The present invention relates to medical devices. More particularly, the present invention relates to embolic protection devices and methods for capturing emboli within a body vessel.
Presently, there are a number of treatments for embolic protection to prevent emboli and blood clots from traveling within the vasculature that create undesirable medical conditions, such as ischemic stroke, brain aneurysm, and pulmonary embolism. For example, vena cava filters are commonly employed to trap blood clots and emboli in the vena cava filter to prevent pulmonary embolism; snares and baskets (for example, stone retrieval baskets) are generally employed to retrieve urinary calculi; and occlusion coils are typically employed to occlude aneurysms and accumulate thrombi in a body vessel.
Treatments for stenotic lesions create a potential in releasing blood clots and other thrombi plaque in the vasculature of the patient, for example, in the treatment for carotid artery stenosis. Generally, carotid artery stenosis (also called carotid artery disease) is the narrowing of the carotid arteries, which are the main arteries in the neck that supply blood to the brain, usually caused by plaque build-up in the carotid artery, creating a relatively high risk factor for ischemic stroke. Plaque forms when cholesterol, fat and other substances form in the inner lining of an artery. This formation process is know as atherosclerosis.
Depending on the degree of stenosis and the patient's overall condition, carotid artery stenosis has been treated with surgery. This procedure, known as carotid endarterectomy, removes the plaque from the arterial walls. Carotid endarterectomy has been shown to benefit patients with arteries that are substantially narrowed, for example, by about 70% or more. For people with arteries that are not as narrowed, for example, less than about 50%, an anti-clotting drug, such as anti-platelet agents and anticoagulants, may be prescribed to reduce the risk of ischemic stroke.
Carotid angioplasty is a more recently developed treatment for carotid artery stenosis. This treatment uses balloons with or without stents to open a narrowed artery. This procedure can be performed through a standard percutaneous transfemoral approach with the patient anesthetized using light intravenous sedation. At the stenosis area, an angioplasty balloon is delivered to predilate the stenosis in preparation for placement of a stent. The balloon is then removed and exchanged through a catheter for a stent delivery device. Once in position, a stent is deployed across the stenotic area. If needed, another balloon can be placed inside the deployed stent for post-dilation to ensure that the struts of the stent are pressed firmly against the inner surface of the vessel wall.
During the stenosis procedure, there is a risk of blood clots and thrombi being undesirably released into the blood flow within the vasculature. Embolic or distal protection devices have been implemented to capture emboli. However, many current embolic protection devices restrict flow when deployed within the vasculature of the patient. Moreover, many embolic protection devices are relatively difficult to collapse and retrieve after the need for such a device in the vasculature passes.
In view of the above, it is apparent that there exists a need for an improved device and method for distally protecting and capturing emboli within a body lumen during a stenosis procedure.
The present invention generally provides an embolic protection device that minimizes restricted flow when deployed within the vasculature of a patient and that is relatively easy to retrieve after the risk of releasing blood clots and thrombi within the vasculature has passed. In a general aspect, the embolic protection device includes a basket defined by a section of a set of wires arranged as a plurality of struts. These struts are coupled together at the distal end of the basket in a manner to define an opening at the distal end through which a core wire can reciprocate. Another section of the wires spirals around the core wire to define a hollow channel in which the core wire can reciprocate. A filter bag is attached to the distal end of the core wire such that pulling a proximal end of the core wire relative to the spiraled section engages the filter bag with the distal end of the basket to expand the basket and filter bag for capturing emboli, and pushing the core wire disengages the filter bag from the distal end of the basket to collapse the basket and filter bag.
Hence, the filter bag, basket, and deployment mechanism are all one integral unit with a small cross sectional profile when the device is in a collapsed configuration. Accordingly, during delivery of the device, the small profile enables crossing a lesion without inadvertently dislodging material from the lesion site.
Further features and advantages will be apparent from the following description, and from the claims.
a is a side view of the embolic protection device in a collapsed configuration in accordance with one embodiment of the present invention;
b is a side view of the embolic protection device in a partially expanded configuration in accordance with one embodiment of the present invention;
a is a side view of an embolic protection assembly for capturing emboli during treatment of a stenotic lesion in accordance with one embodiment of the present invention;
b is an exploded side view of the assembly in
Referring now to
Another section of the set of wires is twisted or spiraled to define a spiraled section 26 with a hollow channel 28 through which the core wire 20 extends along a longitudinal axis A beyond a proximal end 32 of the spiraled portion 26. The filter bag 22 is positioned with the opening of the bag facing the stenotic lesion. Accordingly, clots or emboli flow into the bag when the device 10 is deployed in the vasculature. When in the expanded or deployed configuration, the struts 14 extend longitudinally and curve outwardly between the proximal end 16 of the basket 12 and the distal end 18.
Since the core wire 20 is attached only to the filter bag 22 at the distal end 24 of the core wire, the core wire 20 is able to reciprocate within the hollow channel 28 and through the opening at the distal end 18 of the basket 12. Thus, as shown in
When in its collapsed configuration (
The struts 14 may be formed from any suitable material such as a superelastic material, stainless steel wire, cobalt—chromium—nickel—molybdenum—iron alloy, or cobalt—chrome alloy. It is understood that in some implementations the struts 18 may be formed of any other suitable material that will result in a self-opening or self-expanding basket 14, such as shape memory alloys. Shape memory alloys have the desirable property of becoming rigid, that is, returning to a remembered state, when heated above a transition temperature. A shape memory alloy suitable for the present invention is Ni—Ti available under the more commonly known name Nitinol. When this material is heated above the transition temperature, the material undergoes a phase transformation from martensite to austenite, such that the material returns to its remembered state. The transition temperature is dependent on the relative proportions of the alloying elements Ni and Ti and the optional inclusion of alloying additives.
In one embodiment, the struts 14 are made from Nitinol with a transition temperature that is slightly below normal body temperature of humans (that is, about 98.6° F.). Thus, when the basket 12 is deployed in a body vessel and exposed to normal body temperature, the alloy of the struts 14 transform to austenite, such that the struts return to their remembered state, which for certain implementations is the expanded configuration when the basket 12 is deployed in the body vessel. To remove the basket 12, the basket is cooled to transform the alloy to martensite, which is more ductile than austenite, making the basket 12 more malleable, and hence more easily collapsible when, for example, a catheter is pushed over the basket 12.
