Embolic protection device

Information

  • Patent Grant
  • 10939987
  • Patent Number
    10,939,987
  • Date Filed
    Monday, June 24, 2019
    5 years ago
  • Date Issued
    Tuesday, March 9, 2021
    3 years ago
Abstract
An embolic protection device for use in a patient's blood vessel, such as the aorta, has an approximately cylindrical outer structure made of a filter mesh material and an approximately conical inner structure also made of a filter mesh material. On the downstream end of the embolic protection device, the wider end of the conical inner structure is joined to the cylindrical outer structure. The upstream end of the embolic protection device is open for blood to flow between the conical inner structure and the cylindrical outer structure. The space between the conical inner structure and the cylindrical outer structure defines a collection chamber for captured emboli. The narrow upstream end of the conical inner structure has a catheter port with a resilient seal that is sized for passage of a catheter shaft. The filter mesh material may be self-supporting or it may be supported on a resilient-framework or an inflatable framework.
Description
FIELD OF THE INVENTION

The present invention relates to apparatus and methods for providing embolic protection in a patient's vascular system. In particular, it relates to an embolic protection device that can be deployed in a patient's aorta to protect the aortic arch vessels and downstream organs from potential emboli. The embolic protection device can be used acutely, for example for embolic protection during cardiac surgery and interventional cardiology procedures, or it can be implanted for chronic embolic protection, for example from cardiogenic emboli or emboli from ruptured or vulnerable aortic plaque.


BACKGROUND OF THE INVENTION

Cerebral embolism is a known complication of cardiac surgery, cardiopulmonary bypass and catheter-based interventional cardiology and electrophysiology procedures. Embolic particles, which may include thrombus, atheroma and lipids, may become dislodged by surgical or catheter manipulations and enter the bloodstream, embolizing in the brain or other vital organs downstream. Other sources of potential emboli include cardiogenic emboli, such as thrombus that results from chronic atrial fibrillation, and emboli from ruptured or vulnerable aortic plaque. Cerebral embolism can lead to neuropsychological deficits, stroke and even death. Other organs downstream can also be damaged by embolism, resulting in diminished function or organ failure. Prevention of embolism would benefit patients and improve the outcome of these procedures.


Given that the sources of potential emboli can be acute or chronic, it would be advantageous to provide an embolic protection device that can either be used acutely, for example for embolic protection during cardiac surgery and interventional cardiology procedures, or that can be implanted for chronic embolic protection, for example from cardiogenic emboli or emboli from ruptured or vulnerable aortic plaque. A further advantage would be realized by providing an embolic protection device that can be implanted without interfering with transluminal aortic access for performing future surgeries and other interventional or diagnostic procedures. Another advantage would come from providing an embolic protection device that can be retrieved and removed from the patient after the necessity for it has passed. Yet another advantage would come from providing an embolic protection device that can be deployed and retrieved using minimally invasive techniques.


Previous devices for preventing cerebral embolism are described in the following patents and patent applications, which are hereby incorporated by reference: U.S. Pat. App. 20040215167 Embolic protection device, PCT App. WO/2004/019817 Embolic protection device, U.S. Pat. No. 6,371,935 Aortic catheter with flow divider and methods for preventing cerebral embolization, U.S. Pat. No. 6,361,545 Perfusion filter catheter, U.S. Pat. No. 6,254,563 Perfusion shunt apparatus and method, U.S. Pat. No. 6,139,517 Perfusion shunt apparatus and method, U.S. Pat. No. 6,537,297 Methods of protecting a patient from embolization during surgery, U.S. Pat. No. 6,499,487 Implantable cerebral protection device and methods of use, U.S. Pat. No. 5,769,816 Cannula with associated filter, U.S. Pat. App. 20030100940 Implantable intraluminal protector device and method of using same for stabilizing atheromas.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an embolic protection device according to the present invention in an expanded or deployed condition.



FIG. 2 shows the embolic protection device of FIG. 1 in an undeployed or retracted condition.



FIG. 3 shows an enlarged view of a catheter port for use in the embolic protection device of FIG. 1.



FIG. 4 shows another embodiment of a catheter port for use in the embolic protection device of FIG. 1.



FIG. 5 shows another embodiment of a catheter port for use in the embolic protection device of FIG. 1.



