Embolic protection device having a reticulated body with staggered struts

Information

  • Patent Grant
  • 7850708
  • Patent Number
    7,850,708
  • Date Filed
    Monday, June 19, 2006
    18 years ago
  • Date Issued
    Tuesday, December 14, 2010
    14 years ago
Abstract
An embolic protection device for capturing emboli during treatment of a stenotic lesion in a body vessel is disclosed. The device comprises a basket and a filter attached to the basket. The basket has a deployed state and an undeployed state. The basket includes a reticulated body having an outer diameter. The reticulated body includes a plurality of struts connected together in a singly staggered configuration distally along a longitudinal axis to a distal end. The plurality of struts of the reticulated body is configured to fold along the longitudinal axis. The basket has a proximal stem proximally extending from the body. The filter portion has a lip attached to the distal end defining an opening of the filter portion when the basket is in the deployed state for capturing emboli. The filter portion extends from the lip to a filter end.
Description
BACKGROUND OF THE INVENTION

The present invention relates to medical devices. More particularly, the present invention relates to embolic protection devices and methods for capturing emboli within a body vessel.


Embolic protection to capture emboli within the vasculature is a growing concern in the medical industry. Currently, there are a number of treatments for embolic protection to prevent emboli and blood clots from traveling within the vasculature to create undesirable medical conditions, e.g., ischemic stroke, brain aneurysm, pulmonary embolism. For example, vena cava filters are more commonly being used for trapping blood clots and emboli in the vena cava filter to prevent pulmonary embolism. Also, anti-platelet agents and anticoagulants may be used to breakdown blood clots. Moreover, snares and baskets (e.g., stone retrieval baskets) are more commonly used for retrieving urinary calculi. Additionally, occlusion coils are commonly used to occlude aneurysms and accumulate thrombi in a body vessel.


Treatments for a stenotic lesion provide a potential in releasing blood clots and other thrombi plaque in the vasculature of the patient. One example is the treatment for a carotid artery stenosis. Generally, carotid artery stenosis is the narrowing of the carotid arteries, the main arteries in the neck that supply blood to the brain. Carotid artery stenosis (also called carotid artery disease) is a relatively high risk factor for ischemic stroke. The narrowing is usually caused by plaque build-up in the carotid artery. Plaque forms when cholesterol, fat and other substances form in the inner lining of an artery. This formation process is called atherosclerosis.


Depending on the degree of stenosis and the patient's overall condition, carotid artery stenosis has been treated with surgery. The procedure (with its inherent risks) is called carotid endarterectomy, which removes the plaque from the arterial walls. Carotid endarterectomy has proven to benefit patients with arteries substantially narrowed, e.g., by about 70% or more. For people with less narrowed arteries, e.g., less than about 50%, an anti-clotting drug may be prescribed to reduce the risk of ischemic stroke. Examples of these drugs are anti-platelet agents and anticoagulants.


Carotid angioplasty is a more recently developed treatment for carotid artery stenosis. This treatment uses balloons and/or stents to open a narrowed artery. Carotid angioplasty is a procedure that can be performed via a standard percutaneous transfemoral approach with the patient anesthetized using light intravenous sedation. At the stenosis area, an angioplasty balloon is delivered to predilate the stenosis in preparation for stent placement. The balloon is then removed and exchanged via catheter for a stent delivery device. Once in position, a stent is deployed across the stenotic area. If needed, an additional balloon can be placed inside the deployed stent for post-dilation to make sure the struts of the stent are pressed firmly against the inner surface of the vessel wall.


During the stenosis procedure however, there is a risk of such blood clots and thrombi being undesirably released into the blood flow within the vasculature. Embolic or distal protection devices have been implemented to capture emboli from a stenotic lesion undergoing angioplasty. However, many current embolic protection devices restrict flow when deployed within the vasculature of the patient. Moreover, many embolic protection devices are relatively difficult to collapse and retrieve after the need for such device in the vasculature passes.


Thus, there is a need to provide an improved device and method for distally protecting and capturing emboli within a body lumen during a stenosis procedure.


BRIEF SUMMARY OF THE INVENTION

The present invention generally provides an embolic protection device that minimizes restricted flow when deployed within the vasculature of a patient and that is relatively easy to retrieve.


In one embodiment, the present invention provides an embolic protection device for capturing emboli during treatment of a stenotic lesion in a body vessel. The device comprises a basket and a filter connected to the basket. In this embodiment, the basket has a deployed state and an undeployed state. The basket includes a reticulated body having an outer diameter. The reticulated body includes a plurality of struts connected together in a singly staggered configuration distally along a longitudinal axis to a distal end. The plurality of struts of the reticulated body is configured to fold along the longitudinal axis. The basket further has a proximal stem proximally extending from the body. The filter portion has a lip attached to the distal end defining an opening of the filter portion when the basket is in the deployed state for capturing emboli. The filter portion extends from the lip to a filter end.


In another embodiment, the present invention provides an embolic protection assembly for capturing emboli during treatment of a stenotic lesion in a body vessel. The assembly comprises a balloon catheter having a tubular body portion and an expandable balloon attached to and in fluid communication with the tubular body portion for angioplasty at the stenotic lesion. The expandable balloon has distal and proximal portions. The assembly further comprises an embolic protection device coaxially disposed within the balloon catheter during treatment of the stenotic lesion in the body vessel. The device comprises the basket and the filter portion.


In another example, the present invention provides a method for embolic protection during treatment of a stenotic lesion in a body vessel. The method comprises percutaneously introducing a balloon catheter in the body vessel. The balloon catheter has a tubular body portion and an expandable balloon attached to and in fluid communication with the tubular body portion for angioplasty at the stenotic lesion. The method further comprises disposing the embolic protection device in an undeployed state coaxially with the balloon catheter. The method further comprises deploying the device in an deployed state downstream from the stenotic lesion to capture emboli during treatment of the stenotic lesion.


Further objects, features, and advantages of the present invention will become apparent from consideration of the following description and the appended claims when taken in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an environment view of an embolic protection device in accordance with one embodiment of the present invention;



FIG. 2 is a perspective view of the emboli protection device of FIG. 1;



FIG. 3 is a plan view of the embolic protection device of FIG. 1;



FIG. 4 is an end view of the embolic protection device in FIG. 1;



FIG. 5 is a side view of the embolic protection device in a collapsed configuration in accordance with one embodiment of the present invention;



FIG. 6
a is a side view of an embolic protection assembly for capturing emboli during treatment of a stenotic lesion in accordance with one embodiment of the present invention;



FIG. 6
b is an exploded side view of the assembly in FIG. 6a;



FIG. 7 is a flow chart of one method for embolic protection during treatment of a stenotic lesion in a body vessel; and



FIG. 8 is a flow chart of one method for retrieving an embolic protection device for post-treatment of a stenotic lesion in a body vessel.