In other embodiments, the basket 12 may be self-closing or self-collapsing. In such embodiments, the struts 14 may be made from Nitinol with a transition temperature that is above normal body temperature of humans. Thus, when the basket 12 is deployed in a body vessel and exposed to normal body temperature, the basket 12 is in the martensitic state so that the struts 14 are sufficiently ductile to form the basket 12 into an expanded configuration. To remove the basket 12, the basket is heated, for example, with a saline solution, to transform the alloy to austenite so that the basket 12 becomes rigid and returns to a remembered state, that is, a collapsed configuration.
The filter bag 22 may be formed from any suitable material to be used for capturing emboli from the stenotic lesion while allowing blood to flow through it. In a particular embodiment, the filter bag 22 is made of connective tissue material. The connective tissue may include extracellular matrix (ECM), which is a complex structural entity surrounding and supporting cells that are found within mammalian tissues. More specifically, ECM includes structural proteins (for example, collagen and elastin), specialized protein (for example, fibrillin, fibronectin, and laminin), and proteoglycans, a protein core to which are attached long chains of repeating disaccharide units termed glycosaminoglycans.
The extracellular matrix can be made of small intestinal submucosa (SIS). As known, SIS is a resorbable, acellular, naturally occurring tissue matrix composed of ECM proteins and various growth factors. SIS is derived from the porcine jejunum and functions as a remodeling bioscaffold for tissue repair. SIS has characteristics of an ideal tissue engineered biomaterial and can act as a bioscaffold for remodeling of many body tissues including skin, body wall, musculoskeletal structure, urinary bladder, and also supports new blood vessel growth. In many aspects, SIS is used to induce site-specific remodeling of both organs and tissues depending on the site of implantation. In theory, host cells are stimulated to proliferate and differentiate into site-specific connective tissue structures, which have been shown to completely replace the SIS material in time.
In some implementations, SIS is used to temporarily adhere the filter bag 22 to the walls of a body vessel in which the device 10 is deployed. SIS has a natural adherence or wettability to body fluids and connective cells that form the connective tissue of a body vessel wall. Because of the temporary nature of the duration in which the device 10 is deployed in the body vessel, host cells of the wall will adhere to the filter bag 22 but will not differentiate, allowing for retrieval of the device 10 from the body vessel.
In other embodiments, the filter bag 22 may be made of a mesh/net cloth, nylon, polymeric material, Teflon, or woven mixtures thereof.
In use, the device 10 expands from the collapsed state to the expanded state, engaging the basket 12 with the body vessel. In turn, the filter bag 22 expands to capture emboli during treatment of the stenotic lesion. After the device 10 is no longer needed, it may be retrieved.
The embolic protection device 10 may be used independently without any other delivery system or mechanism. Alternatively, the device 10 may be used, for example, with an embolic protection assembly 50 as depicted in
As shown, the assembly 50 includes a balloon catheter 52 having a tubular body 54 and an expandable balloon 56 attached to and in fluid communication with the tubular body 54 for angioplasty at a stenotic lesion. The assembly 50 also includes the embolic protection device 10 described above. The tubular body 54 is preferably made of soft flexible material such as silicon or any other suitable material. The balloon catheter 52 may include an outer lumen that is in fluid communication with the balloon 56 for inflating and deflating the balloon 56 and an inner lumen formed within the outer lumen for percutaneous guidance through the body vessel with a wire a guide and for deploying the embolic protection device 10. In certain implementations, the balloon catheter 52 has a proximal fluid hub 72 in fluid communication with the balloon 56 by way of the outer lumen for fluid to be passed through the outer lumen for inflation and deflation of the balloon 56 during treatment of the stenotic lesion.
The assembly 50 further includes an inner catheter 62 with a distal end 64 through which the balloon catheter 52 is disposed for deployment in the body vessel. The inner catheter 62 is preferably made of a soft, flexible material such as silicon or any other suitable material. Generally, the inner catheter 62 also has a proximal end 58 and a plastic adaptor or hub 68 to receive the embolic protection device 10 and balloon catheter 52. The size of the inner catheter 62 is based on the size of the body vessel into which the catheter 62 is inserted, and the size of the balloon catheter 52.
The assembly 50 may also include a wire guide 70 configured to be percutaneously inserted within the vasculature to guide the inner catheter 62 to a location adjacent a stenotic lesion. Alternatively, the embolic protection device 10 may be employed as a wire guide.
To deploy the embolic protection device 10, the device 10 is placed in the inner lumen of the balloon catheter 52 prior to treatment of the stenotic lesion. The distal protection device is then guided through the inner lumen preferably from the hub 72 and distally beyond the balloon 56 of the balloon catheter 52, exiting from the distal end of the balloon catheter 52 to a location within the vasculature downstream of the stenotic lesion.
The assembly 50 may include a polytetrafluoroethylene (PTFE) introducer sheath 74 for percutaneously introducing the wire guide 70 and the inner catheter 62 in a body vessel. Of course, any other suitable material may be used. The introducer sheath 74 may have any suitable size, e.g., between about three-french to eight-french. The introducer serves to allow the inner and balloon catheters 62, 52 to be inserted percutaneously to a desired location in the body vessel. The introducer sheath 74 receives the inner catheter 62 and provides stability to the inner catheter at a desired location of the body vessel. For example, as the introducer sheath 74 is held stationary within a common visceral artery, it adds stability to the inner catheter 62, as the inner catheter 62 is advanced through the introducer sheath 74 to a dilatation area in the vasculature.
When the distal end 64 of the inner catheter 62 is at a location downstream of the dilatation area in the body vessel, the balloon catheter 52 is inserted through the inner catheter 62 to the dilatation area. The embolic protection device 10 is then loaded at the proximal end of the balloon catheter 52 and is advanced coaxially through the inner lumen of the balloon catheter 52 for deployment through the distal end of the balloon catheter. In this embodiment, the proximal end 28 of the core wire 20 can be used to mechanically advance or push the embolic protection device 10 through the catheter.
Next, in step 104, the embolic protection device 10 is placed in the collapsed state in the inner lumen of the balloon catheter 52 and advanced beyond the distal end of the balloon catheter, and, hence, beyond the dilatation area. The process 100 further includes deploying the device in an expanded state downstream from the stenotic lesion to capture emboli during treatment of the stenotic lesion in step 106. Optionally, the catheter may be withdrawn, and an alternative treatment device may be placed over the spiraled section 26 of the embolic protection device 10, that is, the device 10 may serve as a wire guide for the alternative treatment device.