FIG. 6 shows another embodiment of a catheter port for use in the embolic protection device of FIG. 1.



FIG. 7 shows an embolic protection device in an undeployed condition being inserted into a patient's aortic arch.



FIG. 8 shows the embolic protection device implanted in a patient's aortic arch.



FIG. 9 shows a guidewire passing through the catheter port of an implanted embolic protection device.



FIG. 10 shows a catheter-based interventional procedure being performed with the implanted embolic protection device in place.



FIG. 11 shows an embolic protection device in a retracted condition for removal from the patient's aorta.



FIG. 12 shows an inflatable embodiment of an embolic protection device in an uninflated condition.



FIG. 13 shows the embolic protection device of FIG. 12 in an inflated condition.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows an embolic protection device 100 according to the present invention in an expanded or deployed condition. The embolic protection device 100 has an approximately cylindrical outer structure 102 made of a filter mesh material and an approximately conical inner structure 104 also made of a filter mesh material. On the downstream end 110 of the embolic protection device 100, the wider end of the conical inner structure 104 is joined to the cylindrical outer structure 102. The upstream end 108 of the embolic protection device 100 is open for blood to flow between the conical inner structure 104 and the cylindrical outer structure 102 as indicated by the arrow in FIG. 1. The space between the conical inner structure 104 and the cylindrical outer structure 102 defines a collection chamber 103 for captured emboli.


The filter mesh material of the conical inner structure 104 and the cylindrical outer structure 102 may be made of knitted, woven or nonwoven fibers, filaments or wires and will have a pore size chosen to stop emboli above a certain size to pass through. The filter mesh material may be made of a metal, a polymer or a combination thereof and may optionally have an antithrombogenic coating on its surface. The filter mesh material of the conical inner structure 104 and the cylindrical outer structure 102 may have the same pore size or they may have different pore sizes. For example, the filter mesh material of the conical inner structure 104 and the cylindrical outer structure 102 may both have a pore size in the range of approximately 1 mm to 0.1 mm or even smaller, depending on whether it is intended to capture macroemboli only or microemboli as well. Alternatively, the filter mesh material of the cylindrical outer structure 102 may have a pore size to stop microemboli as small as 0.1 mm and the filter mesh material of the conical inner structure 104 may have a pore size to stop macroemboli larger than 1 mm. In another alternate embodiment, a portion of the cylindrical outer structure 102 configured to be positioned away from the aortic arch vessels may be constructed of an impermeable material rather than the filter mesh material.


The narrow upstream end of the conical inner structure 104 has a catheter port 106 with a resilient seal that is sized for passage of a catheter shaft.



FIG. 2 shows the embolic protection device 100 of FIG. 1 in an undeployed or retracted condition. A delivery catheter 124 is inserted through the catheter port 106 of the embolic protection device 100. Typically, the delivery catheter 124 will be constructed with an internal lumen 125 that terminates in a guidewire port 126 at the distal end of the catheter 124. Optionally, a tubular outer delivery sheath 130 may be used to maintain the embolic protection device 100 in the undeployed condition. The delivery catheter 124 may optionally include a shoulder 128 positioned proximal to the embolic protection device 100 to maintain the position of the embolic protection device 100 on the delivery catheter 124 as the delivery sheath 130 is withdrawn during deployment. Alternatively, a pusher catheter (not shown) that fits in between the delivery catheter 124 and the delivery sheath 130 may be used to facilitate deployment.


Optionally, when the embolic protection device 100 is intended to be used for embolic protection during a catheter-based diagnostic or interventional procedure, the delivery catheter 124 may be configured as a diagnostic catheter, a guiding catheter or therapeutic catheter.