DETAILED DESCRIPTION OF THE INVENTION

The present invention generally provides an embolic protection device that minimizes restricted flow when deployed within the vasculature of a patient and that is relatively easy to retrieve after the risk of releasing blood clots and thrombi within the vasculature has passed. Embodiments of the present invention generally provide an embolic protection device comprising a basket having a reticulated body including a plurality of struts connected together in a singly staggered configuration distally along a longitudinal axis to an open distal end. The singly staggered configuration allows for relatively easy retrieval of the device. Moreover, the basket extends along the longitudinal axis having a substantially constant outer diameter to minimize restricted flow when deployed within the vasculature of a patient.



FIG. 1 illustrates an embolic protection device 10 for capturing emboli during treatment of a stenotic lesion in a body vessel 11 in accordance with one embodiment of the present invention. As shown in FIGS. 1 and 2, the device 10 comprises a basket 12 and a filter portion 14 attached to the basket 12 for capturing emboli in the body vessel 11. The basket 12 extends from an open proximal end 16 and an open distal end 18, and is configured to have an expanded state and a collapsed state.


In this embodiment, the basket 12 includes a reticulated body 20 extending along an outer diameter when in the expanded state. The reticulated body 20 includes a plurality of struts 22 distally connected together in a singly staggered configuration relative to a longitudinal axis A of the basket 12. As shown, the singly staggered configuration of the plurality of struts 22 distally extends from a proximal portion 24 of the reticulated body 20 along the longitudinal axis A to a distal portion 26 thereof. In the expanded state, each of the struts 22 of the reticulated body 20 is configured to fold singly in pairs along the longitudinal axis A to the collapsed state. As will be described in greater detail below, the singly staggered configuration allows the device 10 to be relatively easily collapsed and retrieved when deployed within the vasculature of a patient.


As shown in FIGS. 2 and 3, the reticulated body 20 is formed so that each strut 22 is singly connected to another strut 22 in pairs relative to the longitudinal axis of the basket 12. Preferably, the struts 22 are connected together at pivotal joints 30 along the reticulated body 20. In this embodiment, one pair of struts 22 is connected at one pivotal joint 30. Each of the pivotal joints 30 is configured to allow a pair of struts 22 to singly fold distally along the longitudinal axis. As shown, a pair of struts 22 distally extends from a single pivotal joint 30 at the proximal stem 32. In this embodiment, two struts 22 are disposed on and extend from the proximal stem 32 and up to ten struts 22 may be formed at the distal portion 26 of the basket 12. When each of the pairs of struts 22 is folded at the pivotal joints 30, the reticulated body 20 is collapsed to its collapsed state for delivery or retrieval of the device 10. This feature allows a catheter to circumferentially ride over each pivotal joint 30 for relatively easy collapse and retrieval of the device 10.


The reticulated body 20 distally extends from the proximal portion 24 to the distal portion 26 along the outer diameter. Preferably, the reticulated body 20 extends substantially constantly along the outer diameter when in the expanded state. As shown in FIGS. 3 and 4, the reticulated body 20 extends along the outer diameter and maintains substantially the same or constant diameter therealong from the proximal portion 24 to the distal portion 26 of the reticulated body 20. In the expanded state, the basket 12 avoids placement at or near the center of the body vessel in which it is deployed. Thus, this feature lessens restricted blood flow when the device 10 is deployed within the vasculature of a patient.


Preferably, the number of struts 22 and pivotal joints 30 on the reticulated body 20 distally increases in a singly staggered configuration along the longitudinal axis to the open distal end. As shown, struts 22 at the distal portion 26 of the reticulated body 20 are connected together along the outer diameter, defining the open distal end 18 of the basket 12.


As mentioned above, FIG. 4 illustrates that the reticulated body 20 maintains a substantially constant outer diameter relative to the longitudinal axis. As shown, the outer diameter of the body is substantially constant and extends between the proximal end and distal end of the reticulated body 20. In this embodiment, the term “constant outer diameter” of the body or “substantially constant outer diameter” of the body means that the body extends along the longitudinal axis having about the same outer diameter. For instance, if the outer diameter of the body at the proximal portion 24 is about 5 millimeters (mm), then the outer diameter of the body along the remainder of the body is also about 5 mm.



FIG. 5 illustrates the device 10 in its collapsed or closed state in accordance with one embodiment of the present invention. As shown, the device 10 has a reduced diameter, occupying a cross-sectional profile less than the outer diameter of the device 10 in the expanded state. The pivotal joints 30 of the reticulated body 20 singly increase distally along the longitudinal axis of the device 10. As shown in FIG. 5, the reticulated body 20 in the collapsed state distally increases in width in a singly staggered configuration. For example, the reticulated body 20 in the collapsed configuration includes pairs of folded struts 22 singly staggered at their respective pivotal joints 30 which distally increase in number, thereby distally increasing the width as the body distally extends.



FIGS. 2-4 further depict the basket 12 having a proximal stem 32. As shown, the proximal stem 32 proximally extends from the proximal portion 24 of the basket 12 along the outer diameter thereof. Thus, the proximal stem 32 is positioned off-centered to allow maximum blood flow through the device 10 when deployed in a body vessel. The proximal stem 32 may proximally extend from the basket 12 and take on any suitable shape along the outer diameter of the basket 12. For example, the proximal stem 32 may take on a shape of an elongated member that may be disposed through a lumen of a balloon catheter 42 for placement of the embolic protection device 10 during treatment of a stenotic lesion. However, it is understood that the proximal stem 32 may take on other shapes without falling beyond the scope or spirit of the present invention.


As mentioned, the proximal stem 32 extends in alignment with the outer diameter of the basket 12 relative to a radial axis of the device 10. This allows for more effective filtering and lessens the risk of blood flow issues within the vasculature during angioplasty, while maintaining a relatively easy way for delivery and retrieval. However, the proximal stem 32 may be configured as desired to extend circumferentially within, in non-alignment with, the outer diameter of the device 10 relative to the radial axis.


The basket 12 may be comprised of any suitable material such as a superelastic material, stainless steel wire, cobalt-chromium-nickel-molybdenum-iron alloy, or cobalt-chrome alloy. It is understood that the basket 12 may be formed of any other suitable material that will result in a self-opening or self-expanding basket, such as shape memory alloys. Shape memory alloys have the desirable property of becoming rigid, that is, returning to a remembered state, when heated above a transition temperature. A shape memory alloy suitable for the present invention is Ni—Ti available under the more commonly known name Nitinol. When this material is heated above the transition temperature, the material undergoes a phase transformation from martensite to austenic, such that material returns to its remembered state. The transition temperature is dependent on the relative proportions of the alloying elements Ni and Ti and the optional inclusion of alloying additives.


In one embodiment, the basket 12 is made from Nitinol with a transition temperature that is slightly below normal body temperature of humans, which is about 98.6° F. Thus, when the basket 12 is deployed in a body vessel and exposed to normal body temperature, the alloy of the basket 12 will transform to austenite, that is, the remembered state, which for one embodiment of the present invention is the expanded configuration when the basket 12 is deployed in the body vessel. To remove the basket 12, the basket 12 is cooled to transform the material to martensite which is more ductile than austenite, making the basket 12 more malleable. As such, the basket 12 can be more easily collapsed and pulled into a lumen of a catheter for removal.


