1. Field of the Invention
The invention relates generally to medical devices. More specifically, the invention relates to intravascular distal embolic protection devices.
2. Related Technology
Embolic protection devices are percutaneously placed in a body vessel to prevent emboli from traveling and creating an undesirable embolism, e.g., pulmonary embolism. For example, vena cava filters are used for trapping emboli in the vena cava filter to prevent pulmonary embolism. Also, anti-platelet agents and anticoagulants may be used to breakdown blood clots. Moreover, snares and baskets (e.g., stone retrieval baskets) are used for retrieving urinary calculi. Additionally, occlusion coils are commonly used to occlude aneurysms and accumulate thrombi in a body vessel.
Treatments for a stenotic lesion provide a potential in releasing blood clots and other thrombi plaque in the vasculature of the patient. One example is the treatment for a carotid artery stenosis. Generally, carotid artery stenosis is the narrowing of the carotid arteries, the main arteries in the neck that supply blood to the brain. Carotid artery stenosis (also called carotid artery disease) is a relatively high risk factor for ischemic stroke. The narrowing is usually caused by plaque build-up in the carotid artery.
Carotid angioplasty is a more recently developed treatment for carotid artery stenosis. This treatment uses balloons and/or stents to open a narrowed artery. Carotid angioplasty is a procedure that can be performed via a standard percutaneous transfemoral approach with the patient anesthetized using light intravenous sedation. At the stenosis area, an angioplasty balloon is delivered to predilate the stenosis in preparation for stent placement. The balloon is then removed and exchanged via catheter for a stent delivery device. Once in position, a stent is deployed across the stenotic area. If needed, an additional balloon can be placed inside the deployed stent for post-dilation to make sure the struts of the stent are pressed firmly against the inner surface of the vessel wall. During the stenosis procedure however, there is a risk of such blood clots and thrombi being undesirably released into the blood flow within the vasculature.
Therefore, distal embolic protection devices, such as occlusive devices and filters, have been developed to trap and to prevent the downstream travel of the blood clots and thrombi. The filters are typically advanced downstream of a site that is to be treated and then opened into an opened state to increase the filter area. The blood clots and thrombi can be captured in the opened filter while blood is still able to flow therethrough.
However, filter devices may fail to completely open within the blood vessel, leaving gaps between the filter outer surface and the blood vessel inner surface. These gaps may permit the above-described blood clots and thrombi to flow past the filter, unoccluded. As a result, the unoccluded blood clots and thrombi may thereby compromise the blood flow at a location distal from the treatment site.
Thus, there is a need to improve the opening of the filter device within the blood vessel to effectively capture the unoccluded blood clots and thrombi.
In one aspect of the present invention, an embolic protection device is provided to collect embolic debris from within a body vessel. Generally, the device includes a filter for collecting embolic debris and a frame for supporting the filter. The frame generally defines a closed loop that has a collapsed state and an opened state. Furthermore, the frame includes a tube portion that receives an opening means to open the closed loop from the collapsed state to the opened state.
In another aspect of the present invention, the closed loop includes a circumferential outer surface that engages the body vessel in a substantially fluid-tight connection when the closed loop is in the opened state. The outer surface defines a substantially circular shape when the closed loop is in the opened state. Generally, the closed loop is substantially torus-shaped in the opened state.
In yet another aspect of the present invention, the device further includes a connecting portion that is in fluid communication with the closed loop. More specifically, the connecting portion is connected to the closed loop and extends away therefrom in a direction that is substantially parallel with a longitudinal axis of the body vessel. The connecting portion may also extend radially away from the closed loop.
In another aspect of the present invention, the device further includes a guide wire that extends along the body vessel longitudinal axis. The guide wire is slidably coupled with the connecting portion such as to permit the device to travel along the longitudinal axis to its desired location within the body vessel.
In yet another aspect of the present invention, the embolic protection device includes a locator device having radiopaque properties. The radiopaque properties of the locator device permit a device user, such as a medical professional, to locate the embolic protection device within a patient's body. Furthermore, the embolic protection device is preferably delivered into the body vessel via a delivery device that receives the closed loop in the collapsed state. More preferably, the delivery device is a catheter.
The present invention may also include a second frame that defines a second closed loop that supports the filter and that is positioned distally of the above-described frame. The second closed loop has a collapsed state and an opened state. More specifically, the second closed loop includes a tube portion for receiving an opening means and for opening the closed loop into the opened state, similarly to the above-described closed loop.
In one aspect of the present invention, the opening means for opening the frame is a fluid that is injected into the tube portion to inflate the closed loop into the opened state. Preferably, the fluid is a saline solution that is injected through the connecting portion and into the frame. The tube portion may each have expandable internal volumes that increase when the fluid is injected therein. Furthermore, the tube portion may be composed of a generally elastic material to further permit the expansion. The fluid may also be used in the above-described design having first and second frames.
In another aspect of the present invention, the opening means for opening the first and second frames is an opening member received by the tube portion to open the closed loop into the opened state. Preferably, the opening member is a wire having an axial stiffness that is substantially greater than its radial stiffness. The stiffness coefficients of the wire permit navigation of the wire through the body vessels. The wire may be a hollow tube to improve the ratio of stiffness coefficients and to minimize part weight. Additionally, in the above-described design having first and second frames, the embolic protection device may include a second opening member that is received by the second frame.
In yet another aspect of the present invention, the frame includes a telescoping portion that is received within a receiving portion of the frame. The telescoping portion is slideable within the receiving portion such as to adjust a radius of the opened state closed loop. More specifically, as the fluid fills the tube portion of the frame and applies a force onto the telescoping portion the frame radially opens towards the blood vessel walls.
Further objects, features and advantages of this invention will become readily apparent to persons skilled in the art after a review of the following description, with reference to the drawings and claims that are appended to and form a part of this specification.
Embodiments of the present invention generally provide distal protection devices, distal protection apparatus, and methods for capturing emboli in a body vessel during angioplasty for treatment of a stenosis. One particular stenosis is a carotid artery stenosis. The embodiments solve the concerns of current stenosis treatments, such as the relatively high risks of surgery and the potential release of emboli into the vasculature during the stenosis procedure. Embodiments of the present invention provide a relatively low risk approach to capturing emboli released during a stenosis procedure, e.g., balloon angioplasty.
Referring now to the drawings,
The filter 16 is composed of a mesh or a web-like material 22, but any suitable material may be used. More specifically, the filter material 22 is preferably strong enough to avoid rupture during use and thin enough to conveniently fit within the blood vessel 12. Furthermore, the filter material 22 is preferably sufficiently flexible such that the filter 16 is able to conform to various shapes and configurations, as may be needed to properly engage the blood vessel 12.
The filter 16 includes a proximally-located mouth portion 24 that is substantially opened to an opened state 26 for receiving the emboli 18. Preferably, the embolic device 10 forms a substantially fluid-tight seal 30 with the blood vessel when the mouth portion 24 is in the opened state 26. The seal 30 may be formed by the mouth portion, the filter 16, or both. The seal 30 prevents emboli 18 from flowing around the filter 16 and from potentially causing the above-described conditions.
The filter 16 further includes a tail portion 29 located distally of the mouth portion 24. The tail portion 29 is substantially closed, such as to permit blood to flow through the openings 20, while simultaneously preventing emboli 18 from doing the same. Therefore, the emboli 18 are collected within the tail portion 29.
The mouth portion 24 is held in the opened state 26 by a frame 32 that extends around the perimeter of the mouth portion 26. The frame 32 is collapsible into a collapsed state 33, as shown in
The frame 32 forms an annular closed loop 34 that is positioned within the filter 16 to open the mouth portion 24 towards an inner wall 36 of the blood vessel 12. Alternatively, the filter 16 may be connected to the radially inner surface of the closed loop 34. A first portion 38 of the frame 32 is connected to a second portion 40 of the frame such that the closed loop 34 defines a continuous path 37. The closed loop 34 shown in
The closed loop 34 design improves the seal 30 between the frame 32 and the blood vessel 12. More specifically, a free, unconnected portion of the frame would be able to freely flow downstream rather than tightly engaging the blood vessel 12.