The embolic protection device 100 will preferably be self-supporting in the deployed condition. This can be accomplished with a variety of different constructions. In one example, the conical inner structure 104 and the cylindrical outer structure 102 can be constructed with a resilient filter mesh material that can be compressed into the undeployed condition and will self-expand into the deployed condition. Alternatively, the filter mesh can be supported by a framework that includes an upstream hoop 112, a downstream hoop 114 and one or more longitudinal struts 113 that form the cylindrical outer structure 102 and one or more angled struts 107 that, together with the downstream hoop 114, form the conical inner structure 104. In an alternate construction, the upstream end of the conical inner structure 104 can be supported by one or more radial struts connected to the upstream hoop 112, obviating the need for the angled struts 107. (FIG. 13 shows an example of a framework that uses radial struts 172, 174 to support the conical inner structure 104.) The hoops and struts may be made of a resilient metal and/or polymer material to make a self-expanding framework or a malleable or plastically deformable material to make a framework that can be expanded with an inflatable balloon or other expansion mechanism (not shown). Alternatively, the framework can be made of a shape-memory material that can be used to deploy and/or retract the embolic protection device 100. The filter mesh supported on the framework can be resilient, flaccid or plastically deformable. Hybrid constructions that combine features of the self-supporting structure and the frame-supported structure may also be used. Hybrid deployment methods, such as balloon-assisted self-expansion can also be utilized.


The embolic protection device 100 may be constructed with the conical inner structure 104 and the cylindrical outer structure 102 having approximately the same longitudinal dimensions, as shown in the drawings. Alternatively, the conical inner structure 104 or the cylindrical outer structure 102 can be made longer or shorter without adversely affecting the performance of the product. In another alternate construction, the cylindrical outer structure 102 can be made slightly conical with the larger end of the cone on the upstream side.


Optionally, the embolic protection device 100 may include features to assist in retracting the device for retrieval from the patient's aorta. For example, the upstream end 108 and the downstream end 110 of the embolic protection device 100 may be constructed with retraction members 116, 120 that are configured like purse strings or lassos around the circumference of the cylindrical outer structure 102. A pull loop 122 or other graspable structure near the downstream end 110 of the embolic protection device 100 is connected to the retraction members 116, 120 by one or more connecting members 113. Optionally, two separate pull loops 122 may be provided for selectively retracting the upstream and downstream retraction members 116, 120. The retraction members 116, 120 and connecting members 113 may be made of suture, wire, plastic filament or a combination of these materials. In an alternate construction, the support hoops 112, 114 described above may also be configured to serve as the retraction members 116, 120.



FIG. 3 shows an enlarged view of a catheter port 106 for use in the embolic protection device 100. The catheter port 106 is located at the narrow upstream end of the conical inner structure 104, as shown in FIG. 1. The catheter port 106 has a resilient seal that is sized for passage of a catheter shaft. The resilient seal of the catheter port 106 does not need to make a perfect hemostatic seal when the catheter port 106 is empty or when there is a catheter or guidewire through the catheter port 106; the only requirement is that it should exclude the passage of emboli above a certain size. In this embodiment, the resilient seal is in the form of an elastomeric disk or ring 131 with a hole 132 through the center that can stretch 132′ to accommodate a range of catheter sizes. The elastomeric disk 131 will preferably have a low coefficient of friction and/or a lubricious coating so that movement of a catheter through the catheter port 106 will not jostle or dislodge the embolic protection device 100.



FIG. 4 shows another embodiment of a catheter port 106 for use in the embolic protection device 100 of FIG. 1. In this embodiment, the resilient seal is in the form of an elastomeric disk 133 with a slit 134 through the center that can stretch 134′ to accommodate a range of catheter sizes. The elastomeric disk 133 will preferably have a low coefficient of friction and/or a lubricious coating so that movement of a catheter through the catheter port 106 will not jostle or dislodge the embolic protection device 100.



FIG. 5 shows another embodiment of a catheter port 106 for use in the embolic protection device 100 of FIG. 1. In this embodiment, the resilient seal is in the form of an elastomeric disk 135 with a flap or trap door 136 through the center that can open by bending in the upstream direction to allow passage of a catheter. Optionally, the resilient seal may also include a second elastomeric disk 137 on the downstream side with a hole 138 through it slightly smaller than the trap door 136 that will provide a sliding seal around a catheter shaft and will support the flap or trap door 136 against blood pressure while it is in the closed position. The elastomeric disks 135, 137 will preferably have a low coefficient of friction and/or a lubricious coating so that movement of a catheter through the catheter port 106 will not jostle or dislodge the embolic protection device 100.



