(1):1-10 (Apr. 5, 2002). |
Yusi et al., “Submuscosal Injection of Polyvinyl Alcohol in Artificially Created Vesico-Ureteral Reflux: A Preliminary Report,” Asian J. Surg., 18(2):122-127 (Apr. 1995). |
Zisch et al., “Covalently conjugated VEGF-fibrin matrices for endothelialization,” Journal of Controlled Release, 72:101-113 (2001). |
Ziskin, M.C. et al., “Contrast Agents for Diagnostic Ultrasound”, Investigative Radiology, vol. 7, No. 6, pp. 500-505, Nov.-Dec. 1972. |
Zou , Ying-hua, et al. “Experimental Canine Hapatic Artery Embolization with Polyvinyl Alcohol Microspheres,” Zhong Hua Fang-She Xue ZaZhi, 23(6):330-332 (1989). |
Zou , Ying-hua, et al. “Experimental Canine Hapatic Artery Embolization with Polyvinyl Alcohol Microspheres,” Translation, Zhong Hua Fang-She Xue ZaZhi, 23(6):330-332 (1989). |
Bhattacharya et al., “Research & Aneurysms,” Interventional Neuroradiology, 11(Suppl. 2):87-94 (Oct. 2005). |
Bracard et al., “AVMs,” Interventional Neuroradiology, 11(Suppl. 2):178-184 (Oct. 2005). |
Collice et al., “Neurosurgery & Aneurysms,” Interventional Neuroradiology, 11(Suppl. 2):226-231 (Oct. 2005). |
Cotroneo et al., “Aneurysms,” Interventional Neuroradiology, 11(Suppl. 2):212-216 (Oct. 2005). |
Ducati et al., “Aneurysms,” Interventional Neuroradiology, 11(Suppl. 2):95-99 (Oct. 2005). |
Hon-Man et al., “Miscellanea,” Interventional Neuroradiology, 11(Suppl. 2):159-164 (Oct. 2005). |
“How Matrix™ Detachable Coils Work,” 1 page. |
Kallmes et al., “Platinum Coil-mediated Implantation of Growth Factor-secreting Endovascular Tissue Grafts: An in Vivo Study,” Radiology, 207(2):519-523 (May 1998). |
Kominami et al., “Complications,” Interventional Neuroradiology, 11(Suppl. 2):191-195 (Oct. 2005). |
“Matrix® Detachable Coils,” Boston Scientific, http://www.bostonscientific.com, 3 pages (Retrieved from the Internet on Jul. 13, 2005). |
“Micrus Corporation Announces Encouraging Results of a Modified Coil, Cerecyte, for the Treatment of Cerebral Aneurysms,” Business Wire, 2 pages (Nov. 19, 2003). |
Pasquini et al., “Aneurysms,” Interventional Neuroradiology, 11(Suppl. 2):136-143 (Oct. 2005). |
U.S. Appl. No. 11/274,538, filed Nov. 15, 2005, Tenney et al. |
Pérez Higueras et al., “Fistulae,” Interventional Neuroradiology, 11(Suppl. 2):123-129 (Oct. 2005). |
Piske et al., “CT & MRI,” Interventional Neuroradiology, 11(Suppl. 2):100-106 (Oct. 2005). |
Sellar et al., “Fistulae,” Interventional Neuroradiology, 11 (Suppl. 2):130-135 (Oct. 2005). |
Strother et al., “Aneurysms,” Interventional Neuroradiology, 11(Suppl. 2):200-205 (Oct. 2005). |
Tournade et al., “Miscellanea,” Interventional Neuroradiology, 11(Suppl. 2):107-111 (Oct. 2005). |
Cekirge et al., “Interlocking Detachable Coil Occlusion in the Endovascular Treatment of Intracranial Aneurysms: Preliminary Results,” AJNR Am. J. Neuroradiol., 17:1651-1657 (Oct. 1996). |
Marks et al., “A Mechanically Detachable Coil for the Treatment of Aneurysms and Occlusion of Blood Vessels,” AJNR Am. J. Neuroradiol., 15:821-827 (May 1994). |
Murphy, “Endovascular procedures,” Johns Hopkins Interventional Neuroradiology [online], http://www.brainaneurysms.net/procedures/neurovasc—aneurysm.htm, 2 pages (retrieved from the Internet on Feb. 17, 2005). |
Murphy et al., “Mechanical Detachable Platinum Coil: Report of the European Phase II Clinical Trial in 60 Patients,” Radiology, 219:541-544 (2001). |
“Providing Superior Coils, Components, and Assemblies for Medical Devices,” Heraeus Vadnais, Inc. [online], http://www.vadtec.com, 6 pages (retrieved from the Internet on Feb. 22, 2005). |
Number | Date | Country | |
---|---|---|---|
20060116711 A1 | Jun 2006 | US |