The closed loop 34 includes an outer circumferential surface 42 that forms the substantially fluid-tight seal 30 with the blood vessel 12 when the frame 32 is in the opened state 26. The inner walls 36 of blood vessels 12 typically have a generally circular cross-section. Therefore, to effectively form the substantially fluid-tight seal 30, the outer surface 42 of the closed loop 34 also has a generally circular shape when the frame 32 is in the opened state 26. Furthermore, the closed loop 34 includes an inner circumferential surface 44 corresponding to the shape of the outer circumferential surface 42 such that the opened state 26 closed loop 34 is substantially torus-shaped.
The closed loop 34 is able to open to the opened state 26 by receiving an opening means. More specifically, the closed loop 34 is defined by a tube 46 having a tube portion 48 that defines an internal volume 49 and that is able to receive the opening means. The opening means may be any fluid or solid component that is suitable for opening the closed loop 34 in the radial direction 28. Acceptable fluids include, but are not limited to, saline and water, and acceptable solids include, but are not limited to, a wire and a tube.
In one design, shown in
The medical professional using the embolic protection device 10 is able to position the closed loop 34 by controlling the radius 52 of the closed loop 34 via a connecting portion 66 extending away from the closed loop 34. More specifically, the connecting portion 66 shown in
The connecting portion 66 and the frame 32 preferably each have shape memory such as to naturally conform to a desired position when in the opened state 26. More specifically, the connecting portion 66 and frame 32 are preferably positioned substantially perpendicular to each other such that a plane defined by the frame 32 is normal to the connecting portion 66 or are connected by a curved portion that generally connects two perpendicular portions. This configuration improves the seal 30 between the frame 32 and the blood vessel 12 because it urges the frame 32 to lie along a plane that is perpendicular to a longitudinal axis 53 of the blood vessel 12. Stated another way, the plane of the closed loop is preferably non-parallel to the longitudinal axis 53 of the blood vessel 12 and is most preferably perpendicular to the longitudinal axis 53.
Blood vessels 12 typically vary significantly in size and in shape. Therefore the radius 52 of the opened state 26 frame is preferably variable to effectively form the seal 30. More specifically, the frame 32 preferably includes a mechanism that permits the variation of the opened state radius 52.
Referring to
The telescoping portion 54 and/or the tube 46 may include a hard stop mechanism (not shown) that prevents the circumferential length from expanding beyond a particular size. More specifically, the hard stop mechanism prevents the telescoping portion 54 from exiting the tube 46. During operation of the embolic protection device 10, the telescoping portion 54 will stop moving when the force 58 from the fluid flow is generally equal to a force between the expanding tube 46 and the blood vessel inner wall 36. Furthermore, the telescoping portion 54 will also stop moving when the hard stop is engaged. The hand stop is preferably positioned so that the closed loop 34 is able to expand to form the seal 30 before the hand stop is engaged.
Referring back to
The medical professional using the embolic protection device 10 is also able to control the position of the embolic protection device 10 via a guide wire 70 and a connecting sleeve 72. More specifically, the connecting portion 66 is connected to the connecting sleeve 72, which slidably receives the guide wire 70. Therefore, the embolic protection device 10 is able to travel through the blood vessels in a direction generally parallel to the guide wire 70. The guide wire 70 intersects the filter 16 adjacent to the tail portion 29 thereof, which preferably includes a sealing component 74 to permit sliding movement between the filter 16 and the guide wire 70 while preventing emboli 18 from flowing therebetween.
The connecting sleeve 72 also preferably includes a locator device having radiopaque properties to permit the medical professional to more effectively track the location of the device 10 within the blood vessels 12. More specifically, the connecting sleeve 72 includes a coating of radiopaque material 76 that is visible through the patient's body with the assistance of detection equipment. The locator device is particularly beneficial during the delivery of the embolic protection device 10 into the desired location of the blood vessel 12 and during the removal of the device 10 from the same.
Referring now to
Furthermore, if the frame 32 is made of an elastic material, the internal volume of the closed loop may also vary as the opening means is inserted into the tube portion 48. The tube portion 48 defines the first internal volume 49 (
Referring now to
In another design, shown in
In this embodiment, the tube portion 48 of the connecting portion 66 also preferably receives the wire 88. Furthermore, the connecting portion 66 and the closed loop 34 are connected to each other such that the medical professional can easily feed the wire 88 through the connecting portion 66 and into the closed loop 34.
Additionally, this embodiment may include a mechanism that permits the variation of the opened state radius 52. More specifically, the device 10 may include the telescoping portion 54 slidably received within the tube 46 to permit variation of the opened state radius 52. However, instead of being moved forward by a fluid force, the telescoping portion 54 in this embodiment is driven forward by the wire 88. Alternatively, the device 10 may include the tube 46 having a flexible internal diameter 60. However, instead of being radially opened by fluid pressure, the internal diameter 60 is increased by the wire 88 having a larger diameter than the tube 46.
Referring now to
The first and second frames 32, 96 of the embolic protection device 10 shown in
The first and second frames 32, 96 of the embolic protection device 10 shown in
It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.