FIG. 6 shows another embodiment of a catheter port 106 for use in the embolic protection device 100 of FIG. 1. In this embodiment, the resilient seal is in the form of a plurality of resilient flaps 140 that overlap or interdigitate to form a seal, but that can bend back to allow passage of a catheter. The example shown has four approximately semicircular flaps 140 that overlap one another to form a seal. Other numbers and geometries of flaps are also possible. The resilient flaps 140 will preferably have a low coefficient of friction and/or a lubricious coating so that movement of a catheter through the catheter port 106 will not jostle or dislodge the embolic protection device 100.



FIG. 7 shows an embolic protection device 100 in an undeployed condition mounted on a delivery catheter 126 being inserted over a guidewire 142 into a patient's aortic arch. Optionally, a delivery sheath 130 may be used to hold the embolic protection device 100 in the undeployed position. Once the embolic protection device 100 is at the desired location, the embolic protection device 100 is deployed, for example by withdrawing the delivery sheath 130 and allowing the embolic protection device 100 to expand. If the delivery catheter 126 is in the form of a diagnostic or therapeutic catheter, the catheter 126 can be advanced after the embolic protection device 100 is deployed to perform a diagnostic or interventional procedure. Optionally, the embolic protection device 100 can be retracted and withdrawn with the delivery catheter 126 after the diagnostic or interventional procedure has been completed. Alternatively, the delivery catheter 126 can be withdrawn, leaving the embolic protection device 100 in place.



FIG. 8 shows the embolic protection device 100 implanted in a patient's aortic arch with the delivery catheter 126 completely withdrawn. The upstream end of the embolic protection device 100 is preferably located upstream of the aortic arch vessels and downstream end of the embolic protection device 100 is preferably located downstream of the aortic arch vessels, as shown. Alternatively, the entire embolic protection device 100 can be located in the ascending aorta upstream of the aortic arch vessels. Potential emboli 144 are captured in the collection chamber 103 between the conical inner structure 104 and the cylindrical outer structure 102.


The catheter port 106 in the embolic protection device 100 allows transluminal aortic access for performing future surgeries and other interventional or diagnostic procedures. FIG. 9 shows a guidewire 146 passing through the catheter port 106 to guide a diagnostic or therapeutic catheter 148 through an implanted embolic protection device 100. The conical inner structure 104 assists by funneling the guidewire 146 into the catheter port 106. The catheter 148 is then advanced through the catheter port 106 over the guidewire 146.



FIG. 10 shows a catheter-based interventional procedure being performed with the implanted embolic protection device 100 in place. In this example, a coronary guiding catheter 148 has been advanced through the catheter port 106 of the embolic protection device 100 to selectively catheterize one of the coronary arteries. A therapeutic catheter 150 has been advanced through the guiding catheter 148 for performing a coronary intervention.



FIG. 11 shows an embolic protection device 100 in a retracted condition for removal from the patient's aorta. A retrieval catheter 152 has been inserted intraluminally over a guidewire 146 to the location of the embolic protection device 100. Optionally, the guidewire 146 and retrieval catheter 152 may be inserted into the conical inner structure 104 and/or through the catheter port 106. A hook 154 on the distal end of an elongated member 156 within the retrieval catheter 152 has engaged the pull loop 122 on the embolic protection device 100. The hook 154 may engage the pull loop 122 through a distal port or a side port 158 on the retrieval catheter 152. The hook 154 and the pull loop 122 are withdrawn into the retrieval catheter 152, pulling on the connecting member 118 and causing the retraction members 116, 120 to tighten and collapse the embolic protection device 100 to a smaller diameter with the embolic debris 144 trapped inside the retracted embolic protection device 100.


In one particularly preferred embodiment, the embolic protection device 100 is configured to close the upstream end 108 of the cylindrical outer structure 102 first to assure that any captured emboli do not migrate out of the collection chamber 103. This can be accomplished by providing two separate pull loops 122 for selectively retracting the upstream and downstream retraction members 116, 120. Alternatively, it can be accomplished by configuring the connecting members 118 so that, when the pull loop 122 is pulled, the upstream retraction member 116 is automatically tightened before the downstream retraction member 120 is tightened.


The entire embolic protection device or a portion of it may be coated with an antithrombogenic coating, for example a bonded heparin coating, to reduce the formation of clots that could become potential emboli. Alternatively or in addition, the embolic protection device or a portion of it may have a drug-eluting coating containing an anti-inflammatory or antistenosis agent.