In yet another example of the present invention,
The above and other embodiments are within the scope of the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/698,410, filed Jul. 12, 2005, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3547103 | Cook | Dec 1970 | A |
3635223 | Klieman | Jan 1972 | A |
3923065 | Nozick et al. | Dec 1975 | A |
3952747 | Kimmell, Jr. | Apr 1976 | A |
3978863 | Fettel et al. | Sep 1976 | A |
3996938 | Clark, Iii | Dec 1976 | A |
4425908 | Simon | Jan 1984 | A |
4494531 | Gianturco | Jan 1985 | A |
4548206 | Osborne | Oct 1985 | A |
4561439 | Bishop et al. | Dec 1985 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4646736 | Auth | Mar 1987 | A |
4650472 | Bates | Mar 1987 | A |
4665906 | Jervis | May 1987 | A |
4669464 | Sulepov | Jun 1987 | A |
4688553 | Metals | Aug 1987 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4727873 | Mobin-Uddin | Mar 1988 | A |
4817600 | Herms et al. | Apr 1989 | A |
4824435 | Giesy et al. | Apr 1989 | A |
4832055 | Palestrant | May 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4943297 | Saveliev et al. | Jul 1990 | A |
4957501 | Lahille et al. | Sep 1990 | A |
4990156 | Lefebvre | Feb 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5059205 | El-Nounou et al. | Oct 1991 | A |
5069226 | Yamauchi et al. | Dec 1991 | A |
5100423 | Fearnot | Mar 1992 | A |
5108418 | Lefebvre | Apr 1992 | A |
5108419 | Reger et al. | Apr 1992 | A |
5112347 | Taheri | May 1992 | A |
5129890 | Bates et al. | Jul 1992 | A |
5133733 | Rasmussen et al. | Jul 1992 | A |
5147379 | Sabbaghian et al. | Sep 1992 | A |
5152777 | Goldberg | Oct 1992 | A |
5160342 | Reger | Nov 1992 | A |
5234458 | Metais | Aug 1993 | A |
5242462 | El-Nounou | Sep 1993 | A |
5243996 | Hall | Sep 1993 | A |
5251640 | Osborne | Oct 1993 | A |
5263964 | Purdy | Nov 1993 | A |
5300086 | Gory et al. | Apr 1994 | A |
5324304 | Rasmussen | Jun 1994 | A |
5329942 | Gunther et al. | Jul 1994 | A |
5344427 | Cottenceau et al. | Sep 1994 | A |
5350398 | Pavcnik et al. | Sep 1994 | A |
5370657 | Irie | Dec 1994 | A |
5375612 | Cottenceau et al. | Dec 1994 | A |
5383887 | Nadal | Jan 1995 | A |
5413586 | Dibie et al. | May 1995 | A |
5415630 | Gory et al. | May 1995 | A |
5417708 | Hall et al. | May 1995 | A |
5527338 | Purdy | Jun 1996 | A |
5531788 | Dibie et al. | Jul 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5562698 | Parker | Oct 1996 | A |
5601595 | Smith | Feb 1997 | A |
5624461 | Mariant | Apr 1997 | A |
5626605 | Irie et al. | May 1997 | A |
5634942 | Chevillon et al. | Jun 1997 | A |
5649953 | Lefebvre | Jul 1997 | A |
5669933 | Simon et al. | Sep 1997 | A |
5681347 | Cathcart et al. | Oct 1997 | A |
5690667 | Gia | Nov 1997 | A |
5693067 | Purdy | Dec 1997 | A |
5695518 | Laerum | Dec 1997 | A |
5695519 | Summers et al. | Dec 1997 | A |
5709704 | Nott et al. | Jan 1998 | A |
5713853 | Clark et al. | Feb 1998 | A |
5720764 | Naderlinger | Feb 1998 | A |
5725550 | Nadal | Mar 1998 | A |
5746767 | Smith | May 1998 | A |
5755790 | Chevillon et al. | May 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5769871 | Mers et al. | Jun 1998 | A |
5795322 | Boudewijn | Aug 1998 | A |
5800457 | Gelbfish et al. | Sep 1998 | A |
5800525 | Bachinski et al. | Sep 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5830230 | Berryman et al. | Nov 1998 | A |
5836968 | Simon et al. | Nov 1998 | A |
5836969 | Kim et al. | Nov 1998 | A |
5846260 | Maahs | Dec 1998 | A |
5853420 | Chevillon et al. | Dec 1998 | A |
5876367 | Kaganov et al. | Mar 1999 | A |
5893869 | Barnhart et al. | Apr 1999 | A |
5895391 | Farnholtz | Apr 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5895410 | Forber et al. | Apr 1999 | A |
5908435 | Samuels | Jun 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911704 | Humes | Jun 1999 | A |
5911717 | Jacobsen et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5919224 | Thompson et al. | Jul 1999 | A |
5925062 | Purdy | Jul 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5928260 | Chine et al. | Jul 1999 | A |
5928261 | Ruiz | Jul 1999 | A |
5938683 | Lefebvre | Aug 1999 | A |
5941896 | Kerr | Aug 1999 | A |
5944728 | Bates | Aug 1999 | A |
5947985 | Imran | Sep 1999 | A |
5947995 | Samuels | Sep 1999 | A |
5948017 | Taheri | Sep 1999 | A |
5951567 | Javier, Jr. et al. | Sep 1999 | A |
5954741 | Fox | Sep 1999 | A |
5954742 | Osypka | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5968057 | Taheri | Oct 1999 | A |
5968071 | Chevillon et al. | Oct 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
5976162 | Doan et al. | Nov 1999 | A |
5976172 | Homsma et al. | Nov 1999 | A |
5980555 | Barbut et al. | Nov 1999 | A |
5984947 | Smith | Nov 1999 | A |