In another embodiment, the basket 12 is made from Nitinol with a transition temperature that is above normal body temperature of humans, which is about 98.6° F. Thus, when the basket 12 is deployed in a body vessel and exposed to normal body temperature, the basket 12 is in the martensitic state so that the basket 12 is sufficiently ductile to bend or form into a desired shape, which for the present invention is an expanded configuration. To remove the basket 12, the basket 12 is heated to transform the alloy to austenite so that the basket 12 becomes rigid and returns to a remembered state, which for the basket 12 in a collapsed configuration.


As shown in FIG. 2, the filter portion 14 has a lip 34 attached to the distal end 18 of the reticulated body 20, defining an opening 36 of the filter portion 14 when the basket 12 is in the expanded state for capturing emboli. The lip 34 may be attached to the distal end by any suitable means including sonic bonding, thermal bonding, or adhesive bonding. As shown in FIGS. 2 and 5, the filter portion 14 extends from the lip 34 to a filter end 38 formed to be a proximally facing concave shape. The opening 36 of the filter portion 14 is configured to face toward the stenotic lesion.


The filter portion 14 may be comprised of any suitable material to be used for capturing emboli from the stenotic lesion during treatment thereof. In one embodiment, the filter portion 14 is made of connective tissue material for capturing emboli. In this embodiment, the connective tissue comprises extracellular matrix (ECM). As known, ECM is a complex structural entity surrounding and supporting cells that are found within mammalian tissues. More specifically, ECM comprises structural proteins (e.g., collagen and elastin), specialized protein (e.g., fibrillin, fibronectin, and laminin), and proteoglycans, a protein core to which are attached are long chains of repeating disaccharide units termed of glycosaminoglycans.


Most preferably, the extracellular matrix is comprised of small intestinal submucosa (SIS). As known, SIS is a resorbable, acellular, naturally occurring tissue matrix composed of ECM proteins and various growth factors. SIS is derived from the porcine jejunum and functions as a remodeling bioscaffold for tissue repair. SIS has characteristics of an ideal tissue engineered biomaterial and can act as a bioscaffold for remodeling of many body tissues including skin, body wall, musculoskeletal structure, urinary bladder, and also supports new blood vessel growth. In many aspects, SIS is used to induce site-specific remodeling of both organs and tissues depending on the site of implantation. In theory, host cells are stimulated to proliferate and differentiate into site-specific connective tissue structures, which have been shown to completely replace the SIS material in time.


In this embodiment, SIS is used to temporarily adhere the filter portion 14 to the walls of a body vessel in which the device 10 is deployed. SIS has a natural adherence or wettability to body fluids and connective cells comprising the connective tissue of a body vessel wall. Due to the temporary nature of the duration in which the device 10 is deployed in the body vessel, host cells of the wall will adhere to the filter portion 14 but not differentiate, allowing for retrieval of the device 10 from the body vessel.


In other embodiments, the filter portion 14 may also be made of a mesh/net cloth, nylon, polymeric material, Teflon, or woven mixtures thereof without falling beyond the scope or spirit of the present invention.


In use, the device 10 expands from the collapsed state to the expanded state, engaging the basket 12 with the body vessel. In turn, the lip 34 of the filter portion 14 expands to open the filter portion 14 for capturing emboli during treatment of the stenotic lesion. After the need for such device 10 in the vasculature passes, the device 10 may be retrieved. In one embodiment, a catheter may be used to move longitudinally about the basket 12 to singly collapse each pivotal joint 30 distally, thereby moving the basket 12 toward the collapsed state.



FIGS. 6
a and 6b depict an embolic protection assembly 40 for capturing emboli during treatment of a stenotic lesion in a body vessel in accordance with another embodiment of the present invention. As shown, the assembly 40 comprises a balloon catheter 42 having a tubular body 44 and an expandable balloon 46 attached to and in fluid communication with the tubular body 44 for angioplasty at a stenotic lesion. In this embodiment, the assembly 40 comprises the embolic protection device mentioned above. The tubular body 44 is preferably made of soft flexible material such as silicon or any other suitable material. In this embodiment, the balloon catheter 42 includes an outer lumen 48 and an inner lumen 50. The outer lumen 48 is in fluid communication with the balloon 46 for inflating and deflating the balloon 46. The inner lumen 50 is formed therethrough for percutaneous guidance through the body vessel.


As shown, the assembly 40 further includes an inner catheter 52 having a distal end 54 through which the balloon catheter 42 is disposed for deployment in the body vessel. The inner catheter 52 is preferably made of a soft, flexible material such as silicon or any other suitable material. Generally, the inner catheter 52 further has a proximal end 56 and a plastic adaptor or hub 58 to receive the embolic protection device and balloon catheter 42 to be advanced therethrough. The size of the inner catheter 52 is based on the size of the body vessel in which it percutaneously inserts, and the size of the balloon catheter 42.


As shown, the assembly 40 may also include a wire guide 60 configured to be percutaneously inserted within the vasculature to guide the inner catheter 52 to a location adjacent a stenotic lesion. The wire guide 60 provides the inner catheter 52 (and balloon catheter 42) a path during insertion within the body vessel. The size of the wire guide 60 is based on the inside diameter of the inner catheter 52.


In one embodiment, the balloon catheter 42 has a proximal fluid hub 62 in fluid communication with the balloon 46 via the outer lumen 48 for fluid to be passed therethrough for inflation and deflation of the balloon 46 during treatment of the stenotic lesion.


As shown, the embolic protection device is coaxially disposed through the inner lumen 50 of the balloon catheter 42 prior to treatment of the stenotic lesion in the body vessel. The distal protection device is guided through the inner lumen 50 preferably from the hub 58 and distally beyond the balloon 46 of the balloon catheter 42, exiting from the distal end of the inner or balloon catheter 42 to a location within the vasculature downstream of the stenotic lesion.


In this embodiment, the apparatus further includes a polytetrafluoroethylene (PTFE) introducer sheath 64 for percutaneously introducing the wire guide 60 and the inner catheter 52 in a body vessel. Of course, any other suitable material may be used without falling beyond the scope or spirit of the present invention. The introducer sheath 64 may have any suitable size, e.g., between about three-french to eight-french. The introducer serves to allow the inner and balloon catheters 42 to be percutaneously inserted to a desired location in the body vessel. The introducer sheath 64 receives the inner catheter 52 and provides stability to the inner catheter at a desired location of the body vessel. For example, the introducer sheath 64 is held stationary within a common visceral artery, and adds stability to the inner catheter 52, as the inner catheter 52 is advanced through the introducer sheath 64 to a dilatation area in the vasculature.