FIGS. 12 and 13 show an inflatable embodiment of the embolic protection device 100 of the present invention. FIG. 12 shows the embolic protection device 100 in an uninflated condition, and FIG. 13 shows the embolic protection device 100 in an inflated condition. The embolic protection device 100 is similar in structure to the embodiments previously described, with the notable difference that the filter mesh material is supported on an inflatable support framework 160. The inflatable support framework 160 includes a proximal inflatable toroidal balloon 162 and a distal inflatable toroidal balloon 164, and optionally includes one or more inflatable longitudinal struts 166, 168. The framework 160 may include one or more radial struts 172, 174 to support the narrow upstream end of the conical inner structure 104 where the catheter port 106 is located concentrically within the cylindrical outer structure 102. Optionally, the radial struts 172, 174 may also be inflatable. The inflatable support framework 160 may be constructed of a compliant, semicompliant or noncompliant polymer material or a combination thereof. An inflation tube 170 extends out of the patient's body for inflating and deflating the inflatable support framework 160 with a fluid medium, such as saline solution or carbon dioxide gas. Optionally, the inflation tube 170 may be detachable from the inflatable support framework 160 and a valve 176 may be provided for maintaining the framework 160 in an inflated condition once the inflation tube 170 has been detached.


The uninflated embolic protection device 100 may be delivered into the patient's aorta on a guidewire or delivery catheter and/or inside of a delivery sheath. Once, the embolic protection device 100 is in the proper position within the aortic arch, the inflatable support framework 160 is inflated through the inflation tube 170. At least the distal inflatable toroidal balloon 164, and optionally the proximal inflatable toroidal balloon 162, makes a seal with the aortic wall when inflated so that blood flow will be directed into the collection chamber 103 and through the filter mesh material to capture any potential emboli. If the embolic protection device 100 is intended for short term use, the proximal end of the inflation tube 170 may be left exposed at the insertion site. Alternatively, if the embolic protection device 100 is intended for long term use, the inflation tube 170 may be detached from the inflated embolic protection device 100. As another alternative, the proximal end of the inflation tube 170 may be buried under the patient's skin to allow later access for deflating and withdrawing the embolic protection device 100.


When the embolic protection device 100 is no longer needed, the inflatable support framework 160 is deflated and the embolic protection device 100 is withdrawn from the patient. Preferably, the embolic protection device 100 is configured such that the distal toroidal balloon 164 on the upstream end of the collection chamber 103 deflates first to effectively capture any potential emboli inside of the collection chamber 103. Other mechanisms described herein may also be used to assist in retracting the embolic protection device 100.


Other mechanisms may be employed for deploying and/or retrieving the embolic protection device 100. For example, the embolic protection device 100 can be elongated in the longitudinal direction to cause it contract radially. Releasing the tension on the embolic protection device 100 allows it to contract in the longitudinal direction and to expand radially for deployment. A retrieval catheter can be configured to apply longitudinal tension to the embolic protection device 100 to collapse it radially for withdrawal from the patient. Alternatively or in addition, the embolic protection device 100 can be twisted or wrapped to cause it contract radially. Releasing the embolic protection device 100 allows it to untwisted or unwrapped and to expand radially for deployment. A retrieval catheter can be configured to apply torque to the embolic protection device 100 to twist or wrap it to collapse it radially for withdrawal from the patient. These mechanisms may also be used in combination with the methods described above, such as those using retraction members or an inflatable support framework, to deploy and/or retrieve the embolic protection device 100.


Alternate embodiments of the embolic protection device 100 may combine features of the embodiments described herein to accomplish the same ends. For example, an embolic protection device 100 may be constructed with a single hoop 112 or inflatable toroidal balloon 164 on the upstream end of a cylindrical or conical outer structure 102 in contact with the vessel wall to anchor the device and to direct blood flow into the emboli collection chamber 103. The downstream end of the outer structure 102 may be constructed without a hoop or toroidal balloon, or alternatively with a smaller diameter hoop or toroidal balloon, as it is not critical for the downstream end of the embolic protection device 100 to contact or make a seal with the vessel wall. The inner conical structure 104 may be constructed with self-supporting filter mesh material or the filter mesh material may be supported on a framework of resilient struts and/or inflatable struts.