5989281 | Barbut et al. | Nov 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6007557 | Ambrisco et al. | Dec 1999 | A |
6007558 | Ravenscloth et al. | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6013093 | Nott et al. | Jan 2000 | A |
6015424 | Rosenbluth et al. | Jan 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6036717 | Mers Kelly et al. | Mar 2000 | A |
6036720 | Abrams et al. | Mar 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6051014 | Jang | Apr 2000 | A |
6051015 | Maahs | Apr 2000 | A |
6053932 | Daniel et al. | Apr 2000 | A |
6059745 | Gelbfish | May 2000 | A |
6059814 | Ladd | May 2000 | A |
6063113 | Kavteladze et al. | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6068645 | Tu | May 2000 | A |
6074357 | Kaganov et al. | Jun 2000 | A |
6077274 | Ouchi et al. | Jun 2000 | A |
6080178 | Meglin | Jun 2000 | A |
6083239 | Addis | Jul 2000 | A |
6086577 | Ken et al. | Jul 2000 | A |
6086605 | Barbut et al. | Jul 2000 | A |
6093199 | Brown et al. | Jul 2000 | A |
6096053 | Bates | Aug 2000 | A |
6099549 | Bosma et al. | Aug 2000 | A |
6106497 | Wang | Aug 2000 | A |
6126672 | Berryman et al. | Oct 2000 | A |
6126673 | Kim et al. | Oct 2000 | A |
6129739 | Khosravi | Oct 2000 | A |
6136016 | Barbut et al. | Oct 2000 | A |
6146396 | Konya et al. | Nov 2000 | A |
6146404 | Kim et al. | Nov 2000 | A |
6152931 | Nadal et al. | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6152947 | Ambrisco et al. | Nov 2000 | A |
6156061 | Wallace et al. | Dec 2000 | A |
6159230 | Samuels | Dec 2000 | A |
6165179 | Cathcart et al. | Dec 2000 | A |
6165198 | McGurk et al. | Dec 2000 | A |
6165199 | Barbut | Dec 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6168579 | Tsugita et al. | Jan 2001 | B1 |
6168603 | Leslie et al. | Jan 2001 | B1 |
6168622 | Mazzocchi | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6171328 | Addis | Jan 2001 | B1 |
6174318 | Bates et al. | Jan 2001 | B1 |
6179851 | Barbut et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6179860 | Fulton, III et al. | Jan 2001 | B1 |
6179861 | Khosravi et al. | Jan 2001 | B1 |
6187025 | Machek | Feb 2001 | B1 |
6193739 | Chevillon et al. | Feb 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6214025 | Thistle et al. | Apr 2001 | B1 |
6214026 | Lepak et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6224620 | Maahs | May 2001 | B1 |
6231588 | Zadno-Azizi | May 2001 | B1 |
6231589 | Wessman et al. | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6235045 | Barbut et al. | May 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6241746 | Bosma et al. | Jun 2001 | B1 |
6245087 | Addis | Jun 2001 | B1 |
6245088 | Lowery | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6251122 | Tsukernik | Jun 2001 | B1 |
6254550 | McNamara et al. | Jul 2001 | B1 |
6254633 | Pinchuk et al. | Jul 2001 | B1 |
6258026 | Ravenscroft et al. | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6258120 | McKenzie et al. | Jul 2001 | B1 |
6261305 | Marotta et al. | Jul 2001 | B1 |
6264672 | Fisher | Jul 2001 | B1 |
6267776 | O'Connell | Jul 2001 | B1 |
6267777 | Bosma et al. | Jul 2001 | B1 |
6273900 | Nott et al. | Aug 2001 | B1 |
6273901 | Whitcher et al. | Aug 2001 | B1 |
6277125 | Barry et al. | Aug 2001 | B1 |
6277126 | Barry et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6280451 | Bates et al. | Aug 2001 | B1 |
6287321 | Jang | Sep 2001 | B1 |
6290710 | Cryer et al. | Sep 2001 | B1 |
6306163 | Fitz | Oct 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6312444 | Barbut | Nov 2001 | B1 |
6319268 | Ambrisco et al. | Nov 2001 | B1 |
6325815 | Kusleika et al. | Dec 2001 | B1 |
6325816 | Fulton, III et al. | Dec 2001 | B1 |
6328755 | Marshall | Dec 2001 | B1 |
6331183 | Suon | Dec 2001 | B1 |
6331184 | Abrams | Dec 2001 | B1 |
6334864 | Amplatz et al. | Jan 2002 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6340364 | Kanesaka | Jan 2002 | B2 |
6342062 | Suon et al. | Jan 2002 | B1 |
6342063 | DeVries et al. | Jan 2002 | B1 |
6344048 | Chin et al. | Feb 2002 | B1 |
6344049 | Levinson et al. | Feb 2002 | B1 |
6346116 | Brooks et al. | Feb 2002 | B1 |
6348041 | Klint | Feb 2002 | B1 |
6348063 | Yassour et al. | Feb 2002 | B1 |
6355051 | Sisskind et al. | Mar 2002 | B1 |
6358228 | Tubman et al. | Mar 2002 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6361546 | Khosravi | Mar 2002 | B1 |
6361547 | Hieshima | Mar 2002 | B1 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6364896 | Addis | Apr 2002 | B1 |
6368338 | Konya et al. | Apr 2002 | B1 |
6371969 | Tsugita et al. | Apr 2002 | B1 |
6371970 | Khosravi et al. | Apr 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6375670 | Greenhalgh | Apr 2002 | B1 |