When the distal end 54 of the inner catheter 52 is at a location downstream of the dilatation area in the body vessel, the balloon catheter 42 is inserted therethrough to the dilatation area. The device is then loaded at the proximal end of the balloon catheter 42 and is advanced through the inner lumen 50 thereof for deployment through its distal end. In this embodiment, the proximal stem is used to mechanically advance or push the device 10 through the catheter.



FIG. 7 depicts a flow chart of one method 110 for embolic protection during treatment of stenotic lesion in a body vessel. The method 110 comprises percutaneously introducing the balloon catheter 42 in a body vessel in box 112, after the inner catheter is disposed to a dilatation area within the body vessel. The physician may use any suitable means of verifying the placement of the balloon catheter at a dilatation area, e.g., fluoroscopy.


In this example, the method further comprises disposing the embolic protection device in the collapsed state coaxially with the balloon catheter in box 114, once the balloon catheter is placed at the dilatation area. The method 110 further includes deploying the device in a deployed state downstream from the stenotic lesion to capture emboli during treatment of the stenotic lesion in box 116.


In yet another example of the present invention, FIG. 8 depicts one method 210 of retrieving an embolic protection device for post-treatment of a stenotic lesion in a body vessel. The method comprises providing the embolic protection assembly having the embolic protection device in a deployed state within the body vessel in box 212. The method further comprises singly moving each of the struts about each pivotal joint to collapse the reticulated body in the undeployed state in box 214. The method further includes retracting the embolic protection device in the balloon catheter to retrieve the embolic protection device from the body vessel in box 216.


While the present invention has been described in terms of preferred embodiments, it will be understood, of course, that the invention is not limited thereto since modifications may be made to those skilled in the art, particularly in light of the foregoing teachings.

Claims
  • 1. An embolic protection device for capturing emboli during treatment of a stenotic lesion in a body vessel, the device comprising: a basket having a deployed state and an undeployed state, the basket including a reticulated body having an outer diameter, the reticulated body including a plurality of struts connected together in a singly staggered configuration relative to a longitudinal axis of the basket, the singly staggered configuration of the plurality of struts extending distally from a proximal end of the reticulated body along the longitudinal axis to a distal end, the plurality of struts being connected together at pivotal joints along the reticulated body, each pivotal joint connecting a pair of struts, wherein the number of pivotal joints singly increases distally along the longitudinal axis between the proximal and distal ends to define the singly staggered configuration of the plurality of struts, wherein the reticulated body in the undeployed state distally increases in width in the singly staggered configuration, the distal end defining the greatest width in the undeployed state, the pairs of struts connected by the pivotal joints being configured to singly fold distally along the longitudinal axis from the deployed state to the undeployed state, the basket having a proximal stem proximally extending from the body; anda filter portion having a lip attached to the distal end defining an opening of the filter portion when the basket is in the deployed state for capturing emboli, the filter portion extending from the lip to a filter end.
  • 2. The device of claim 1 wherein the distal end distally extends from the reticulated body along the outer diameter.
  • 3. The device of claim 1 wherein the number of struts on the reticulated body increases in a singly staggered configuration along the longitudinal axis of the reticulated body.
  • 4. The device of claim 3 wherein the number of struts at the proximal stem of the body is one strut and the number of struts at the distal end is up to 10 struts.
  • 5. The device of claim 1 wherein the outer diameter of the body is substantially constant and extends between the proximal stem and distal end of the reticulated body.
  • 6. The device of claim 1 wherein the opening of the filter portion is configured to face toward the stenotic lesion in the body vessel proximal to the closed end thereof.
  • 7. The device of claim 1 wherein the filter portion comprises a net material for capturing emboli from the stenotic lesion.
  • 8. The device of claim 1 wherein the reticulated body is made of shape memory material configured to expand the reticulated body in the deployed state at a first temperature and collapse the reticulated body in the undeployed state at a second temperature.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 60/692,313, filed on Jun. 20, 2005, entitled “Embolic Protection Device Having A Reticulated Body With Staggered Struts”, the entire contents of which are incorporated herein by reference.