The embolic protection device of the present invention can also be used for embolic protection of other organ systems. For example, an embolic protection device can be deployed in the patient's descending aorta for preventing embolic particles in the aortic blood flow from entering the renal arteries and embolizing in the patient's kidneys.


While the present invention has been described herein with respect to the exemplary embodiments and the best mode for practicing the invention, it will be apparent to one of ordinary skill in the art that many modifications, improvements and subcombinations of the various embodiments, adaptations and variations can be made to the invention without departing from the spirit and scope thereof

Claims
  • 1. An embolic protection device having an upstream end and a downstream end, said embolic protection device comprising: a cylindrical outer sleeve comprising a filter mesh material; andan inner structure comprising a filter mesh material and including a resilient seal having a plurality of flaps configured to form a sliding seal around a catheter shaft as the catheter shaft is introduced through a downstream end of the embolic protection device;wherein a downstream end of the inner structure is attached to a downstream end of the cylindrical outer sleeve and the resilient seal of the inner structure is located at an upstream end of the inner structure; andwherein emboli generated upstream of the embolic protection device flow into and are trapped within a collection chamber defined between the cylindrical outer structure and base of the inner structure.
  • 2. The embolic protection device of claim 1, wherein the cylindrical outer sleeve comprises a framework supporting the mesh.
  • 3. The embolic protection device of claim 1, wherein the plurality of flaps of the inner structure overlap.
  • 4. The embolic protection device of claim 1, further comprising a graspable structure attached to the downstream end of the embolic protection device.
  • 5. The embolic protection device of claim 1, wherein the device is coated with an anti-thrombogenic coating, such as heparin.
  • 6. The embolic protection device of claim 2, wherein the supporting framework comprises a self-expanding material.
  • 7. The embolic protection device of claim 6, wherein the self-expanding material comprises a shape-memory alloy.
  • 8. The embolic protection device of claim 1, wherein the mesh filter material has pore size in the range from 0.1 mm to 1 mm.
  • 9. A method for advancing a catheter over an aortic arch, said method comprising: providing an embolic protection device comprising a cylindrical outer sleeve including a filter mesh material and an inner structure including a filter mesh material and having a resilient seal comprising a plurality of flaps, wherein a wide base of the inner structure is attached to a downstream end of the cylindrical outer sleeve and the resilient seal of the inner structure is located at an upstream end of the cylindrical outer sleeve;positioning the embolic protection device in the aorta and covering the aortic vessels with the upstream end of the cylindrical outer sleeve facing the heart; andadvancing the catheter from the downstream end of the embolic protection device through the resilient seal toward the heart;wherein emboli generated upstream of the emboli protection device flow into and are trapped within a collection chamber defined at the downstream end of the embolic protection device between an inner surface of cylindrical outer structure and an outer surface of the inner structure.
  • 10. The method as in claim 9, wherein the cylindrical outer sleeve covers the aortic vessels.
  • 11. The method as in claim 9, wherein positioning comprises releasing the embolic protection device from a compressed condition so that the device self-expands within the aorta.
  • 12. A method as in claim 11, wherein the embolic protection device is self-supporting in its expanded configuration.
  • 13. A method as in claim 7, wherein the cylindrical outer structure and the inner structure comprise each comprise a framework supporting the filter mesh material.
  • 14. A method as in claim 9, further comprising retrieving the embolic protection device, wherein the embolic material remains trapped in the collection chamber during the retrieval.
  • 15. A method as in claim 12, wherein retrieving comprises retracting retraction members on the upstream and downstream ends of the emboli protection device to collapse the device.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/691,471, filed Aug. 30, 2017, which is a continuation of U.S. patent application Ser. No. 14/801,850, filed Jul. 17, 2015, now U.S. Pat. No. 9,770,318, which is a continuation of U.S. patent application Ser. No. 12/532,630, filed Apr. 26, 2010, now U.S. Pat. No. 9,107,734, which is the National Stage Entry of PCT Application No. PCT/US2007/024558, filed Nov. 29, 2007, which claims the benefit of U.S. Provisional Application 60/861,687, filed on Nov. 29, 2006, the full disclosures of which are incorporated by reference.