6379374 | Hieshima et al. | Apr 2002 | B1 |
6383146 | Klint | May 2002 | B1 |
6383174 | Eder | May 2002 | B1 |
6383193 | Cathcart et al. | May 2002 | B1 |
6383196 | Leslie et al. | May 2002 | B1 |
6383205 | Samson et al. | May 2002 | B1 |
6383206 | Gillick et al. | May 2002 | B1 |
6391044 | Yadav et al. | May 2002 | B1 |
6391045 | Kim et al. | May 2002 | B1 |
6395014 | Macoviak et al. | May 2002 | B1 |
6402771 | Palmer et al. | Jun 2002 | B1 |
6402772 | Amplatz et al. | Jun 2002 | B1 |
6409742 | Fulton, III et al. | Jun 2002 | B1 |
6413235 | Parodi | Jul 2002 | B1 |
6416530 | DeVries et al. | Jul 2002 | B2 |
6419686 | McLeod et al. | Jul 2002 | B1 |
6423086 | Barbut et al. | Jul 2002 | B1 |
6425909 | Dieck et al. | Jul 2002 | B1 |
6428557 | Hilaire | Aug 2002 | B1 |
6428558 | Jones et al. | Aug 2002 | B1 |
6428559 | Johnson | Aug 2002 | B1 |
6432122 | Gilson et al. | Aug 2002 | B1 |
6436112 | Wensel et al. | Aug 2002 | B2 |
6436120 | Meglin | Aug 2002 | B1 |
6436121 | Blom | Aug 2002 | B1 |
6443926 | Kletschka | Sep 2002 | B1 |
6443971 | Boylan et al. | Sep 2002 | B1 |
6443972 | Bosma et al. | Sep 2002 | B1 |
6447530 | Ostrovsky et al. | Sep 2002 | B1 |
6447531 | Amplatz | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6458139 | Palmer et al. | Oct 2002 | B1 |
6458145 | Ravenscroft et al. | Oct 2002 | B1 |
6461370 | Gray et al. | Oct 2002 | B1 |
6468290 | Weldon et al. | Oct 2002 | B1 |
6468291 | Bates et al. | Oct 2002 | B2 |
6482222 | Bruckheimer et al. | Nov 2002 | B1 |
6485456 | Kletschka | Nov 2002 | B1 |
6485500 | Kokish et al. | Nov 2002 | B1 |
6485501 | Green | Nov 2002 | B1 |
6485502 | Don Michael et al. | Nov 2002 | B2 |
6491712 | O'Connor | Dec 2002 | B1 |
6494895 | Addis | Dec 2002 | B2 |
6497709 | Heath | Dec 2002 | B1 |
6499487 | McKenzie et al. | Dec 2002 | B1 |
6500166 | Azizi et al. | Dec 2002 | B1 |
6500191 | Addis | Dec 2002 | B2 |
6502606 | Klint | Jan 2003 | B2 |
6506203 | Boyle et al. | Jan 2003 | B1 |
6506205 | Goldberg et al. | Jan 2003 | B2 |
6508826 | Murphy et al. | Jan 2003 | B2 |
6511492 | Rosenbluth et al. | Jan 2003 | B1 |
6511496 | Huter et al. | Jan 2003 | B1 |
6511497 | Braun et al. | Jan 2003 | B1 |
6511503 | Burkett et al. | Jan 2003 | B1 |
6514273 | Voss et al. | Feb 2003 | B1 |
6517559 | O'Connell | Feb 2003 | B1 |
6520978 | Blackledge et al. | Feb 2003 | B1 |
6527746 | Oslund et al. | Mar 2003 | B1 |
6527791 | Fisher | Mar 2003 | B2 |
6527962 | Nadal | Mar 2003 | B1 |
6530935 | Wensel et al. | Mar 2003 | B2 |
6530939 | Hopkins et al. | Mar 2003 | B1 |
6530940 | Fisher | Mar 2003 | B2 |
6533800 | Barbut | Mar 2003 | B1 |
6537293 | Berryman et al. | Mar 2003 | B1 |
6537294 | Boyle et al. | Mar 2003 | B1 |
6537296 | Levinson et al. | Mar 2003 | B2 |
6537297 | Tsugita et al. | Mar 2003 | B2 |
6540722 | Boyle et al. | Apr 2003 | B1 |
6540767 | Walak et al. | Apr 2003 | B1 |
6540768 | Diaz et al. | Apr 2003 | B1 |
6544221 | Kokish et al. | Apr 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6544279 | Hopkins et al. | Apr 2003 | B1 |
6544280 | Daniel et al. | Apr 2003 | B1 |
6547759 | Fisher | Apr 2003 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6551341 | Boylan et al. | Apr 2003 | B2 |
6551342 | Shen et al. | Apr 2003 | B1 |
6554849 | Jones et al. | Apr 2003 | B1 |
6558404 | Tsukernik | May 2003 | B2 |
6558405 | McInnes | May 2003 | B1 |
6558406 | Okada | May 2003 | B2 |
6562058 | Seguin et al. | May 2003 | B2 |
6565591 | Brady et al. | May 2003 | B2 |
6569147 | Evans et al. | May 2003 | B1 |
6569183 | Kim et al. | May 2003 | B1 |
6569184 | Huter | May 2003 | B2 |
6575995 | Huter et al. | Jun 2003 | B1 |
6575996 | Denison et al. | Jun 2003 | B1 |
6575997 | Palmer et al. | Jun 2003 | B1 |
6579303 | Amplatz | Jun 2003 | B2 |
6582396 | Parodi | Jun 2003 | B1 |
6582447 | Patel et al. | Jun 2003 | B1 |
6582448 | Boyle et al. | Jun 2003 | B1 |
6589230 | Gia et al. | Jul 2003 | B2 |
6589263 | Hopkins et al. | Jul 2003 | B1 |
6589264 | Barbut et al. | Jul 2003 | B1 |
6589265 | Palmer et al. | Jul 2003 | B1 |
6589266 | Whitcher et al. | Jul 2003 | B2 |
6592546 | Barbut et al. | Jul 2003 | B1 |
6592606 | Huter et al. | Jul 2003 | B2 |
6596011 | Johnson et al. | Jul 2003 | B2 |
6599307 | Huter et al. | Jul 2003 | B1 |
6599308 | Amplatz | Jul 2003 | B2 |
6602271 | Adams et al. | Aug 2003 | B2 |
6602273 | Marshall | Aug 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6607506 | Kletschka | Aug 2003 | B2 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6613074 | Mitelberg et al. | Sep 2003 | B1 |
6616679 | Khosravi et al. | Sep 2003 | B1 |
6616680 | Thielen | Sep 2003 | B1 |
6616681 | Hanson et al. | Sep 2003 | B2 |
6616682 | Joergensen et al. | Sep 2003 | B2 |
6620148 | Tsugita | Sep 2003 | B1 |