US Referenced Citations (675)
Number Name Date Kind
3547103 Cook Dec 1970 A
3635223 Klieman Jan 1972 A
3923065 Nozick et al. Dec 1975 A
3952747 Kimmell, Jr. Apr 1976 A
3978863 Fettel et al. Sep 1976 A
3996938 Clark, III Dec 1976 A
4425908 Simon Jan 1984 A
4494531 Gianturco Jan 1985 A
4548206 Osborne Oct 1985 A
4561439 Bishop et al. Dec 1985 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4643184 Mobin-Uddin Feb 1987 A
4646736 Auth Mar 1987 A
4650472 Bates Mar 1987 A
4665906 Jervis May 1987 A
4669464 Sulepov Jun 1987 A
4688553 Metals Aug 1987 A
4723549 Wholey et al. Feb 1988 A
4727873 Mobin-Uddin Mar 1988 A
4817600 Herms et al. Apr 1989 A
4824435 Giesy et al. Apr 1989 A
4832055 Palestrant May 1989 A
4873978 Ginsburg Oct 1989 A
4943297 Saveliev et al. Jul 1990 A
4957501 Lahille et al. Sep 1990 A
4990156 Lefebvre Feb 1991 A
5053008 Bajaj Oct 1991 A
5059205 El-Nounou et al. Oct 1991 A
5069226 Yamauchi et al. Dec 1991 A
5100423 Fearnot Mar 1992 A
5108418 Lefebvre Apr 1992 A
5108419 Reger et al. Apr 1992 A
5112347 Taheri May 1992 A
5129890 Bates et al. Jul 1992 A
5133733 Rasmussen et al. Jul 1992 A
5147379 Sabbaghian et al. Sep 1992 A
5152777 Goldberg Oct 1992 A
5160342 Reger Nov 1992 A
5234458 Metais Aug 1993 A
5242462 El-Nounou Sep 1993 A
5243996 Hall Sep 1993 A
5251640 Osborne Oct 1993 A
5263964 Purdy Nov 1993 A
5300086 Gory et al. Apr 1994 A
5324304 Rasmussen Jun 1994 A
5329942 Gunther et al. Jul 1994 A
5344427 Cottenceau et al. Sep 1994 A
5350398 Pavcnik et al. Sep 1994 A
5370657 Irie Dec 1994 A
5375612 Cottenceau et al. Dec 1994 A
5383887 Nadal Jan 1995 A
5413586 Dibie et al. May 1995 A
5415630 Gory et al. May 1995 A
5417708 Hall et al. May 1995 A
5527338 Purdy Jun 1996 A
5531788 Dibie et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5562698 Parker Oct 1996 A
5601595 Smith Feb 1997 A
5624461 Mariant Apr 1997 A
5626605 Irie et al. May 1997 A
5634942 Chevillon et al. Jun 1997 A
5649953 Lefebvre Jul 1997 A
5669933 Simon et al. Sep 1997 A
5681347 Cathcart et al. Oct 1997 A
5690667 Gia Nov 1997 A
5693067 Purdy Dec 1997 A
5695518 Laerum Dec 1997 A
5695519 Summers et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5713853 Clark et al. Feb 1998 A
5720764 Naderlinger Feb 1998 A
5725550 Nadal Mar 1998 A
5746767 Smith May 1998 A
5755790 Chevillon et al. May 1998 A
5769816 Barbut et al. Jun 1998 A
5769871 Mers et al. Jun 1998 A
5795322 Boudewijn Aug 1998 A
5800457 Gelbfish et al. Sep 1998 A
5800525 Bachinski et al. Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5827324 Cassell et al. Oct 1998 A
5830230 Berryman et al. Nov 1998 A
5836968 Simon et al. Nov 1998 A
5836969 Kim et al. Nov 1998 A
5846260 Maahs Dec 1998 A
5853420 Chevillon et al. Dec 1998 A
5876367 Kaganov et al. Mar 1999 A
5893869 Barnhart et al. Apr 1999 A
5895391 Farnholtz Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5895410 Forber et al. Apr 1999 A
5908435 Samuels Jun 1999 A
5910154 Tsugita et al. Jun 1999 A
5911704 Humes Jun 1999 A
5911717 Jacobsen et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5919224 Thompson et al. Jul 1999 A
5925062 Purdy Jul 1999 A
5925063 Khosravi Jul 1999 A
5928260 Chine et al. Jul 1999 A
5928261 Ruiz Jul 1999 A
5938683 Lefebvre Aug 1999 A
5941896 Kerr Aug 1999 A
5944728 Bates Aug 1999 A
5947985 Imran Sep 1999 A
5947995 Samuels Sep 1999 A
5948017 Taheri Sep 1999 A
5951567 Javier, Jr. et al. Sep 1999 A
5954741 Fox Sep 1999 A
5954742 Osypka Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5968057 Taheri Oct 1999 A
5968071 Chevillon et al. Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5976162 Doan et al. Nov 1999 A
5976172 Homsma et al. Nov 1999 A
5980555 Barbut et al. Nov 1999 A
5984947 Smith Nov 1999 A
5989281 Barbut et al. Nov 1999 A
6001118 Daniel et al. Dec 1999 A
6007557 Ambrisco et al. Dec 1999 A
6007558 Ravenscloth et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013093 Nott et al. Jan 2000 A
6015424 Rosenbluth et al. Jan 2000 A
6027520 Tsugita et al. Feb 2000 A
6036717 Mers Kelly et al. Mar 2000 A
6036720 Abrams et al. Mar 2000 A
6042598 Tsugita et al. Mar 2000 A
6051014 Jang Apr 2000 A
6051015 Maahs Apr 2000 A
6053932 Daniel et al. Apr 2000 A
6059745 Gelbfish May 2000 A
6059814 Ladd May 2000 A
6063113 Kavteladze et al. May 2000 A
6066158 Engelson et al. May 2000 A
6068645 Tu May 2000 A
6074357 Kaganov et al. Jun 2000 A
6077274 Ouchi et al. Jun 2000 A
6080178 Meglin Jun 2000 A
6083239 Addis Jul 2000 A
6086577 Ken et al. Jul 2000 A
6086605 Barbut et al. Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096053 Bates Aug 2000 A
6099549 Bosma et al. Aug 2000 A
6106497 Wang Aug 2000 A
6126672 Berryman et al. Oct 2000 A
6126673 Kim et al. Oct 2000 A
6129739 Khosravi Oct 2000 A
6136016 Barbut et al. Oct 2000 A
6146396 Konya et al. Nov 2000 A
6146404 Kim et al. Nov 2000 A
6152931 Nadal et al. Nov 2000 A
6152946 Broome et al. Nov 2000 A
6152947 Ambrisco et al. Nov 2000 A
6156061 Wallace et al. Dec 2000 A
6159230 Samuels Dec 2000 A
6165179 Cathcart et al. Dec 2000 A
6165198 McGurk et al. Dec 2000 A
6165199 Barbut Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6168579 Tsugita et al. Jan 2001 B1
6168603 Leslie et al. Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171328 Addis Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6179851 Barbut et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6179860 Fulton, III et al. Jan 2001 B1
6179861 Khosravi et al. Jan 2001 B1
6187025 Machek Feb 2001 B1
6193739 Chevillon et al. Feb 2001 B1
6203561 Ramee et al. Mar 2001 B1
6214025 Thistle et al. Apr 2001 B1
6214026 Lepak et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6224620 Maahs May 2001 B1
6231588 Zadno-Azizi May 2001 B1
6231589 Wessman et al. May 2001 B1
6235044 Root et al. May 2001 B1
6235045 Barbut et al. May 2001 B1