US Referenced Citations (94)
Number Name Date Kind
4723549 Wholey et al. Feb 1988 A
4790809 Kuntz Dec 1988 A
5108419 Reger et al. Apr 1992 A
5197485 Grooters Mar 1993 A
5643227 Stevens Jul 1997 A
5769816 Barbut et al. Jun 1998 A
5769819 Schwab et al. Jun 1998 A
5797880 Erskine Aug 1998 A
5800525 Bachinski et al. Sep 1998 A
6013051 Nelson Jan 2000 A
6117154 Barbut et al. Sep 2000 A
6139517 Macoviak et al. Oct 2000 A
6152144 Lesh et al. Nov 2000 A
6254563 Macoviak et al. Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6348063 Yassour et al. Feb 2002 B1
6355051 Sisskind et al. Mar 2002 B1
6361545 Macoviak Mar 2002 B1
6371935 Macoviak et al. Apr 2002 B1
6461370 Gray et al. Oct 2002 B1
6499487 McKenzie et al. Dec 2002 B1
6537297 Tsugita et al. Mar 2003 B2
6682543 Barbut et al. Jan 2004 B2
6695864 Macoviak et al. Feb 2004 B2
6746469 Mouw Jun 2004 B2
6808520 Fourkas et al. Oct 2004 B1
7044958 Douk et al. May 2006 B2
7232453 Shimon Jun 2007 B2
7235060 Kraus Jun 2007 B2
7537600 Eskuri et al. May 2009 B2
7758606 Streeter et al. Jul 2010 B2
7766932 Melzer et al. Aug 2010 B2
8052717 Mujkanovic et al. Nov 2011 B2
8114114 Belson Feb 2012 B2
8123779 Demond et al. Feb 2012 B2
8298258 Anderson et al. Oct 2012 B2
8337519 Wasicek et al. Dec 2012 B2
8382788 Galdonik et al. Feb 2013 B2
8414482 Belson Apr 2013 B2
8420902 Gilsinger et al. Apr 2013 B2
8679149 Belson Mar 2014 B2
8728114 Belson May 2014 B2
8740930 Goodwin et al. Jun 2014 B2
8968354 Wang et al. Mar 2015 B2
9107734 Belson Aug 2015 B2
9144485 Bergheim et al. Sep 2015 B2
9492265 Russell et al. Nov 2016 B2
9744023 Wang et al. Aug 2017 B2
9770318 Belson et al. Sep 2017 B2
1001626 Belson Jul 2018 A1
20010044632 Daniel et al. Nov 2001 A1
20020004667 Adams et al. Jan 2002 A1
20020058964 Addis May 2002 A1
20020128680 Pavlovic Sep 2002 A1
20030040736 Stevens et al. Feb 2003 A1
20030040772 Hyodoh Feb 2003 A1
20030100940 Yodfat May 2003 A1
20030125765 Blackledge et al. Jul 2003 A1
20030171803 Shimon Sep 2003 A1
20030208224 Broome Nov 2003 A1
20040034380 Woolfson et al. Feb 2004 A1
20040073253 Morrill et al. Apr 2004 A1
20040138692 Phung et al. Jul 2004 A1
20040215167 Belson Oct 2004 A1
20040225354 Allen et al. Nov 2004 A1
20050010246 Streeter et al. Jan 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20060287668 Fawzi et al. Dec 2006 A1
20060293706 Shimon Dec 2006 A1
20070027534 Bergheim et al. Feb 2007 A1
20070060944 Boldenow et al. Mar 2007 A1
20070073246 Simon Mar 2007 A1
20080027481 Gilson et al. Jan 2008 A1
20090149881 Vale et al. Jun 2009 A1
20090254172 Grewe Oct 2009 A1
20100010535 Mujkanovic et al. Jan 2010 A1
20100106180 Strother et al. Apr 2010 A1
20100274277 Eaton Oct 2010 A1
20100312268 Belson Dec 2010 A1
20120016408 Barbut et al. Jan 2012 A1
20120271340 Castellano et al. Oct 2012 A1
20120330348 Strauss et al. Dec 2012 A1
20130096606 Bruchman et al. Apr 2013 A1
20130245669 Basu et al. Sep 2013 A1
20130267993 Carpenter et al. Oct 2013 A1
20140058372 Belson Feb 2014 A1
20140214069 Franklin et al. Jul 2014 A1
20140249568 Adams et al. Sep 2014 A1
20150320540 Belson Nov 2015 A1
20150366650 Zi et al. Dec 2015 A1