This application claims benefit of U.S. Provisional Application No. 60/661,731, filed Mar. 15, 2005 entitled Embolic Protection Device.
Number | Name | Date | Kind |
---|---|---|---|
3108593 | Glassman | Oct 1963 | A |
3334629 | Cohn | Aug 1967 | A |
3472230 | Fogarty | Oct 1969 | A |
3547103 | Cook | Dec 1970 | A |
3635223 | Klieman | Jan 1972 | A |
3923065 | Nozick et al. | Dec 1975 | A |
3952747 | Kimmell, Jr. | Apr 1976 | A |
3978863 | Fettel et al. | Sep 1976 | A |
3996938 | Clark, III | Dec 1976 | A |
4425908 | Simon | Jan 1984 | A |
4456000 | Schjeldahl et al. | Jun 1984 | A |
4494531 | Gianturco | Jan 1985 | A |
4548206 | Osborne | Oct 1985 | A |
4561439 | Bishop et al. | Dec 1985 | A |
4562039 | Koehler | Dec 1985 | A |
4604094 | Shook | Aug 1986 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4646736 | Auth | Mar 1987 | A |
4650472 | Bates | Mar 1987 | A |
4665906 | Jervis | May 1987 | A |
4669464 | Sulepov | Jun 1987 | A |
4688553 | Metals | Aug 1987 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4727873 | Mobin-Uddin | Mar 1988 | A |
4732152 | Wallsten et al. | Mar 1988 | A |
4817600 | Herms et al. | Apr 1989 | A |
4824435 | Giesy et al. | Apr 1989 | A |
4832055 | Palestrant | May 1989 | A |
4846794 | Hertzer | Jul 1989 | A |
4848343 | Wallsten et al. | Jul 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4943297 | Saveliev et al. | Jul 1990 | A |
4957501 | Lahille et al. | Sep 1990 | A |
4990156 | Lefebvre | Feb 1991 | A |
4998916 | Hammerslag et al. | Mar 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5059205 | El-Nounou et al. | Oct 1991 | A |
5069226 | Yamauchi et al. | Dec 1991 | A |
5078726 | Kreamer | Jan 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5108418 | Lefebvre | Apr 1992 | A |
5108419 | Reger et al. | Apr 1992 | A |
5112347 | Taheri | May 1992 | A |
5129890 | Bates et al. | Jul 1992 | A |
5129910 | Phan et al. | Jul 1992 | A |
5133733 | Rasmussen et al. | Jul 1992 | A |
5147379 | Sabbaghian et al. | Sep 1992 | A |
5152777 | Goldberg | Oct 1992 | A |
5160342 | Reger | Nov 1992 | A |
5163927 | Woker et al. | Nov 1992 | A |
5203772 | Hammerslag et al. | Apr 1993 | A |
5234458 | Metais | Aug 1993 | A |
5242462 | El-Nounou | Sep 1993 | A |
5243996 | Hall | Sep 1993 | A |
5251640 | Osborne | Oct 1993 | A |
5263964 | Purdy | Nov 1993 | A |
5300086 | Gory et al. | Apr 1994 | A |
5324304 | Rasmussen | Jun 1994 | A |
5329942 | Gunther et al. | Jul 1994 | A |
5344427 | Cottenceau et al. | Sep 1994 | A |
5350397 | Palermo et al. | Sep 1994 | A |
5350398 | Pavcnik et al. | Sep 1994 | A |
5364345 | Lowery et al. | Nov 1994 | A |
5370657 | Irie | Dec 1994 | A |
5375612 | Cottenceau et al. | Dec 1994 | A |
5383887 | Nadal | Jan 1995 | A |
5413586 | Dibie et al. | May 1995 | A |
5415630 | Gory et al. | May 1995 | A |
5417708 | Hall et al. | May 1995 | A |
5451233 | Yock | Sep 1995 | A |
5458573 | Summers | Oct 1995 | A |
5522881 | Lentz | Jun 1996 | A |
5527338 | Purdy | Jun 1996 | A |
5531788 | Dibie et al. | Jul 1996 | A |
5549551 | Peacock et al. | Aug 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5556414 | Turi | Sep 1996 | A |
5562698 | Parker | Oct 1996 | A |
5571135 | Fraser et al. | Nov 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5601595 | Smith | Feb 1997 | A |
5624461 | Mariant | Apr 1997 | A |
5626605 | Irie et al. | May 1997 | A |
5630797 | Diedrich et al. | May 1997 | A |
5634942 | Chevillon et al. | Jun 1997 | A |
5649953 | Lefebvre | Jul 1997 | A |
5662703 | Yurek et al. | Sep 1997 | A |
5669933 | Simon et al. | Sep 1997 | A |
5681347 | Cathcart et al. | Oct 1997 | A |
5690642 | Osborne et al. | Nov 1997 | A |
5690667 | Gia | Nov 1997 | A |
5693067 | Purdy | Dec 1997 | A |
5693087 | Parodi | Dec 1997 | A |
5695518 | Laerum | Dec 1997 | A |
5695519 | Summers et al. | Dec 1997 | A |
5700253 | Parker | Dec 1997 | A |
5709704 | Nott et al. | Jan 1998 | A |
5713853 | Clark et al. | Feb 1998 | A |
5720764 | Naderlinger | Feb 1998 | A |
5725550 | Nadal | Mar 1998 | A |
5738667 | Solar | Apr 1998 | A |
5746767 | Smith | May 1998 | A |
5755772 | Evans et al. | May 1998 | A |
5755790 | Chevillon et al. | May 1998 | A |
5766203 | Imran et al. | Jun 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5769871 | Mers et al. | Jun 1998 | A |
5795322 | Boudewijn | Aug 1998 | A |
5800457 | Gelbfish et al. | Sep 1998 | A |
5800525 | Bachinski et al. | Sep 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5814027 | Hassett et al. | Sep 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5820592 | Hammerslag | Oct 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5830230 | Berryman et al. | Nov 1998 | A |
5836968 | Simon et al. | Nov 1998 | A |
5836969 | Kim et al. | Nov 1998 | A |
5846260 | Maahs | Dec 1998 | A |
5853420 | Chevillon et al. | Dec 1998 | A |
5871537 | Holman et al. | Feb 1999 | A |
5876367 | Kaganov et al. | Mar 1999 | A |
5882329 | Patterson et al. | Mar 1999 | A |
5893869 | Barnhart et al. | Apr 1999 | A |
5895391 | Farnholtz | Apr 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5895410 | Forber et al. | Apr 1999 | A |
5908435 | Samuels | Jun 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911702 | Romley et al. | Jun 1999 | A |
5911704 | Humes | Jun 1999 | A |
5911717 | Jacobsen et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5919224 | Thompson et al. | Jul 1999 | A |
5925062 | Purdy | Jul 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5928260 | Chine et al. | Jul 1999 | A |
5928261 | Ruiz | Jul 1999 | A |
5938683 | Lefebvre | Aug 1999 | A |
5941896 | Kerr | Aug 1999 | A |
5944728 | Bates | Aug 1999 | A |
5947985 | Imran | Sep 1999 | A |
5947995 | Samuels | Sep 1999 | A |
5948017 | Taheri | Sep 1999 | A |
5951567 | Javier, Jr. et al. | Sep 1999 | A |
5954741 | Fox | Sep 1999 | A |
5954742 | Osypka | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5968057 | Taheri | Oct 1999 | A |
5968071 | Chevillon et al. | Oct 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
5976162 | Doan et al. | Nov 1999 | A |
5976172 | Homsma et al. | Nov 1999 | A |
5980555 | Barbut et al. | Nov 1999 | A |
5984947 | Smith | Nov 1999 | A |
5984965 | Knapp et al. | Nov 1999 | A |
5989281 | Barbut et al. | Nov 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6007557 | Ambrisco et al. | Dec 1999 | A |