6238412 Dubrul et al. May 2001 B1
6241746 Bosma et al. Jun 2001 B1
6245087 Addis Jun 2001 B1
6245088 Lowery Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254550 McNamara et al. Jul 2001 B1
6254633 Pinchuk et al. Jul 2001 B1
6258026 Ravenscroft et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6261305 Marotta et al. Jul 2001 B1
6264672 Fisher Jul 2001 B1
6267776 O'Connell Jul 2001 B1
6267777 Bosma et al. Jul 2001 B1
6273900 Nott et al. Aug 2001 B1
6273901 Whitcher et al. Aug 2001 B1
6277125 Barry et al. Aug 2001 B1
6277126 Barry et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6277139 Levinson et al. Aug 2001 B1
6280451 Bates et al. Aug 2001 B1
6287321 Jang Sep 2001 B1
6290710 Cryer et al. Sep 2001 B1
6306163 Fitz Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6312444 Barbut Nov 2001 B1
6319268 Ambrisco et al. Nov 2001 B1
6325815 Kusleika et al. Dec 2001 B1
6325816 Fulton, III et al. Dec 2001 B1
6328755 Marshall Dec 2001 B1
6331183 Suon Dec 2001 B1
6331184 Abrams Dec 2001 B1
6334864 Amplatz et al. Jan 2002 B1
6336934 Gilson et al. Jan 2002 B1
6340364 Kanesaka Jan 2002 B2
6342062 Suon et al. Jan 2002 B1
6342063 DeVries et al. Jan 2002 B1
6344048 Chin et al. Feb 2002 B1
6344049 Levinson et al. Feb 2002 B1
6346116 Brooks et al. Feb 2002 B1
6348041 Klint Feb 2002 B1
6348063 Yassour et al. Feb 2002 B1
6355051 Sisskind et al. Mar 2002 B1
6358228 Tubman et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6361546 Khosravi Mar 2002 B1
6361547 Hieshima Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6364896 Addis Apr 2002 B1
6368338 Konya et al. Apr 2002 B1
6371969 Tsugita et al. Apr 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6375670 Greenhalgh Apr 2002 B1
6379374 Hieshima et al. Apr 2002 B1
6383146 Klint May 2002 B1
6383174 Eder May 2002 B1
6383193 Cathcart et al. May 2002 B1
6383196 Leslie et al. May 2002 B1
6383205 Samson et al. May 2002 B1
6383206 Gillick et al. May 2002 B1
6391044 Yadav et al. May 2002 B1
6391045 Kim et al. May 2002 B1
6395014 Macoviak et al. May 2002 B1
6402771 Palmer et al. Jun 2002 B1
6402772 Amplatz et al. Jun 2002 B1
6409742 Fulton, III et al. Jun 2002 B1
6413235 Parodi Jul 2002 B1
6416530 DeVries et al. Jul 2002 B2
6419686 McLeod et al. Jul 2002 B1
6423086 Barbut et al. Jul 2002 B1
6425909 Dieck et al. Jul 2002 B1
6428557 Hilaire Aug 2002 B1
6428558 Jones et al. Aug 2002 B1
6428559 Johnson Aug 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436112 Wensel et al. Aug 2002 B2
6436120 Meglin Aug 2002 B1
6436121 Blom Aug 2002 B1
6443926 Kletschka Sep 2002 B1
6443971 Boylan et al. Sep 2002 B1
6443972 Bosma et al. Sep 2002 B1
6447530 Ostrovsky et al. Sep 2002 B1
6447531 Amplatz Sep 2002 B1
6458139 Palmer et al. Oct 2002 B1
6458145 Ravenscroft et al. Oct 2002 B1
6461370 Gray et al. Oct 2002 B1
6468290 Weldon et al. Oct 2002 B1
6468291 Bates et al. Oct 2002 B2
6482222 Bruckheimer et al. Nov 2002 B1
6485456 Kletschka Nov 2002 B1
6485500 Kokish et al. Nov 2002 B1
6485501 Green Nov 2002 B1
6485502 Don Michael et al. Nov 2002 B2
6491712 O'Connor Dec 2002 B1
6494895 Addis Dec 2002 B2
6497709 Heath Dec 2002 B1
6499487 McKenzie et al. Dec 2002 B1
6500166 Zadno Azizi et al. Dec 2002 B1
6500191 Addis Dec 2002 B2
6502606 Klint Jan 2003 B2
6506203 Boyle et al. Jan 2003 B1
6506205 Goldberg et al. Jan 2003 B2
6508826 Murphy et al. Jan 2003 B2
6511492 Rosenbluth et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511497 Braun et al. Jan 2003 B1
6511503 Burkett et al. Jan 2003 B1
6514273 Voss et al. Feb 2003 B1
6517559 O'Connell Feb 2003 B1
6520978 Blackledge et al. Feb 2003 B1
6527746 Oslund et al. Mar 2003 B1
6527791 Fisher Mar 2003 B2
6527962 Nadal Mar 2003 B1
6530935 Wensel et al. Mar 2003 B2
6530939 Hopkins et al. Mar 2003 B1
6530940 Fisher Mar 2003 B2
6533800 Barbut Mar 2003 B1
6537293 Berryman et al. Mar 2003 B1
6537294 Boyle et al. Mar 2003 B1
6537296 Levinson et al. Mar 2003 B2
6537297 Tsugita et al. Mar 2003 B2
6540722 Boyle et al. Apr 2003 B1
6540767 Walak et al. Apr 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544221 Kokish et al. Apr 2003 B1
6544276 Azizi Apr 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6544280 Daniel et al. Apr 2003 B1
6547759 Fisher Apr 2003 B1
6551303 Van Tassel et al. Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6554849 Jones et al. Apr 2003 B1
6558404 Tsukernik May 2003 B2
6558405 McInnes May 2003 B1
6558406 Okada May 2003 B2
6562058 Seguin et al. May 2003 B2
6565591 Brady et al. May 2003 B2
6569147 Evans et al. May 2003 B1
6569183 Kim et al. May 2003 B1
6569184 Huter May 2003 B2
6575995 Huter et al. Jun 2003 B1
6575996 Denison et al. Jun 2003 B1
6575997 Palmer et al. Jun 2003 B1
6579303 Amplatz Jun 2003 B2
6582396 Parodi Jun 2003 B1
6582447 Patel et al. Jun 2003 B1
6582448 Boyle et al. Jun 2003 B1
6589230 Gia et al. Jul 2003 B2
6589263 Hopkins et al. Jul 2003 B1
6589264 Barbut et al. Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6589266 Whitcher et al. Jul 2003 B2
6592546 Barbut et al. Jul 2003 B1
6592606 Huter et al. Jul 2003 B2
6596011 Johnson et al. Jul 2003 B2
6599307 Huter et al. Jul 2003 B1
6599308 Amplatz Jul 2003 B2
6602271 Adams et al. Aug 2003 B2
6602273 Marshall Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6607506 Kletschka Aug 2003 B2
6610077 Hancock et al. Aug 2003 B1
6613074 Mitelberg et al. Sep 2003 B1
6616679 Khosravi et al. Sep 2003 B1
6616680 Thielen Sep 2003 B1
6616681 Hanson et al. Sep 2003 B2
6616682 Joergensen et al. Sep 2003 B2
6620148 Tsugita Sep 2003 B1
6620182 Khosravi et al. Sep 2003 B1
6623450 Dutta Sep 2003 B1
6623506 McGuckin, Jr. et al. Sep 2003 B2
6629953 Boyd Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635069 Teoh et al. Oct 2003 B1
6635070 Leeflang et al. Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6638294 Palmer Oct 2003 B1