6620182 | Khosravi et al. | Sep 2003 | B1 |
6623450 | Dutta | Sep 2003 | B1 |
6623506 | McGuckin, Jr. et al. | Sep 2003 | B2 |
6629953 | Boyd | Oct 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6635069 | Teoh et al. | Oct 2003 | B1 |
6635070 | Leeflang et al. | Oct 2003 | B2 |
6638293 | Makower et al. | Oct 2003 | B1 |
6638294 | Palmer | Oct 2003 | B1 |
6638372 | Abrams et al. | Oct 2003 | B1 |
6641590 | Palmer et al. | Nov 2003 | B1 |
6641605 | Stergiopulos | Nov 2003 | B1 |
6645220 | Huter et al. | Nov 2003 | B1 |
6645221 | Richter | Nov 2003 | B1 |
6645222 | Parodi et al. | Nov 2003 | B1 |
6645223 | Boyle et al. | Nov 2003 | B2 |
6645224 | Gilson et al. | Nov 2003 | B2 |
6652554 | Wholey et al. | Nov 2003 | B1 |
6652557 | MacDonald | Nov 2003 | B1 |
6652558 | Patel et al. | Nov 2003 | B2 |
6656201 | Ferrera et al. | Dec 2003 | B2 |
6656202 | Papp et al. | Dec 2003 | B2 |
6656203 | Roth et al. | Dec 2003 | B2 |
6656204 | Ambrisco et al. | Dec 2003 | B2 |
6656351 | Boyle | Dec 2003 | B2 |
6660021 | Palmer et al. | Dec 2003 | B1 |
6663613 | Evans et al. | Dec 2003 | B1 |
6663650 | Sepetka et al. | Dec 2003 | B2 |
6663651 | Krolik et al. | Dec 2003 | B2 |
6663652 | Daniel et al. | Dec 2003 | B2 |
6695865 | Boyle et al. | Feb 2004 | B2 |
6702834 | Boylan et al. | Mar 2004 | B1 |
6712835 | Mazzocchi et al. | Mar 2004 | B2 |
6726701 | Gilson et al. | Apr 2004 | B2 |
6758855 | Fulton, III et al. | Jul 2004 | B2 |
6761727 | Ladd | Jul 2004 | B1 |
6780175 | Sachdeva et al. | Aug 2004 | B1 |
6793668 | Fisher | Sep 2004 | B1 |
6866677 | Douk et al. | Mar 2005 | B2 |
20010000799 | Wessman et al. | May 2001 | A1 |
20010001817 | Humes | May 2001 | A1 |
20010005789 | Root et al. | Jun 2001 | A1 |
20010007947 | Kanesaka | Jul 2001 | A1 |
20010011181 | DiMatteo | Aug 2001 | A1 |
20010011182 | Dubrul et al. | Aug 2001 | A1 |
20010012951 | Bates et al. | Aug 2001 | A1 |
20010016755 | Addis | Aug 2001 | A1 |
20010020175 | Yassour et al. | Sep 2001 | A1 |
20010023358 | Tsukernik | Sep 2001 | A1 |
20010025187 | Okada | Sep 2001 | A1 |
20010031980 | Wensel et al. | Oct 2001 | A1 |
20010031981 | Evans et al. | Oct 2001 | A1 |
20010031982 | Peterson et al. | Oct 2001 | A1 |
20010039431 | DeVries et al. | Nov 2001 | A1 |
20010039432 | Whitcher et al. | Nov 2001 | A1 |
20010041908 | Levinson et al. | Nov 2001 | A1 |
20010041909 | Tsugita et al. | Nov 2001 | A1 |
20010044632 | Daniel et al. | Nov 2001 | A1 |
20010044634 | Don Michael et al. | Nov 2001 | A1 |
20010053921 | Jang | Dec 2001 | A1 |
20020002384 | Gilson et al. | Jan 2002 | A1 |
20020004667 | Adams et al. | Jan 2002 | A1 |
20020016564 | Courtney et al. | Feb 2002 | A1 |
20020016609 | Wensel et al. | Feb 2002 | A1 |
20020022858 | Demond et al. | Feb 2002 | A1 |
20020022859 | Hogendijk | Feb 2002 | A1 |
20020026211 | Khosravi et al. | Feb 2002 | A1 |
20020026212 | Wholey et al. | Feb 2002 | A1 |
20020026213 | Gilson et al. | Feb 2002 | A1 |
20020032460 | Kusleika et al. | Mar 2002 | A1 |
20020032461 | Marshall | Mar 2002 | A1 |
20020042626 | Hanson et al. | Apr 2002 | A1 |
20020042627 | Brady et al. | Apr 2002 | A1 |
20020045915 | Balceta et al. | Apr 2002 | A1 |
20020045916 | Gray et al. | Apr 2002 | A1 |
20020045918 | Suon et al. | Apr 2002 | A1 |
20020049452 | Kurz et al. | Apr 2002 | A1 |
20020049468 | Streeter et al. | Apr 2002 | A1 |
20020052627 | Boylan et al. | May 2002 | A1 |
20020058904 | Boock et al. | May 2002 | A1 |
20020058911 | Gilson et al. | May 2002 | A1 |
20020058963 | Vale et al. | May 2002 | A1 |
20020058964 | Addis | May 2002 | A1 |
20020062133 | Gilson et al. | May 2002 | A1 |
20020062134 | Barbut et al. | May 2002 | A1 |
20020062135 | Mazzocchi et al. | May 2002 | A1 |
20020065507 | Zadno-Azizi | May 2002 | A1 |
20020068954 | Foster | Jun 2002 | A1 |
20020068955 | Khosravi | Jun 2002 | A1 |
20020072764 | Sepetka et al. | Jun 2002 | A1 |
20020072765 | Mazzocchi et al. | Jun 2002 | A1 |
20020077596 | McKenzie et al. | Jun 2002 | A1 |
20020082558 | Samson et al. | Jun 2002 | A1 |
20020082639 | Broome et al. | Jun 2002 | A1 |
20020087187 | Mazzocchi et al. | Jul 2002 | A1 |
20020090389 | Humes et al. | Jul 2002 | A1 |
20020091407 | Zadno-Azizi et al. | Jul 2002 | A1 |
20020091408 | Sutton et al. | Jul 2002 | A1 |
20020091409 | Sutton et al. | Jul 2002 | A1 |
20020095170 | Krolik et al. | Jul 2002 | A1 |
20020095171 | Belef | Jul 2002 | A1 |
20020095172 | Mazzocchi et al. | Jul 2002 | A1 |
20020095173 | Mazzocchi et al. | Jul 2002 | A1 |
20020095174 | Tsugita et al. | Jul 2002 | A1 |
20020099407 | Becker et al. | Jul 2002 | A1 |
20020103501 | Diaz et al. | Aug 2002 | A1 |
20020107541 | Vale et al. | Aug 2002 | A1 |
20020111647 | Khairkhahan et al. | Aug 2002 | A1 |