6007558 | Ravenscloth et al. | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6013093 | Nott et al. | Jan 2000 | A |
6015424 | Rosenbluth et al. | Jan 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6036717 | Mers Kelly et al. | Mar 2000 | A |
6036720 | Abrams et al. | Mar 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6051014 | Jang | Apr 2000 | A |
6051015 | Maahs | Apr 2000 | A |
6053932 | Daniel et al. | Apr 2000 | A |
6059745 | Gelbfish | May 2000 | A |
6059813 | Vrba et al. | May 2000 | A |
6059814 | Ladd | May 2000 | A |
6063113 | Kavteladze et al. | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6067991 | Forsell | May 2000 | A |
6068645 | Tu | May 2000 | A |
6074357 | Kaganov et al. | Jun 2000 | A |
6077274 | Ouchi et al. | Jun 2000 | A |
6080178 | Meglin | Jun 2000 | A |
6083239 | Addis | Jul 2000 | A |
6086577 | Ken et al. | Jul 2000 | A |
6086605 | Barbut et al. | Jul 2000 | A |
6093199 | Brown et al. | Jul 2000 | A |
6096053 | Bates | Aug 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6099549 | Bosma et al. | Aug 2000 | A |
6106497 | Wang | Aug 2000 | A |
6126672 | Berryman et al. | Oct 2000 | A |
6126673 | Kim et al. | Oct 2000 | A |
6129739 | Khosravi | Oct 2000 | A |
6136016 | Barbut et al. | Oct 2000 | A |
6146396 | Konya et al. | Nov 2000 | A |
6146404 | Kim et al. | Nov 2000 | A |
6152931 | Nadal et al. | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6152947 | Ambrisco et al. | Nov 2000 | A |
6156061 | Wallace et al. | Dec 2000 | A |
6156062 | McGuinness | Dec 2000 | A |
6159230 | Samuels | Dec 2000 | A |
6165179 | Cathcart et al. | Dec 2000 | A |
6165198 | McGurk et al. | Dec 2000 | A |
6165199 | Barbut | Dec 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6168579 | Tsugita et al. | Jan 2001 | B1 |
6168603 | Leslie et al. | Jan 2001 | B1 |
6168610 | Marin et al. | Jan 2001 | B1 |
6168622 | Mazzocchi | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6171328 | Addis | Jan 2001 | B1 |
6174318 | Bates et al. | Jan 2001 | B1 |
6179851 | Barbut et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6179860 | Fulton, III et al. | Jan 2001 | B1 |
6179861 | Khosravi et al. | Jan 2001 | B1 |
6187025 | Machek | Feb 2001 | B1 |
6193739 | Chevillon et al. | Feb 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6206931 | Cook et al. | Mar 2001 | B1 |
6214025 | Thistle et al. | Apr 2001 | B1 |
6214026 | Lepak et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6224620 | Maahs | May 2001 | B1 |
6231588 | Zadno-Azizi | May 2001 | B1 |
6231589 | Wessman et al. | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6235045 | Barbut et al. | May 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6241746 | Bosma et al. | Jun 2001 | B1 |
6245012 | Kleshinski | Jun 2001 | B1 |
6245087 | Addis | Jun 2001 | B1 |
6245088 | Lowery | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6251122 | Tsukernik | Jun 2001 | B1 |
6254550 | McNamara et al. | Jul 2001 | B1 |
6254633 | Pinchuk et al. | Jul 2001 | B1 |
6258026 | Ravenscroft et al. | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6258120 | McKenzie et al. | Jul 2001 | B1 |
6261305 | Marotta et al. | Jul 2001 | B1 |
6264672 | Fisher | Jul 2001 | B1 |
6267776 | O'Connell | Jul 2001 | B1 |
6267777 | Bosma et al. | Jul 2001 | B1 |
6273900 | Nott et al. | Aug 2001 | B1 |
6273901 | Whitcher et al. | Aug 2001 | B1 |
6277125 | Barry et al. | Aug 2001 | B1 |
6277126 | Barry et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6280451 | Bates et al. | Aug 2001 | B1 |
6287321 | Jang | Sep 2001 | B1 |
6290710 | Cryer et al. | Sep 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6306163 | Fitz | Oct 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6312444 | Barbut | Nov 2001 | B1 |
6319268 | Ambrisco et al. | Nov 2001 | B1 |
6325815 | Kusleika et al. | Dec 2001 | B1 |
6325816 | Fulton, III et al. | Dec 2001 | B1 |
6328755 | Marshall | Dec 2001 | B1 |
6331183 | Suon | Dec 2001 | B1 |
6331184 | Abrams | Dec 2001 | B1 |
6334864 | Amplatz et al. | Jan 2002 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6338739 | Datta et al. | Jan 2002 | B1 |
6340364 | Kanesaka | Jan 2002 | B2 |
6342062 | Suon et al. | Jan 2002 | B1 |
6342063 | DeVries et al. | Jan 2002 | B1 |
6344048 | Chin et al. | Feb 2002 | B1 |
6344049 | Levinson et al. | Feb 2002 | B1 |
6346116 | Brooks et al. | Feb 2002 | B1 |
6348041 | Klint | Feb 2002 | B1 |
6348063 | Yassour et al. | Feb 2002 | B1 |
6350271 | Kurz et al. | Feb 2002 | B1 |
6355051 | Sisskind et al. | Mar 2002 | B1 |
6358228 | Tubman et al. | Mar 2002 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6361546 | Khosravi | Mar 2002 | B1 |
6361547 | Hieshima | Mar 2002 | B1 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6364896 | Addis | Apr 2002 | B1 |
6368338 | Konya et al. | Apr 2002 | B1 |
6371961 | Osborne et al. | Apr 2002 | B1 |
6371969 | Tsugita et al. | Apr 2002 | B1 |
6371970 | Khosravi et al. | Apr 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6375670 | Greenhalgh | Apr 2002 | B1 |
6379374 | Hieshima et al. | Apr 2002 | B1 |
6380457 | Yurek et al. | Apr 2002 | B1 |
6383146 | Klint | May 2002 | B1 |
6383171 | Gifford et al. | May 2002 | B1 |
6383174 | Eder | May 2002 | B1 |
6383193 | Cathcart et al. | May 2002 | B1 |
6383196 | Leslie et al. | May 2002 | B1 |
6383205 | Samson et al. | May 2002 | B1 |
6383206 | Gillick et al. | May 2002 | B1 |
6391044 | Yadav et al. | May 2002 | B1 |
6391045 | Kim et al. | May 2002 | B1 |
6391052 | Buirge et al. | May 2002 | B2 |
6395014 | Macoviak et al. | May 2002 | B1 |
6402771 | Palmer et al. | Jun 2002 | B1 |
6402772 | Amplatz et al. | Jun 2002 | B1 |
6409742 | Fulton, III et al. | Jun 2002 | B1 |
6413235 | Parodi | Jul 2002 | B1 |
6416530 | DeVries et al. | Jul 2002 | B2 |
6419686 | McLeod et al. | Jul 2002 | B1 |
6423052 | Escano | Jul 2002 | B1 |
6423086 | Barbut et al. | Jul 2002 | B1 |
6425909 | Dieck et al. | Jul 2002 | B1 |
6428557 | Hilaire | Aug 2002 | B1 |
6428558 | Jones et al. | Aug 2002 | B1 |
6428559 | Johnson | Aug 2002 | B1 |
6432122 | Gilson et al. | Aug 2002 | B1 |
6436112 | Wensel et al. | Aug 2002 | B2 |
6436120 | Meglin | Aug 2002 | B1 |
6436121 | Blom | Aug 2002 | B1 |
6443926 | Kletschka | Sep 2002 | B1 |
6443971 | Boylan et al. | Sep 2002 | B1 |
6443972 | Bosma et al. | Sep 2002 | B1 |
6443979 | Stalker et al. | Sep 2002 | B1 |