6638372 Abrams et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6641605 Stergiopulos Nov 2003 B1
6645220 Huter et al. Nov 2003 B1
6645221 Richter Nov 2003 B1
6645222 Parodi et al. Nov 2003 B1
6645223 Boyle et al. Nov 2003 B2
6645224 Gilson et al. Nov 2003 B2
6652554 Wholey et al. Nov 2003 B1
6652557 MacDonald Nov 2003 B1
6652558 Patel et al. Nov 2003 B2
6656201 Ferrera et al. Dec 2003 B2
6656202 Papp et al. Dec 2003 B2
6656203 Roth et al. Dec 2003 B2
6656204 Ambrisco et al. Dec 2003 B2
6656351 Boyle Dec 2003 B2
6660021 Palmer et al. Dec 2003 B1
6663613 Evans et al. Dec 2003 B1
6663650 Sepetka et al. Dec 2003 B2
6663651 Krolik et al. Dec 2003 B2
6663652 Daniel et al. Dec 2003 B2
6695865 Boyle et al. Feb 2004 B2
6702834 Boylan et al. Mar 2004 B1
6712835 Mazzocchi et al. Mar 2004 B2
6726701 Gilson et al. Apr 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6761727 Ladd Jul 2004 B1
6780175 Sachdeva et al. Aug 2004 B1
6793668 Fisher Sep 2004 B1
6866677 Douk et al. Mar 2005 B2
7004955 Shen et al. Feb 2006 B2
20010000799 Wessman et al. May 2001 A1
20010001817 Humes May 2001 A1
20010005789 Root et al. Jun 2001 A1
20010007947 Kanesaka Jul 2001 A1
20010011181 DiMatteo Aug 2001 A1
20010011182 Dubrul et al. Aug 2001 A1
20010012951 Bates et al. Aug 2001 A1
20010016755 Addis Aug 2001 A1
20010020175 Yassour et al. Sep 2001 A1
20010023358 Tsukernik Sep 2001 A1
20010025187 Okada Sep 2001 A1
20010031980 Wensel et al. Oct 2001 A1
20010031981 Evans et al. Oct 2001 A1
20010031982 Peterson et al. Oct 2001 A1
20010039431 DeVries et al. Nov 2001 A1
20010039432 Whitcher et al. Nov 2001 A1
20010041908 Levinson et al. Nov 2001 A1
20010041909 Tsugita et al. Nov 2001 A1
20010044632 Daniel et al. Nov 2001 A1
20010044634 Don Michael et al. Nov 2001 A1
20010053921 Jang Dec 2001 A1
20020002384 Gilson et al. Jan 2002 A1
20020004667 Adams et al. Jan 2002 A1
20020016564 Courtney et al. Feb 2002 A1
20020016609 Wensel et al. Feb 2002 A1
20020022858 Demond et al. Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi et al. Feb 2002 A1
20020026212 Wholey et al. Feb 2002 A1
20020026213 Gilson et al. Feb 2002 A1
20020032460 Kusleika et al. Mar 2002 A1
20020032461 Marshall Mar 2002 A1
20020042626 Hanson et al. Apr 2002 A1
20020042627 Brady et al. Apr 2002 A1
20020045915 Balceta et al. Apr 2002 A1
20020045916 Gray et al. Apr 2002 A1
20020045918 Suon et al. Apr 2002 A1
20020049452 Kurz et al. Apr 2002 A1
20020049468 Streeter et al. Apr 2002 A1
20020052627 Boylan et al. May 2002 A1
20020058904 Boock et al. May 2002 A1
20020058911 Gilson et al. May 2002 A1
20020058963 Vale et al. May 2002 A1
20020058964 Addis May 2002 A1
20020062133 Gilson et al. May 2002 A1
20020062134 Barbut et al. May 2002 A1
20020062135 Mazzocchi et al. May 2002 A1
20020065507 Zadno-Azizi May 2002 A1
20020068954 Foster Jun 2002 A1
20020068955 Khosravi Jun 2002 A1
20020072764 Sepetka et al. Jun 2002 A1
20020072765 Mazzocchi et al. Jun 2002 A1
20020077596 McKenzie et al. Jun 2002 A1
20020082558 Samson et al. Jun 2002 A1
20020082639 Broome et al. Jun 2002 A1
20020087187 Mazzocchi et al. Jul 2002 A1
20020090389 Humes et al. Jul 2002 A1
20020091407 Zadno-Azizi et al. Jul 2002 A1
20020091408 Sutton et al. Jul 2002 A1
20020091409 Sutton et al. Jul 2002 A1
20020095170 Krolik et al. Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020095172 Mazzocchi et al. Jul 2002 A1
20020095173 Mazzocchi et al. Jul 2002 A1
20020095174 Tsugita et al. Jul 2002 A1
20020099407 Becker et al. Jul 2002 A1
20020103501 Diaz et al. Aug 2002 A1
20020107541 Vale et al. Aug 2002 A1
20020111647 Khairkhahan et al. Aug 2002 A1
20020111648 Kusleika et al. Aug 2002 A1
20020111649 Russo et al. Aug 2002 A1
20020116024 Goldberg et al. Aug 2002 A1
20020120226 Beck Aug 2002 A1
20020120286 DoBrava et al. Aug 2002 A1
20020120287 Huter Aug 2002 A1
20020123720 Kusleika et al. Sep 2002 A1
20020123755 Lowe et al. Sep 2002 A1
20020123759 Amplatz Sep 2002 A1
20020123766 Seguin et al. Sep 2002 A1
20020128679 Turovskiy et al. Sep 2002 A1
20020128680 Pavlovic Sep 2002 A1
20020128681 Broome et al. Sep 2002 A1
20020133191 Khosravi et al. Sep 2002 A1
20020133192 Kusleika et al. Sep 2002 A1
20020138094 Borillo et al. Sep 2002 A1
20020138095 Mazzocchi et al. Sep 2002 A1
20020138096 Hieshima Sep 2002 A1
20020138097 Ostrovsky et al. Sep 2002 A1
20020143360 Douk et al. Oct 2002 A1
20020143361 Douk et al. Oct 2002 A1
20020143362 Macoviak et al. Oct 2002 A1
20020151927 Douk et al. Oct 2002 A1
20020151928 Leslie et al. Oct 2002 A1
20020156520 Boylan et al. Oct 2002 A1
20020161389 Boyle et al. Oct 2002 A1
20020161390 Mouw Oct 2002 A1
20020161391 Murphy et al. Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161393 Demond et al. Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020161395 Douk et al. Oct 2002 A1
20020161396 Jang et al. Oct 2002 A1
20020165557 McAlister Nov 2002 A1
20020165573 Barbut Nov 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020169472 Douk et al. Nov 2002 A1
20020169474 Kusleika et al. Nov 2002 A1
20020173815 Hogendijk et al. Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020177872 Papp et al. Nov 2002 A1
20020183781 Casey et al. Dec 2002 A1
20020183782 Tsugita et al. Dec 2002 A1
20020183783 Shadduck Dec 2002 A1
20020188313 Johnson et al. Dec 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20020193824 Boylan et al. Dec 2002 A1
20020193825 McGuckin et al. Dec 2002 A1
20020193826 McGuckin et al. Dec 2002 A1
20020193827 McGuckin et al. Dec 2002 A1
20020193828 Griffin et al. Dec 2002 A1
20020198561 Amplatz Dec 2002 A1
20030004536 Boylan et al. Jan 2003 A1
20030004538 Secrest et al. Jan 2003 A1
20030004539 Linder et al. Jan 2003 A1
20030004540 Linder et al. Jan 2003 A1
20030004541 Linder et al. Jan 2003 A1
20030004542 Wensel et al. Jan 2003 A1