20160317277 Carpenter et al. Nov 2016 A1
20170360547 Belson Dec 2017 A1
20180206970 Eggert et al. Jul 2018 A1
20190015152 Howard et al. Jan 2019 A1
Foreign Referenced Citations (8)
Number Date Country
2609800 Jan 2007 CA
1179321 Feb 2002 EP
WO-0007656 Feb 2000 WO
WO-0027292 May 2000 WO
WO-03047648 Jun 2003 WO
WO-03073961 Sep 2003 WO
WO-03094791 Nov 2003 WO
WO-2004019817 Mar 2004 WO
Non-Patent Literature Citations (34)
Entry
US 6,348,062 B1, 02/2002, Hopkins et al. (withdrawn)
Final Office action dated Oct. 22, 2019 for U.S. Appl. No. 15/691,471.
Office action dated Jun. 28, 2019 for U.S. Appl. No. 15/691,471.
European search report with search opinion dated Jun. 22, 2017 for EP Application No. 07840099.1.
“European search report with written opinion dated Feb. 17, 2017 for EP07840099”.
International search report and written opinion dated Apr. 9, 2008 for PCT/US2007/024558.
International search report and written opinion dated Apr. 22, 2013 for PCT Application No. US2013/20563.
“International search report and written opinion dated Dec. 14, 2015 for PCT/US2015/049908.”
International search report dated Jan. 15, 2004 for PCT/US2003/026938.
Notice of allowance dated Feb. 26, 2013 for U.S. Appl. No. 13/648,986.
Notice of allowance dated Mar. 1, 2013 for U.S. Appl. No. 13/343,538.
Notice of allowance dated Apr. 15, 2015 for U.S. Appl. No. 12/532,630.
Notice of allowance dated May 31, 2017 for U.S. Appl. No. 14/801,850.
Notice of allowance dated Aug. 10, 2012 for U.S. Appl. No. 13/347,046.
Notice of allowance dated Sep. 1, 2017 for U.S. Appl. No. 14/801,850.
Notice of Allowance dated Nov. 1, 2013 for U.S. Appl. No. 13/648,992.
Notice of Allowance dated Nov. 18, 2013 for U.S. Appl. No. 13/866,887.
Notice of Allowance dated Nov. 23, 2011 for U.S. Appl. No. 10/493,854.
Office action dated Jan. 17, 2012 for U.S. Appl. No. 12/532,630.
Office action dated Jan. 24, 2014 for U.S. Appl. No. 13/735,864.
Office action dated Feb. 26, 2014 for U.S. Appl. No. 12/532,630.
Office action dated Mar. 13, 2013 for U.S. Appl. No. 12/532,630.
“Office action dated Apr. 7, 2016 for U.S. Appl. No. 14/801,850.”
Office action dated Apr. 10, 2012 for U.S. Appl. No. 13/343,538.
Office action dated Apr. 10, 2013 for U.S. Appl. No. 12/532,630.
Office action dated Jun. 10, 2013 for U.S. Appl. No. 12/532,630.
Office action dated Jul. 17, 2013 for U.S. Appl. No. 13/735,864.
Office action dated Jul. 23, 2013 for U.S. Appl. No. 13/648,992.
Office action dated Jul. 23, 2013 for U.S. Appl. No. 13/866,887.
Office action dated Aug. 25, 2015 for U.S. Appl. No. 14/175,042.
Office action dated Sep. 20, 2016 for U.S. Appl. No. 14/801,850.
Office action dated Nov. 6, 2015 for U.S. Appl. No. 14/801,850.
Office action dated Nov. 19, 2013 for U.S. Appl. No. 12/532,630.
Office action dated Dec. 11, 2012 for U.S. Appl. No. 13/343,538.
Related Publications (1)
Number Date Country
20190307544 A1 Oct 2019 US
Provisional Applications (1)
Number Date Country
60861687 Nov 2006 US
Continuations (3)
Number Date Country
Parent 15691471 Aug 2017 US
Child 16450871 US
Parent 14801850 Jul 2015 US
Child 15691471 US
Parent 12532630 US
Child 14801850 US