6447530 | Ostrovsky et al. | Sep 2002 | B1 |
6447531 | Amplatz | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6458139 | Palmer et al. | Oct 2002 | B1 |
6458145 | Ravenscroft et al. | Oct 2002 | B1 |
6461370 | Gray et al. | Oct 2002 | B1 |
6468290 | Weldon et al. | Oct 2002 | B1 |
6468291 | Bates et al. | Oct 2002 | B2 |
6482222 | Bruckheimer et al. | Nov 2002 | B1 |
6485456 | Kletschka | Nov 2002 | B1 |
6485500 | Kokish et al. | Nov 2002 | B1 |
6485501 | Green | Nov 2002 | B1 |
6485502 | Don Michael et al. | Nov 2002 | B2 |
6491712 | O'Connor | Dec 2002 | B1 |
6494895 | Addis | Dec 2002 | B2 |
6497709 | Heath | Dec 2002 | B1 |
6499487 | McKenzie et al. | Dec 2002 | B1 |
6500166 | Zadno Azizi et al. | Dec 2002 | B1 |
6500191 | Addis | Dec 2002 | B2 |
6502606 | Klint | Jan 2003 | B2 |
6506203 | Boyle et al. | Jan 2003 | B1 |
6506205 | Goldberg et al. | Jan 2003 | B2 |
6508826 | Murphy et al. | Jan 2003 | B2 |
6511492 | Rosenbluth et al. | Jan 2003 | B1 |
6511496 | Huter et al. | Jan 2003 | B1 |
6511497 | Braun et al. | Jan 2003 | B1 |
6511503 | Burkett et al. | Jan 2003 | B1 |
6514273 | Voss et al. | Feb 2003 | B1 |
6517559 | O'Connell | Feb 2003 | B1 |
6520978 | Blackledge et al. | Feb 2003 | B1 |
6520983 | Colgan et al. | Feb 2003 | B1 |
6527746 | Oslund et al. | Mar 2003 | B1 |
6527791 | Fisher | Mar 2003 | B2 |
6527962 | Nadal | Mar 2003 | B1 |
6530935 | Wensel et al. | Mar 2003 | B2 |
6530939 | Hopkins et al. | Mar 2003 | B1 |
6530940 | Fisher | Mar 2003 | B2 |
6533770 | Lepulu et al. | Mar 2003 | B1 |
6533800 | Barbut | Mar 2003 | B1 |
6537293 | Berryman et al. | Mar 2003 | B1 |
6537294 | Boyle et al. | Mar 2003 | B1 |
6537296 | Levinson et al. | Mar 2003 | B2 |
6537297 | Tsugita et al. | Mar 2003 | B2 |
6540722 | Boyle et al. | Apr 2003 | B1 |
6540767 | Walak et al. | Apr 2003 | B1 |
6540768 | Diaz et al. | Apr 2003 | B1 |
6544221 | Kokish et al. | Apr 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6544278 | Vrba et al. | Apr 2003 | B1 |
6544279 | Hopkins et al. | Apr 2003 | B1 |
6544280 | Daniel et al. | Apr 2003 | B1 |
6547759 | Fisher | Apr 2003 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6551341 | Boylan et al. | Apr 2003 | B2 |
6551342 | Shen et al. | Apr 2003 | B1 |
6554849 | Jones et al. | Apr 2003 | B1 |
6558404 | Tsukernik | May 2003 | B2 |
6558405 | McInnes | May 2003 | B1 |
6558406 | Okada | May 2003 | B2 |
6562058 | Seguin et al. | May 2003 | B2 |
6565591 | Brady et al. | May 2003 | B2 |
6569147 | Evans et al. | May 2003 | B1 |
6569183 | Kim et al. | May 2003 | B1 |
6569184 | Huter | May 2003 | B2 |
6575995 | Huter et al. | Jun 2003 | B1 |
6575996 | Denison et al. | Jun 2003 | B1 |
6575997 | Palmer et al. | Jun 2003 | B1 |
6579303 | Amplatz | Jun 2003 | B2 |
6582396 | Parodi | Jun 2003 | B1 |
6582447 | Patel et al. | Jun 2003 | B1 |
6582448 | Boyle et al. | Jun 2003 | B1 |
6589227 | Klint | Jul 2003 | B2 |
6589230 | Gia et al. | Jul 2003 | B2 |
6589263 | Hopkins et al. | Jul 2003 | B1 |
6589264 | Barbut et al. | Jul 2003 | B1 |
6589265 | Palmer et al. | Jul 2003 | B1 |
6589266 | Whitcher et al. | Jul 2003 | B2 |
6592546 | Barbut et al. | Jul 2003 | B1 |
6592606 | Huter et al. | Jul 2003 | B2 |
6592616 | Stack et al. | Jul 2003 | B1 |
6595983 | Voda | Jul 2003 | B2 |
6596011 | Johnson et al. | Jul 2003 | B2 |
6599275 | Fischer, Jr. | Jul 2003 | B1 |
6599307 | Huter et al. | Jul 2003 | B1 |
6599308 | Amplatz | Jul 2003 | B2 |
6602271 | Adams et al. | Aug 2003 | B2 |
6602273 | Marshall | Aug 2003 | B2 |
6602280 | Chobotov | Aug 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6607506 | Kletschka | Aug 2003 | B2 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6611720 | Hata et al. | Aug 2003 | B2 |
6613074 | Mitelberg et al. | Sep 2003 | B1 |
6616679 | Khosravi et al. | Sep 2003 | B1 |
6616680 | Thielen | Sep 2003 | B1 |
6616681 | Hanson et al. | Sep 2003 | B2 |
6616682 | Joergensen et al. | Sep 2003 | B2 |
6620148 | Tsugita | Sep 2003 | B1 |
6620182 | Khosravi et al. | Sep 2003 | B1 |
6623450 | Dutta | Sep 2003 | B1 |
6623506 | McGuckin, Jr. et al. | Sep 2003 | B2 |
6629953 | Boyd | Oct 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6635069 | Teoh et al. | Oct 2003 | B1 |
6635070 | Leeflang et al. | Oct 2003 | B2 |
6638293 | Makower et al. | Oct 2003 | B1 |
6638294 | Palmer | Oct 2003 | B1 |
6638372 | Abrams et al. | Oct 2003 | B1 |
6641590 | Palmer et al. | Nov 2003 | B1 |
6641605 | Stergiopulos | Nov 2003 | B1 |
6645160 | Heesch | Nov 2003 | B1 |
6645220 | Huter et al. | Nov 2003 | B1 |
6645221 | Richter | Nov 2003 | B1 |
6645222 | Parodi et al. | Nov 2003 | B1 |
6645223 | Boyle et al. | Nov 2003 | B2 |
6645224 | Gilson et al. | Nov 2003 | B2 |
6652554 | Wholey et al. | Nov 2003 | B1 |
6652557 | MacDonald | Nov 2003 | B1 |
6652558 | Patel et al. | Nov 2003 | B2 |
6656201 | Ferrera et al. | Dec 2003 | B2 |
6656202 | Papp et al. | Dec 2003 | B2 |
6656203 | Roth et al. | Dec 2003 | B2 |
6656204 | Ambrisco et al. | Dec 2003 | B2 |
6656351 | Boyle | Dec 2003 | B2 |
6660021 | Palmer et al. | Dec 2003 | B1 |
6663613 | Evans et al. | Dec 2003 | B1 |
6663650 | Sepetka et al. | Dec 2003 | B2 |
6663651 | Krolik et al. | Dec 2003 | B2 |
6663652 | Daniel et al. | Dec 2003 | B2 |
6676682 | Tsugita et al. | Jan 2004 | B1 |
6679902 | Boyle et al. | Jan 2004 | B1 |
6689144 | Gerberding | Feb 2004 | B2 |
6695813 | Boyle et al. | Feb 2004 | B1 |
6695865 | Boyle et al. | Feb 2004 | B2 |
6702834 | Boylan et al. | Mar 2004 | B1 |
6709450 | Kang et al. | Mar 2004 | B2 |
6712835 | Mazzocchi et al. | Mar 2004 | B2 |
6716207 | Farnholtz | Apr 2004 | B2 |
6716231 | Rafiee et al. | Apr 2004 | B1 |
6726701 | Gilson et al. | Apr 2004 | B2 |
6730064 | Ragheb et al. | May 2004 | B2 |
6755855 | Yurek et al. | Jun 2004 | B2 |
6755856 | Fierens et al. | Jun 2004 | B2 |
6758855 | Fulton, III et al. | Jul 2004 | B2 |
6761727 | Ladd | Jul 2004 | B1 |
6773446 | Dwyer et al. | Aug 2004 | B1 |
6773448 | Kusleika et al. | Aug 2004 | B2 |
6774278 | Ragheb et al. | Aug 2004 | B1 |
6780175 | Sachdeva et al. | Aug 2004 | B1 |
6793667 | Hebert et al. | Sep 2004 | B2 |
6793668 | Fisher | Sep 2004 | B1 |
6833002 | Stack et al. | Dec 2004 | B2 |
6855154 | Abdel-Gawwad | Feb 2005 | B2 |
6866677 | Douk et al. | Mar 2005 | B2 |
6866680 | Yassour et al. | Mar 2005 | B2 |