20030009146 Muni et al. Jan 2003 A1
20030009189 Gilson et al. Jan 2003 A1
20030009190 Kletschka et al. Jan 2003 A1
20030009191 Wensel et al. Jan 2003 A1
20030014072 Wensel et al. Jan 2003 A1
20030018354 Roth et al. Jan 2003 A1
20030018355 Goto et al. Jan 2003 A1
20030023263 Krolik et al. Jan 2003 A1
20030023264 Dieck et al. Jan 2003 A1
20030023265 Forber Jan 2003 A1
20030032976 Boucek Feb 2003 A1
20030032977 Brady Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030045897 Huter et al. Mar 2003 A1
20030045898 Harrison et al. Mar 2003 A1
20030050662 Don Michael Mar 2003 A1
20030055452 Joergensen et al. Mar 2003 A1
20030055480 Fischell et al. Mar 2003 A1
20030060843 Boucher Mar 2003 A1
20030060844 Borillo et al. Mar 2003 A1
20030065354 Boyle et al. Apr 2003 A1
20030065355 Weber Apr 2003 A1
20030065356 Tsugita et al. Apr 2003 A1
20030069596 Eskuri Apr 2003 A1
20030073979 Naimark et al. Apr 2003 A1
20030074019 Gray et al. Apr 2003 A1
20030078614 Salahieh et al. Apr 2003 A1
20030083692 Vrba et al. May 2003 A1
20030083693 Daniel et al. May 2003 A1
20030088211 Anderson et al. May 2003 A1
20030088266 Bowlin May 2003 A1
20030093110 Vale May 2003 A1
20030093112 Addis May 2003 A1
20030097094 Ouriel et al. May 2003 A1
20030097145 Goldberg et al. May 2003 A1
20030100917 Boyle et al. May 2003 A1
20030100918 Duane May 2003 A1
20030100919 Hopkins et al. May 2003 A1
20030105472 McAlister Jun 2003 A1
20030105484 Boyle et al. Jun 2003 A1
20030105486 Murphy et al. Jun 2003 A1
20030109824 Anderson et al. Jun 2003 A1
20030109897 Walak et al. Jun 2003 A1
20030114879 Euteneuer et al. Jun 2003 A1
20030114880 Hansen et al. Jun 2003 A1
20030120303 Boyle et al. Jun 2003 A1
20030120304 Kaganov et al. Jun 2003 A1
20030125764 Brady et al. Jul 2003 A1
20030125765 Blackledge et al. Jul 2003 A1
20030130680 Russell Jul 2003 A1
20030130681 Ungs Jul 2003 A1
20030130682 Broome et al. Jul 2003 A1
20030130684 Brady et al. Jul 2003 A1
20030130685 Daniel et al. Jul 2003 A1
20030130686 Daniel et al. Jul 2003 A1
20030130687 Daniel et al. Jul 2003 A1
20030130688 Daniel et al. Jul 2003 A1
20030135232 Douk et al. Jul 2003 A1
20030135233 Bates et al. Jul 2003 A1
20030139764 Levinson et al. Jul 2003 A1
20030139765 Patel et al. Jul 2003 A1
20030144685 Boyle et al. Jul 2003 A1
20030144686 Martinez et al. Jul 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030144688 Brady et al. Jul 2003 A1
20030144689 Brady et al. Jul 2003 A1
20030150821 Bates et al. Aug 2003 A1
20030153935 Mialhe Aug 2003 A1
20030153942 Wang et al. Aug 2003 A1
20030153943 Michael et al. Aug 2003 A1
20030153944 Phung et al. Aug 2003 A1
20030153945 Patel et al. Aug 2003 A1
20030158518 Schonholz et al. Aug 2003 A1
20030158574 Esch et al. Aug 2003 A1
20030158575 Boylan et al. Aug 2003 A1
20030163158 White Aug 2003 A1
20030163159 Patel et al. Aug 2003 A1
20030167068 Amplatz Sep 2003 A1
20030167069 Gonzales et al. Sep 2003 A1
20030171769 Barbut Sep 2003 A1
20030171770 Kusleika et al. Sep 2003 A1
20030171771 Anderson et al. Sep 2003 A1
20030171772 Amplatz Sep 2003 A1
20030171803 Shimon Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030176885 Broome et al. Sep 2003 A1
20030176886 Wholey et al. Sep 2003 A1
20030176887 Petersen Sep 2003 A1
20030176888 O'Connell Sep 2003 A1
20030176889 Boyle et al. Sep 2003 A1
20030181942 Sutton et al. Sep 2003 A1
20030181943 Daniel et al. Sep 2003 A1
20030717769 Barbut Sep 2003
20030187474 Keegan et al. Oct 2003 A1
20030187475 Tsugita et al. Oct 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030191492 Gellman et al. Oct 2003 A1
20030191493 Epstein et al. Oct 2003 A1
20030195554 Shen et al. Oct 2003 A1
20030195555 Khairkhahan et al. Oct 2003 A1
20030199819 Beck Oct 2003 A1
20030199917 Knudson et al. Oct 2003 A1
20030199918 Patel et al. Oct 2003 A1
20030199919 Palmer et al. Oct 2003 A1
20030199920 Boylan et al. Oct 2003 A1
20030199921 Palmer et al. Oct 2003 A1
20030204168 Bosma et al. Oct 2003 A1
20030204202 Palmer et al. Oct 2003 A1
20030204203 Khairkhahan et al. Oct 2003 A1
20030208222 Zadno-Azizi Nov 2003 A1
20030208224 Broome Nov 2003 A1
20030208225 Goll et al. Nov 2003 A1
20030208226 Bruckheimer et al. Nov 2003 A1
20030208227 Thomas Nov 2003 A1
20030208228 Gilson et al. Nov 2003 A1
20030208229 Kletschka Nov 2003 A1
20030208253 Beyer et al. Nov 2003 A1
20030212428 Richter Nov 2003 A1
20030212429 Keegan et al. Nov 2003 A1
20030212432 Khairkhahan et al. Nov 2003 A1
20030212433 Ambrisco et al. Nov 2003 A1
20030216774 Larson Nov 2003 A1
20030220665 Eskuri et al. Nov 2003 A1
20030220667 Van der Burg et al. Nov 2003 A1
20030225435 Huter et al. Dec 2003 A1
20030229374 Brady et al. Dec 2003 A1
20030233117 Adams et al. Dec 2003 A1
20040006364 Ladd Jan 2004 A1
20040006370 Tsugita Jan 2004 A1
20040039412 Isshiki et al. Feb 2004 A1
20040059372 Tsugita Mar 2004 A1
20040064067 Ward Apr 2004 A1
20040068271 McAlister Apr 2004 A1
20040078044 Kear et al. Apr 2004 A1
20040082962 Demarais et al. Apr 2004 A1
20040093016 Root et al. May 2004 A1
20040098022 Barone May 2004 A1
20040098033 Leeflang et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040106944 Daniel et al. Jun 2004 A1
20040116831 Vrba Jun 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040158278 Becker et al. Aug 2004 A1
20040164030 Lowe et al. Aug 2004 A1
20040167567 Cano et al. Aug 2004 A1
20040176794 Khosravi Sep 2004 A1
20040176833 Pavcnik et al. Sep 2004 A1
20040236369 Dubrul Nov 2004 A1
20050038468 Panetta et al. Feb 2005 A1
20060100544 Ayala et al. May 2006 A1
20060100545 Ayala et al. May 2006 A1
20060287701 Pal Dec 2006 A1
Foreign Referenced Citations (2)
Number Date Country
WO 9610591 Apr 1996 WO
WO 9944510 Sep 1999 WO
Related Publications (1)
Number Date Country
20060287670 A1 Dec 2006 US
Provisional Applications (1)
Number Date Country
60692313 Jun 2005 US