20020111648 | Kusleika et al. | Aug 2002 | A1 |
20020111649 | Russo et al. | Aug 2002 | A1 |
20020116024 | Goldberg et al. | Aug 2002 | A1 |
20020120226 | Beck | Aug 2002 | A1 |
20020120286 | DoBrava et al. | Aug 2002 | A1 |
20020120287 | Huter | Aug 2002 | A1 |
20020123720 | Kusleika et al. | Sep 2002 | A1 |
20020123755 | Lowe et al. | Sep 2002 | A1 |
20020123759 | Amplatz | Sep 2002 | A1 |
20020123766 | Seguin et al. | Sep 2002 | A1 |
20020128679 | Turovskiy et al. | Sep 2002 | A1 |
20020128680 | Pavlovic | Sep 2002 | A1 |
20020128681 | Broome et al. | Sep 2002 | A1 |
20020133191 | Khosravi et al. | Sep 2002 | A1 |
20020133192 | Kusleika et al. | Sep 2002 | A1 |
20020138094 | Borillo et al. | Sep 2002 | A1 |
20020138095 | Mazzocchi et al. | Sep 2002 | A1 |
20020138096 | Hieshima | Sep 2002 | A1 |
20020138097 | Ostrovsky et al. | Sep 2002 | A1 |
20020143360 | Douk et al. | Oct 2002 | A1 |
20020143361 | Douk et al. | Oct 2002 | A1 |
20020143362 | Macoviak et al. | Oct 2002 | A1 |
20020151927 | Douk et al. | Oct 2002 | A1 |
20020151928 | Leslie et al. | Oct 2002 | A1 |
20020156520 | Boylan et al. | Oct 2002 | A1 |
20020161389 | Boyle et al. | Oct 2002 | A1 |
20020161390 | Mouw | Oct 2002 | A1 |
20020161391 | Murphy et al. | Oct 2002 | A1 |
20020161392 | Dubrul | Oct 2002 | A1 |
20020161393 | Demond et al. | Oct 2002 | A1 |
20020161394 | Macoviak et al. | Oct 2002 | A1 |
20020161395 | Douk et al. | Oct 2002 | A1 |
20020161396 | Jang et al. | Oct 2002 | A1 |
20020165557 | McAlister | Nov 2002 | A1 |
20020165573 | Barbut | Nov 2002 | A1 |
20020165576 | Boyle et al. | Nov 2002 | A1 |
20020169472 | Douk et al. | Nov 2002 | A1 |
20020169474 | Kusleika et al. | Nov 2002 | A1 |
20020173815 | Hogendijk et al. | Nov 2002 | A1 |
20020173819 | Leeflang et al. | Nov 2002 | A1 |
20020177872 | Papp et al. | Nov 2002 | A1 |
20020183781 | Casey et al. | Dec 2002 | A1 |
20020183782 | Tsugita et al. | Dec 2002 | A1 |
20020183783 | Shadduck | Dec 2002 | A1 |
20020188313 | Johnson et al. | Dec 2002 | A1 |
20020188314 | Anderson et al. | Dec 2002 | A1 |
20020193824 | Boylan et al. | Dec 2002 | A1 |
20020193825 | McGuckin et al. | Dec 2002 | A1 |
20020193826 | McGuckin et al. | Dec 2002 | A1 |
20020193827 | McGuckin et al. | Dec 2002 | A1 |
20020193828 | Griffin et al. | Dec 2002 | A1 |
20020198561 | Amplatz | Dec 2002 | A1 |
20030004536 | Boylan et al. | Jan 2003 | A1 |
20030004538 | Secrest et al. | Jan 2003 | A1 |
20030004539 | Linder et al. | Jan 2003 | A1 |
20030004540 | Linder et al. | Jan 2003 | A1 |
20030004542 | Wensel et al. | Jan 2003 | A1 |
20030009146 | Muni et al. | Jan 2003 | A1 |
20030009189 | Gilson et al. | Jan 2003 | A1 |
20030009190 | Kletschka et al. | Jan 2003 | A1 |
20030009191 | Wensel et al. | Jan 2003 | A1 |
20030014072 | Wensel et al. | Jan 2003 | A1 |
20030018354 | Roth et al. | Jan 2003 | A1 |
20030018355 | Goto et al. | Jan 2003 | A1 |
20030023263 | Krolik et al. | Jan 2003 | A1 |
20030023264 | Dieck et al. | Jan 2003 | A1 |
20030023265 | Forber | Jan 2003 | A1 |
20030032976 | Boucek | Feb 2003 | A1 |
20030032977 | Brady | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030045897 | Huter et al. | Mar 2003 | A1 |
20030045898 | Harrison et al. | Mar 2003 | A1 |
20030050662 | Don Michael | Mar 2003 | A1 |
20030055452 | Joergensen et al. | Mar 2003 | A1 |
20030055480 | Fischell et al. | Mar 2003 | A1 |
20030060843 | Boucher | Mar 2003 | A1 |
20030060844 | Borillo et al. | Mar 2003 | A1 |
20030065354 | Boyle et al. | Apr 2003 | A1 |
20030065355 | Weber | Apr 2003 | A1 |
20030065356 | Tsugita et al. | Apr 2003 | A1 |
20030069596 | Eskuri | Apr 2003 | A1 |
20030073979 | Naimark et al. | Apr 2003 | A1 |
20030074019 | Gray et al. | Apr 2003 | A1 |
20030078614 | Salahieh et al. | Apr 2003 | A1 |
20030083692 | Vrba et al. | May 2003 | A1 |
20030083693 | Daniel et al. | May 2003 | A1 |
20030088211 | Anderson et al. | May 2003 | A1 |
20030088266 | Bowlin | May 2003 | A1 |
20030093110 | Vale | May 2003 | A1 |
20030093112 | Addis | May 2003 | A1 |
20030097094 | Ouriel et al. | May 2003 | A1 |
20030097145 | Goldberg et al. | May 2003 | A1 |
20030100917 | Boyle et al. | May 2003 | A1 |
20030100918 | Duane | May 2003 | A1 |
20030100919 | Hopkins et al. | May 2003 | A1 |
20030105472 | McAlister | Jun 2003 | A1 |
20030105484 | Boyle et al. | Jun 2003 | A1 |
20030105486 | Murphy et al. | Jun 2003 | A1 |
20030109824 | Anderson et al. | Jun 2003 | A1 |
20030109897 | Walak et al. | Jun 2003 | A1 |
20030114879 | Euteneuer et al. | Jun 2003 | A1 |
20030114880 | Hansen et al. | Jun 2003 | A1 |
20030120303 | Boyle et al. | Jun 2003 | A1 |
20030120304 | Kaganov et al. | Jun 2003 | A1 |
20030125764 | Brady et al. | Jul 2003 | A1 |
20030125765 | Blackledge et al. | Jul 2003 | A1 |