6872211 | White et al. | Mar 2005 | B2 |
6878153 | Linder et al. | Apr 2005 | B2 |
6896691 | Boylan et al. | May 2005 | B2 |
6929709 | Smith | Aug 2005 | B2 |
6932831 | Forber | Aug 2005 | B2 |
6936059 | Belef | Aug 2005 | B2 |
6939361 | Kleshinski | Sep 2005 | B1 |
6942682 | Vrba et al. | Sep 2005 | B2 |
6955685 | Escamilla et al. | Oct 2005 | B2 |
6964670 | Shah et al. | Nov 2005 | B1 |
6964674 | Matsuura et al. | Nov 2005 | B1 |
6969396 | Krolik et al. | Nov 2005 | B2 |
6974469 | Broome et al. | Dec 2005 | B2 |
6974473 | Barclay et al. | Dec 2005 | B2 |
6986784 | Weiser et al. | Jan 2006 | B1 |
6991641 | Diaz et al. | Jan 2006 | B2 |
7128073 | van der Burg et al. | Oct 2006 | B1 |
7166120 | Kusleika | Jan 2007 | B2 |
7174636 | Lowe | Feb 2007 | B2 |
7189249 | Hart et al. | Mar 2007 | B2 |
7204847 | Gambale | Apr 2007 | B1 |
7220271 | Clubb et al. | May 2007 | B2 |
7255687 | Huang et al. | Aug 2007 | B2 |
7285130 | Austin | Oct 2007 | B2 |
7303575 | Ogle | Dec 2007 | B2 |
7306619 | Palmer | Dec 2007 | B1 |
7371248 | Dapolito et al. | May 2008 | B2 |
7393358 | Malewicz | Jul 2008 | B2 |
7604649 | McGuckin et al. | Oct 2009 | B2 |
7666216 | Hogendijk et al. | Feb 2010 | B2 |
7708770 | Linder et al. | May 2010 | B2 |
7731722 | Lavelle et al. | Jun 2010 | B2 |
7731731 | Abela | Jun 2010 | B2 |
7766934 | Pal et al. | Aug 2010 | B2 |
20010000799 | Wessman et al. | May 2001 | A1 |
20010001817 | Humes | May 2001 | A1 |
20010005789 | Root et al. | Jun 2001 | A1 |
20010007947 | Kanesaka | Jul 2001 | A1 |
20010011181 | DiMatteo | Aug 2001 | A1 |
20010011182 | Dubrul et al. | Aug 2001 | A1 |
20010012951 | Bates et al. | Aug 2001 | A1 |
20010016755 | Addis | Aug 2001 | A1 |
20010020175 | Yassour et al. | Sep 2001 | A1 |
20010023358 | Tsukernik | Sep 2001 | A1 |
20010025187 | Okada | Sep 2001 | A1 |
20010031980 | Wensel et al. | Oct 2001 | A1 |
20010031981 | Evans et al. | Oct 2001 | A1 |
20010031982 | Peterson et al. | Oct 2001 | A1 |
20010039431 | DeVries et al. | Nov 2001 | A1 |
20010039432 | Whitcher et al. | Nov 2001 | A1 |
20010041908 | Levinson et al. | Nov 2001 | A1 |
20010041909 | Tsugita et al. | Nov 2001 | A1 |
20010041928 | Pavcnik et al. | Nov 2001 | A1 |
20010044632 | Daniel et al. | Nov 2001 | A1 |
20010044634 | Don Michael et al. | Nov 2001 | A1 |
20010053921 | Jang | Dec 2001 | A1 |
20020002383 | Sepetka et al. | Jan 2002 | A1 |
20020002384 | Gilson et al. | Jan 2002 | A1 |
20020004667 | Adams et al. | Jan 2002 | A1 |
20020016564 | Courtney et al. | Feb 2002 | A1 |
20020016609 | Wensel et al. | Feb 2002 | A1 |
20020022858 | Demond et al. | Feb 2002 | A1 |
20020022859 | Hogendijk | Feb 2002 | A1 |
20020026211 | Khosravi et al. | Feb 2002 | A1 |
20020026212 | Wholey et al. | Feb 2002 | A1 |
20020026213 | Gilson et al. | Feb 2002 | A1 |
20020032460 | Kusleika et al. | Mar 2002 | A1 |
20020032461 | Marshall | Mar 2002 | A1 |
20020042626 | Hanson et al. | Apr 2002 | A1 |
20020042627 | Brady et al. | Apr 2002 | A1 |
20020045915 | Balceta et al. | Apr 2002 | A1 |
20020045916 | Gray et al. | Apr 2002 | A1 |
20020045918 | Suon et al. | Apr 2002 | A1 |
20020049452 | Kurz et al. | Apr 2002 | A1 |
20020049468 | Streeter et al. | Apr 2002 | A1 |
20020052627 | Boylan et al. | May 2002 | A1 |
20020058904 | Boock et al. | May 2002 | A1 |
20020058911 | Gilson et al. | May 2002 | A1 |
20020058963 | Vale et al. | May 2002 | A1 |
20020058964 | Addis | May 2002 | A1 |
20020062133 | Gilson et al. | May 2002 | A1 |
20020062134 | Barbut et al. | May 2002 | A1 |
20020062135 | Mazzocchi et al. | May 2002 | A1 |
20020065507 | Zadno-Azizi | May 2002 | A1 |
20020068954 | Foster | Jun 2002 | A1 |
20020068955 | Khosravi | Jun 2002 | A1 |
20020072764 | Sepetka et al. | Jun 2002 | A1 |
20020072765 | Mazzocchi et al. | Jun 2002 | A1 |
20020077596 | McKenzie et al. | Jun 2002 | A1 |
20020082558 | Samson et al. | Jun 2002 | A1 |
20020082639 | Broome et al. | Jun 2002 | A1 |
20020087187 | Mazzocchi et al. | Jul 2002 | A1 |
20020090389 | Humes et al. | Jul 2002 | A1 |
20020091407 | Zadno-Azizi et al. | Jul 2002 | A1 |
20020091408 | Sutton et al. | Jul 2002 | A1 |
20020091409 | Sutton et al. | Jul 2002 | A1 |
20020095170 | Krolik et al. | Jul 2002 | A1 |
20020095171 | Belef | Jul 2002 | A1 |
20020095172 | Mazzocchi et al. | Jul 2002 | A1 |
20020095173 | Mazzocchi et al. | Jul 2002 | A1 |
20020095174 | Tsugita et al. | Jul 2002 | A1 |
20020099405 | Yurek et al. | Jul 2002 | A1 |
20020099407 | Becker et al. | Jul 2002 | A1 |
20020099435 | Stinson | Jul 2002 | A1 |
20020103501 | Diaz et al. | Aug 2002 | A1 |
20020107541 | Vale et al. | Aug 2002 | A1 |
20020111647 | Khairkhahan et al. | Aug 2002 | A1 |
20020111648 | Kusleika et al. | Aug 2002 | A1 |
20020111649 | Russo et al. | Aug 2002 | A1 |
20020116024 | Goldberg et al. | Aug 2002 | A1 |
20020120226 | Beck | Aug 2002 | A1 |
20020120286 | DoBrava et al. | Aug 2002 | A1 |
20020120287 | Huter | Aug 2002 | A1 |
20020123720 | Kusleika et al. | Sep 2002 | A1 |
20020123755 | Lowe et al. | Sep 2002 | A1 |
20020123759 | Amplatz | Sep 2002 | A1 |
20020123766 | Seguin et al. | Sep 2002 | A1 |
20020128679 | Turovskiy et al. | Sep 2002 | A1 |
20020128680 | Pavlovic | Sep 2002 | A1 |
20020128681 | Broome et al. | Sep 2002 | A1 |
20020133191 | Khosravi et al. | Sep 2002 | A1 |
20020133192 | Kusleika et al. | Sep 2002 | A1 |
20020138094 | Borillo et al. | Sep 2002 | A1 |
20020138095 | Mazzocchi et al. | Sep 2002 | A1 |
20020138096 | Hieshima | Sep 2002 | A1 |
20020138097 | Ostrovsky et al. | Sep 2002 | A1 |
20020143360 | Douk et al. | Oct 2002 | A1 |
20020143361 | Douk et al. | Oct 2002 | A1 |
20020143362 | Macoviak et al. | Oct 2002 | A1 |
20020151927 | Douk et al. | Oct 2002 | A1 |
20020151928 | Leslie et al. | Oct 2002 | A1 |
20020156520 | Boylan et al. | Oct 2002 | A1 |
20020161389 | Boyle et al. | Oct 2002 | A1 |
20020161390 | Mouw | Oct 2002 | A1 |
20020161391 | Murphy et al. | Oct 2002 | A1 |
20020161392 | Dubrul | Oct 2002 | A1 |
20020161393 | Demond et al. | Oct 2002 | A1 |
20020161394 | Macoviak et al. | Oct 2002 | A1 |
20020161395 | Douk et al. | Oct 2002 | A1 |
20020161396 | Jang et al. | Oct 2002 | A1 |
20020165557 | McAlister | Nov 2002 | A1 |
20020165573 | Barbut | Nov 2002 | A1 |
20020165576 | Boyle et al. | Nov 2002 | A1 |
20020165598 | Wahr et al. | Nov 2002 | A1 |
20020169472 | Douk et al. | Nov 2002 | A1 |
20020169474 | Kusleika et al. | Nov 2002 | A1 |
20020173815 | Hogendijk et al. | Nov 2002 | A1 |
20020173819 | Leeflang et al. | Nov 2002 | A1 |
20020177872 | Papp et al. | Nov 2002 | A1 |
20020177899 | Eum et al. | Nov 2002 | A1 |
20020183781 | Casey et al. | Dec 2002 | A1 |
20020183782 | Tsugita et al. | Dec 2002 | A1 |
20020183783 | Shadduck | Dec 2002 | A1 |
20020188313 | Johnson et al. | Dec 2002 | A1 |
20020188314 | Anderson et al. | Dec 2002 | A1 |
20020193824 | Boylan et al. | Dec 2002 | A1 |
20020193825 | McGuckin et al. | Dec 2002 | A1 |
20020193826 | McGuckin et al. | Dec 2002 | A1 |
20020193827 | McGuckin et al. | Dec 2002 | A1 |
20020193828 | Griffin et al. | Dec 2002 | A1 |
20020198561 | Amplatz | Dec 2002 | A1 |
20030004536 | Boylan et al. | Jan 2003 | A1 |
20030004537 | Boyle et al. | Jan 2003 | A1 |
20030004538 | Secrest et al. | Jan 2003 | A1 |
20030004539 | Linder et al. | Jan 2003 | A1 |
20030004540 | Linder et al. | Jan 2003 | A1 |
20030004541 | Wensel et al. | Jan 2003 | A1 |
20030004542 | Wensel et al. | Jan 2003 | A1 |
20030009146 | Muni et al. | Jan 2003 | A1 |
20030009189 | Gilson et al. | Jan 2003 | A1 |
20030009190 | Kletschka et al. | Jan 2003 | A1 |
20030009191 | Wensel et al. | Jan 2003 | A1 |
20030014072 | Wensel et al. | Jan 2003 | A1 |
20030018354 | Roth et al. | Jan 2003 | A1 |
20030018355 | Goto et al. | Jan 2003 | A1 |
20030023263 | Krolik et al. | Jan 2003 | A1 |
20030023264 | Dieck et al. | Jan 2003 | A1 |
20030023265 | Forber | Jan 2003 | A1 |
20030032976 | Boucck | Feb 2003 | A1 |
20030032977 | Brady | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030045897 | Huter et al. | Mar 2003 | A1 |
20030045898 | Harrison et al. | Mar 2003 | A1 |
20030050662 | Don Michael | Mar 2003 | A1 |
20030055452 | Joergensen et al. | Mar 2003 | A1 |
20030055480 | Fischell et al. | Mar 2003 | A1 |
20030060843 | Boucher | Mar 2003 | A1 |
20030060844 | Borillo et al. | Mar 2003 | A1 |
20030065354 | Boyle et al. | Apr 2003 | A1 |
20030065355 | Weber | Apr 2003 | A1 |
20030065356 | Tsugita et al. | Apr 2003 | A1 |
20030069596 | Eskuri | Apr 2003 | A1 |
20030073979 | Naimark et al. | Apr 2003 | A1 |
20030074019 | Gray et al. | Apr 2003 | A1 |
20030074054 | Duerig et al. | Apr 2003 | A1 |
20030078614 | Salahieh et al. | Apr 2003 | A1 |
20030083608 | Evans et al. | May 2003 | A1 |
20030083692 | Vrba et al. | May 2003 | A1 |
20030083693 | Daniel et al. | May 2003 | A1 |
20030088211 | Anderson et al. | May 2003 | A1 |
20030088266 | Bowlin | May 2003 | A1 |
20030093110 | Vale | May 2003 | A1 |
20030093112 | Addis | May 2003 | A1 |
20030097094 | Ouriel et al. | May 2003 | A1 |
20030097145 | Goldberg et al. | May 2003 | A1 |
20030100917 | Boyle et al. | May 2003 | A1 |
20030100918 | Duane | May 2003 | A1 |
20030100919 | Hopkins et al. | May 2003 | A1 |
20030105472 | McAlister | Jun 2003 | A1 |
20030105484 | Boyle et al. | Jun 2003 | A1 |
20030105486 | Murphy et al. | Jun 2003 | A1 |
20030109824 | Anderson et al. | Jun 2003 | A1 |
20030109897 | Walak et al. | Jun 2003 | A1 |
20030109916 | Don Michael | Jun 2003 | A1 |
20030114879 | Euteneuer et al. | Jun 2003 | A1 |
20030114880 | Hansen et al. | Jun 2003 | A1 |
20030120303 | Boyle et al. | Jun 2003 | A1 |
20030120304 | Kaganov et al. | Jun 2003 | A1 |
20030125764 | Brady et al. | Jul 2003 | A1 |
20030125765 | Blackledge et al. | Jul 2003 | A1 |
20030130680 | Russell | Jul 2003 | A1 |
20030130681 | Ungs | Jul 2003 | A1 |
20030130682 | Broome et al. | Jul 2003 | A1 |
20030130684 | Brady et al. | Jul 2003 | A1 |
20030130685 | Daniel et al. | Jul 2003 | A1 |
20030130686 | Daniel et al. | Jul 2003 | A1 |
20030130687 | Daniel et al. | Jul 2003 | A1 |
20030130688 | Daniel et al. | Jul 2003 | A1 |
20030135232 | Douk et al. | Jul 2003 | A1 |
20030135233 | Bates et al. | Jul 2003 | A1 |
20030139764 | Levinson et al. | Jul 2003 | A1 |
20030139765 | Patel et al. | Jul 2003 | A1 |
20030144685 | Boyle et al. | Jul 2003 | A1 |
20030144686 | Martinez et al. | Jul 2003 | A1 |
20030144687 | Brady et al. | Jul 2003 | A1 |
20030144688 | Brady et al. | Jul 2003 | A1 |
20030144689 | Brady et al. | Jul 2003 | A1 |
20030150821 | Bates et al. | Aug 2003 | A1 |
20030153935 | Mialhe | Aug 2003 | A1 |
20030153942 | Wang et al. | Aug 2003 | A1 |
20030153943 | Michael et al. | Aug 2003 | A1 |
20030153944 | Phung et al. | Aug 2003 | A1 |
20030153945 | Patel et al. | Aug 2003 | A1 |
20030158518 | Schonholz et al. | Aug 2003 | A1 |
20030158574 | Esch et al. | Aug 2003 | A1 |
20030158575 | Boylan et al. | Aug 2003 | A1 |
20030163158 | White | Aug 2003 | A1 |
20030163159 | Patel et al. | Aug 2003 | A1 |
20030167068 | Amplatz | Sep 2003 | A1 |
20030167069 | Gonzales et al. | Sep 2003 | A1 |
20030171769 | Barbut | Sep 2003 | A1 |
20030171770 | Kusleika et al. | Sep 2003 | A1 |
20030171771 | Anderson et al. | Sep 2003 | A1 |
20030171772 | Amplatz | Sep 2003 | A1 |
20030171800 | Bicek et al. | Sep 2003 | A1 |
20030171803 | Shimon | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030176885 | Broome et al. | Sep 2003 | A1 |
20030176886 | Wholey et al. | Sep 2003 | A1 |
20030176887 | Petersen | Sep 2003 | A1 |
20030176888 | O'Connell | Sep 2003 | A1 |
20030176889 | Boyle et al. | Sep 2003 | A1 |
20030181942 | Sutton et al. | Sep 2003 | A1 |
20030181943 | Daniel et al. | Sep 2003 | A1 |
20030187474 | Keegan et al. | Oct 2003 | A1 |
20030187475 | Tsugita et al. | Oct 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030191492 | Gellman et al. | Oct 2003 | A1 |
20030191493 | Epstein et al. | Oct 2003 | A1 |
20030195554 | Shen et al. | Oct 2003 | A1 |
20030195555 | Khairkhahan et al. | Oct 2003 | A1 |
20030195556 | Stack et al. | Oct 2003 | A1 |
20030199819 | Beck | Oct 2003 | A1 |
20030199917 | Knudson et al. | Oct 2003 | A1 |
20030199918 | Patel et al. | Oct 2003 | A1 |
20030199919 | Palmer et al. | Oct 2003 | A1 |
20030199920 | Boylan et al. | Oct 2003 | A1 |
20030199921 | Palmer et al. | Oct 2003 | A1 |
20030204168 | Bosma et al. | Oct 2003 | A1 |
20030204202 | Palmer et al. | Oct 2003 | A1 |
20030204203 | Khairkhahan et al. | Oct 2003 | A1 |
20030208222 | Zadno-Azizi | Nov 2003 | A1 |
20030208224 | Broome | Nov 2003 | A1 |
20030208225 | Goll et al. | Nov 2003 | A1 |
20030208226 | Bruckheimer et al. | Nov 2003 | A1 |