20030130680 | Russell | Jul 2003 | A1 |
20030130681 | Ungs | Jul 2003 | A1 |
20030130682 | Broome et al. | Jul 2003 | A1 |
20030130684 | Brady et al. | Jul 2003 | A1 |
20030130685 | Daniel et al. | Jul 2003 | A1 |
20030130686 | Daniel et al. | Jul 2003 | A1 |
20030130687 | Daniel et al. | Jul 2003 | A1 |
20030130688 | Daniel et al. | Jul 2003 | A1 |
20030135232 | Douk et al. | Jul 2003 | A1 |
20030135233 | Bates et al. | Jul 2003 | A1 |
20030139764 | Levinson et al. | Jul 2003 | A1 |
20030139765 | Patel et al. | Jul 2003 | A1 |
20030144685 | Boyle et al. | Jul 2003 | A1 |
20030144686 | Martinez et al. | Jul 2003 | A1 |
20030144687 | Brady et al. | Jul 2003 | A1 |
20030144688 | Brady et al. | Jul 2003 | A1 |
20030144689 | Brady et al. | Jul 2003 | A1 |
20030150821 | Bates et al. | Aug 2003 | A1 |
20030153935 | Mialhe | Aug 2003 | A1 |
20030153942 | Wang et al. | Aug 2003 | A1 |
20030153943 | Michael et al. | Aug 2003 | A1 |
20030153944 | Phung et al. | Aug 2003 | A1 |
20030153945 | Patel et al. | Aug 2003 | A1 |
20030158518 | Schonholz et al. | Aug 2003 | A1 |
20030158574 | Esch et al. | Aug 2003 | A1 |
20030158575 | Boylan et al. | Aug 2003 | A1 |
20030163158 | White | Aug 2003 | A1 |
20030163159 | Patel et al. | Aug 2003 | A1 |
20030167068 | Amplatz | Sep 2003 | A1 |
20030167069 | Gonzales et al. | Sep 2003 | A1 |
20030171769 | Barbut | Sep 2003 | A1 |
20030171770 | Kusleika et al. | Sep 2003 | A1 |
20030171771 | Anderson et al. | Sep 2003 | A1 |
20030171772 | Amplatz | Sep 2003 | A1 |
20030171803 | Shimon | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030176885 | Broome et al. | Sep 2003 | A1 |
20030176886 | Wholey et al. | Sep 2003 | A1 |
20030176887 | Petersen | Sep 2003 | A1 |
20030176888 | O'Connell | Sep 2003 | A1 |
20030176889 | Boyle et al. | Sep 2003 | A1 |
20030181942 | Sutton et al. | Sep 2003 | A1 |
20030181943 | Daniel et al. | Sep 2003 | A1 |
20030187474 | Keegan et al. | Oct 2003 | A1 |
20030187475 | Tsugita et al. | Oct 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030191492 | Gellman et al. | Oct 2003 | A1 |
20030191493 | Epstein et al. | Oct 2003 | A1 |
20030195554 | Shen et al. | Oct 2003 | A1 |
20030195555 | Khairkhahan et al. | Oct 2003 | A1 |
20030199819 | Beck | Oct 2003 | A1 |
20030199917 | Knudson et al. | Oct 2003 | A1 |
20030199918 | Patel et al. | Oct 2003 | A1 |
20030199919 | Palmer et al. | Oct 2003 | A1 |
20030199920 | Boylan et al. | Oct 2003 | A1 |
20030199921 | Palmer et al. | Oct 2003 | A1 |
20030204168 | Bosma et al. | Oct 2003 | A1 |
20030204202 | Palmer et al. | Oct 2003 | A1 |
20030204203 | Khairkhahan et al. | Oct 2003 | A1 |
20030208222 | Zadno-Azizi | Nov 2003 | A1 |
20030208224 | Broome | Nov 2003 | A1 |
20030208225 | Goll et al. | Nov 2003 | A1 |
20030208226 | Bruckheimer et al. | Nov 2003 | A1 |
20030208227 | Thomas | Nov 2003 | A1 |
20030208228 | Gilson et al. | Nov 2003 | A1 |
20030208229 | Kletschka | Nov 2003 | A1 |
20030208253 | Beyer et al. | Nov 2003 | A1 |
20030212428 | Richter | Nov 2003 | A1 |
20030212429 | Keegan et al. | Nov 2003 | A1 |
20030212432 | Khairkhahan et al. | Nov 2003 | A1 |
20030212433 | Ambrisco et al. | Nov 2003 | A1 |
20030216774 | Larson | Nov 2003 | A1 |
20030220665 | Eskuri et al. | Nov 2003 | A1 |
20030220667 | Van der Burg et al. | Nov 2003 | A1 |
20030225435 | Huter et al. | Dec 2003 | A1 |
20030229374 | Brady et al. | Dec 2003 | A1 |
20030233117 | Adams et al. | Dec 2003 | A1 |
20040006364 | Ladd | Jan 2004 | A1 |
20040006370 | Tsugita | Jan 2004 | A1 |
20040039412 | Isshiki et al. | Feb 2004 | A1 |
20040059372 | Tsugita | Mar 2004 | A1 |
20040064067 | Ward | Apr 2004 | A1 |
20040068271 | McAlister | Apr 2004 | A1 |
20040078044 | Kear | Apr 2004 | A1 |
20040082962 | Demarais et al. | Apr 2004 | A1 |
20040093016 | Root et al. | May 2004 | A1 |
20040098022 | Barone | May 2004 | A1 |
20040098033 | Leeflang et al. | May 2004 | A1 |
20040098112 | DiMatteo et al. | May 2004 | A1 |
20040106944 | Daniel et al. | Jun 2004 | A1 |
20040116831 | Vrba | Jun 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040158278 | Becker et al. | Aug 2004 | A1 |
20040164030 | Lowe et al. | Aug 2004 | A1 |
20040167567 | Cano et al. | Aug 2004 | A1 |
20040176794 | Khosravi | Sep 2004 | A1 |
20040176833 | Pavcnik et al. | Sep 2004 | A1 |
20040236369 | Dubrul | Nov 2004 | A1 |
20050038468 | Panetta et al. | Feb 2005 | A1 |
20060100544 | Ayala et al. | May 2006 | A1 |
20060100545 | Ayala et al. | May 2006 | A1 |
Number | Date | Country |
---|---|---|
WO 9610591 | Apr 1996 | WO |
WO 9944510 | Sep 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20070016245 A1 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
60698410 | Jul 2005 | US |