20030208227 | Thomas | Nov 2003 | A1 |
20030208228 | Gilson et al. | Nov 2003 | A1 |
20030208229 | Kletschka | Nov 2003 | A1 |
20030208253 | Beyer et al. | Nov 2003 | A1 |
20030212428 | Richter | Nov 2003 | A1 |
20030212429 | Keegan et al. | Nov 2003 | A1 |
20030212431 | Brady et al. | Nov 2003 | A1 |
20030212432 | Khairkhahan et al. | Nov 2003 | A1 |
20030212433 | Ambrisco et al. | Nov 2003 | A1 |
20030212434 | Thielen | Nov 2003 | A1 |
20030216774 | Larson | Nov 2003 | A1 |
20030220665 | Eskuri et al. | Nov 2003 | A1 |
20030220667 | Van der Burg et al. | Nov 2003 | A1 |
20030225418 | Esksuri et al. | Dec 2003 | A1 |
20030225435 | Huter et al. | Dec 2003 | A1 |
20030229374 | Brady et al. | Dec 2003 | A1 |
20030233117 | Adams et al. | Dec 2003 | A1 |
20040006364 | Ladd | Jan 2004 | A1 |
20040006365 | Brady et al. | Jan 2004 | A1 |
20040006370 | Tsugita | Jan 2004 | A1 |
20040015152 | Day | Jan 2004 | A1 |
20040039412 | Isshiki et al. | Feb 2004 | A1 |
20040049226 | Keegan et al. | Mar 2004 | A1 |
20040054394 | Lee | Mar 2004 | A1 |
20040054395 | Lee et al. | Mar 2004 | A1 |
20040059372 | Tsugita | Mar 2004 | A1 |
20040064067 | Ward | Apr 2004 | A1 |
20040064179 | Linder et al. | Apr 2004 | A1 |
20040068271 | McAlister | Apr 2004 | A1 |
20040078044 | Kear | Apr 2004 | A1 |
20040082962 | Demarais et al. | Apr 2004 | A1 |
20040088038 | Dehnad et al. | May 2004 | A1 |
20040093009 | Denison et al. | May 2004 | A1 |
20040093012 | Cully et al. | May 2004 | A1 |
20040093016 | Root et al. | May 2004 | A1 |
20040093059 | Lee et al. | May 2004 | A1 |
20040098022 | Barone | May 2004 | A1 |
20040098026 | Joergensen et al. | May 2004 | A1 |
20040098033 | Leeflang et al. | May 2004 | A1 |
20040098112 | DiMatteo et al. | May 2004 | A1 |
20040102719 | Keith et al. | May 2004 | A1 |
20040106944 | Daniel et al. | Jun 2004 | A1 |
20040116831 | Vrba | Jun 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040138696 | Drasler et al. | Jul 2004 | A1 |
20040153118 | Clubb et al. | Aug 2004 | A1 |
20040158278 | Becker et al. | Aug 2004 | A1 |
20040162576 | Barbut et al. | Aug 2004 | A1 |
20040164030 | Lowe et al. | Aug 2004 | A1 |
20040167567 | Cano et al. | Aug 2004 | A1 |
20040176794 | Khosravi | Sep 2004 | A1 |
20040176833 | Pavcnik et al. | Sep 2004 | A1 |
20040199201 | Kellett et al. | Oct 2004 | A1 |
20040199203 | Oslund et al. | Oct 2004 | A1 |
20040204737 | Boismier et al. | Oct 2004 | A1 |
20040215322 | Kerr | Oct 2004 | A1 |
20040225321 | Krolik et al. | Nov 2004 | A1 |
20040236369 | Dubrul | Nov 2004 | A1 |
20050004663 | Llanos et al. | Jan 2005 | A1 |
20050021125 | Stack et al. | Jan 2005 | A1 |
20050027345 | Horan et al. | Feb 2005 | A1 |
20050038468 | Panetta et al. | Feb 2005 | A1 |
20050038503 | Greenhaigh | Feb 2005 | A1 |
20050043743 | Dennis | Feb 2005 | A1 |
20050043756 | Lavelle et al. | Feb 2005 | A1 |
20050043780 | Gifford et al. | Feb 2005 | A1 |
20050049668 | Jones et al. | Mar 2005 | A1 |
20050126979 | Lowe et al. | Jun 2005 | A1 |
20050137696 | Salahieh et al. | Jun 2005 | A1 |
20050149110 | Wholey et al. | Jul 2005 | A1 |
20050165480 | Jordan et al. | Jul 2005 | A1 |
20050177186 | Cully et al. | Aug 2005 | A1 |
20050177246 | Datta et al. | Aug 2005 | A1 |
20050197688 | Theron et al. | Sep 2005 | A1 |
20050209634 | Brady et al. | Sep 2005 | A1 |
20050216053 | Douk et al. | Sep 2005 | A1 |
20050217767 | Barvosa-Carter et al. | Oct 2005 | A1 |
20050228474 | Laguna | Oct 2005 | A1 |
20060009790 | Kleshinski et al. | Jan 2006 | A1 |
20060009798 | Callister et al. | Jan 2006 | A1 |
20060020334 | Lashinski et al. | Jan 2006 | A1 |
20060025804 | Krolik et al. | Feb 2006 | A1 |
20060030923 | Gunderson | Feb 2006 | A1 |
20060074474 | Theron | Apr 2006 | A1 |
20060100544 | Ayala et al. | May 2006 | A1 |
20060100545 | Ayala et al. | May 2006 | A1 |
20060142845 | Molaei et al. | Jun 2006 | A1 |
20060161186 | Hassler et al. | Jul 2006 | A1 |
20060161241 | Barbut et al. | Jul 2006 | A1 |
20060184194 | Pal et al. | Aug 2006 | A1 |
20060200221 | Malewicz | Sep 2006 | A1 |
20060229660 | Pal et al. | Oct 2006 | A1 |
20060264707 | Kinney | Nov 2006 | A1 |
20060287667 | Abela | Dec 2006 | A1 |
20060287668 | Fawzi et al. | Dec 2006 | A1 |
20070038241 | Pal | Feb 2007 | A1 |
20070066991 | Magnuson | Mar 2007 | A1 |
20070100372 | Schaeffer | May 2007 | A1 |
20070112374 | Paul, Jr. et al. | May 2007 | A1 |
20070129752 | Webler et al. | Jun 2007 | A1 |
20070149996 | Coughlin | Jun 2007 | A1 |
20070167974 | Cully et al. | Jul 2007 | A1 |
20070185521 | Bui et al. | Aug 2007 | A1 |
20070250108 | Boyle et al. | Oct 2007 | A1 |
20070288054 | Tanaka et al. | Dec 2007 | A1 |
20080015518 | Huang et al. | Jan 2008 | A1 |
20080027481 | Gilson et al. | Jan 2008 | A1 |
20080103522 | Steingisser et al. | May 2008 | A1 |
20080154236 | Elkins et al. | Jun 2008 | A1 |
20080167629 | Dann et al. | Jul 2008 | A1 |
20080255587 | Cully et al. | Oct 2008 | A1 |
20080255606 | Mitra et al. | Oct 2008 | A1 |
20080262337 | Falwell et al. | Oct 2008 | A1 |
20080275569 | Lesh | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
3429850 | Feb 1986 | DE |
1127556 | Aug 2001 | EP |
1310219 | May 2003 | EP |
1516601 | Mar 2005 | EP |
1557137 | Jul 2005 | EP |
WO 9203097 | Mar 1992 | WO |
WO 9610591 | Apr 1996 | WO |
WO 9916382 | Apr 1999 | WO |
WO 9923976 | May 1999 | WO |
WO 9944510 | Sep 1999 | WO |
WO 0182831 | Nov 2001 | WO |
WO 03077799 | Sep 2003 | WO |
WO 2006138391 | Dec 2006 | WO |
Entry |
---|
Grummon, David S. et al., Appl. Phys. Lett., 82, 2727 (2003), pp. 2727. |
Rubicon Embolic Filter, The Next Generation of EM, Rubicon Medical, www.rubiconmed.com. |
Heeschen et al., Nature Medicine 7 (2001), No. 7, pp. 833-839. |
Johnson et al., Circulation Research 94 (2004), No. 2, pp. 262-268. |
International Search Report and Written Opinion for PCT/US2007/020300. |
Brochure, “Shuttle Select ™ System for Carotid Artery Access,” (2004), pp. 1-3. |
Brochure, “Slip-Cath® Angiographic Selective Catheters,” (2004), pp. 1-6. |
Finol, E.A. et al., “Performance Assessment of Embolic Protection Filters for Carotid Artery Stenting,” Modelling in Medicine and Biology IV, (2005), vol. 8, pp. 133. |
Number | Date | Country | |
---|---|---|---|
20060223386 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
60661731 | Mar 2005 | US |