Embolic protection device

Information

  • Patent Grant
  • 8221446
  • Patent Number
    8,221,446
  • Date Filed
    Tuesday, March 14, 2006
    19 years ago
  • Date Issued
    Tuesday, July 17, 2012
    12 years ago
Abstract
An embolic protection device for deployment in a body vessel is provided, including a filtering body having a lip and extending therefrom to a tail and a frame connected to the lip for supporting the filtering body. The filtering body includes first and second openings formed therethrough, the first opening having a first area for maintaining fluid flowpaths through the device, the second opening having a second area for filtering emboli in the body vessel. The first area is greater than the second area.
Description
BACKGROUND

1. Field of the Invention


The invention relates generally to medical devices. More specifically, the invention relates to intravascular embolic protection devices.


2. Related Technology


Embolic protection devices are percutaneously placed in a body vessel to prevent emboli from traveling and creating an undesirable embolism, e.g., pulmonary embolism. For example, vena cava filters are used for trapping emboli in the vena cava filter to prevent pulmonary embolism. Also, anti-platelet agents and anticoagulants may be used to breakdown blood clots. Moreover, snares and baskets (e.g., stone retrieval baskets) are used for retrieving urinary calculi. Additionally, occlusion coils are commonly used to occlude aneurysms and accumulate thrombi in a body vessel.


Treatments for a stenotic lesion provide a potential in releasing blood clots and other thrombi plaque in the vasculature of the patient. One example is the treatment for a carotid artery stenosis. Generally, carotid artery stenosis is the narrowing of the carotid arteries, the main arteries in the neck that supply blood to the brain. Carotid artery stenosis (also called carotid artery disease) is a relatively high risk factor for ischemic stroke. The narrowing is usually caused by plaque build-up in the carotid artery.


Carotid angioplasty is a more recently developed treatment for carotid artery stenosis. This treatment uses balloons and/or stents to open a narrowed artery. Carotid angioplasty is a procedure that can be performed via a standard percutaneous transfemoral approach with the patient anesthetized using light intravenous sedation. At the stenosis area, an angioplasty balloon is delivered to predilate the stenosis in preparation for stent placement. The balloon is then removed and exchanged via catheter for a stent delivery device. Once in position, a stent is deployed across the stenotic area. If needed, an additional balloon can be placed inside the deployed stent for post-dilation to make sure the struts of the stent are pressed firmly against the inner surface of the vessel wall. During the stenosis procedure however, there is a risk of such blood clots and thrombi being undesirably released into the blood flow within the vasculature.


Therefore, embolic protection devices, such as occlusive devices and filters, have been developed to trap and to prevent the downstream travel of the blood clots and thrombi. The filters are typically advanced downstream of a site that is to be treated and then expanded into an opened state to increase the filter area. The blood clots and thrombi can be captured in the opened filter while blood is still able to flow therethrough.


However, filter devices may fail to completely open within the blood vessel, leaving gaps between the filter outer surface and the blood vessel inner surface. These gaps may permit the above-described blood clots and thrombi to flow past the filter, unoccluded. As a result, the unoccluded blood clots and thrombi may thereby compromise the blood flow at a location distal from the treatment site.


Thus, there is a need to improve the positioning the expanding of the filter device within the blood vessel to effectively capture the unoccluded blood clots and thrombi.


SUMMARY

In one aspect of the present invention, an embolic protection device for deployment in a body vessel is provided for filtering emboli in the body vessel. The device includes a filtering body having a lip and extending therefrom to a tail and a frame connected to the lip for supporting the filtering body. The filtering body includes first and second openings formed therethrough, the first opening having a first area for maintaining fluid flowpaths through the device, the second opening having a second area for filtering emboli in the body vessel. The first area is greater than the second area.


In another aspect of the invention, the first opening is one of a first plurality of openings located adjacent to the lip and the second opening is one of a second plurality of openings located adjacent to the tail. The filtering body further includes intermediate openings between the lip and the tail that are generally decreasing in size along a line extending from the lip to the tail. Additionally, the first, second, and intermediate openings are configured such that a fluid flowrate through the filtering body is substantially unhindered when openings adjacent to the tail become obstructed.


In yet another aspect, the frame includes a retrieval member extending from the frame to retrieve the embolic protection device from the body vessel. Furthermore, a tether is connected to an inner surface of the filtering body and is movable along an axis with respect to the connection means such as to create a collection area within the filtering body for collecting emboli. Additionally, a material promoting biofixation may be located around an outer surface of the filtering body to form a seal between the filtering body and the body vessel. More specifically, the material includes extracellular matrix that functions as a remodeling bioscaffold. Even more specifically, the material includes small intestinal submucosa.


In yet another aspect of the present invention, the embolic protection device is utilized in an assembly for removing emboli from a body vessel. The assembly further includes an emboli dislodging catheter for dislodging the emboli from an inner wall of the body vessel and causing the emboli to flow downstream, thereby becoming trapped within the filter body. The assembly also includes an outer catheter for delivering the emboli dislodging catheter into the blood vessel and a guide wire slidably coupled with the embolic protection device to guide the embolic protection device within the body vessel.


Further objects, features and advantages of this invention will become readily apparent to persons skilled in the art after a review of the following description, with reference to the drawings and claims that are appended to and form a part of this specification.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an environmental side view of an embolic protection device in an opened state within a blood vessel in accordance with one embodiment of the present invention;



FIG. 2 is a cross-sectional view of the embolic protection device in FIG. 1 taken along line 2-2;



FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 1, which is adjacent to the proximal end of the filter;



FIG. 4 is a cross-sectional view of the embolic protection device in FIG. 1 taken along line 4-4;



FIG. 5 is a side view of the embolic protection device in a closed state within a blood vessel in accordance with another embodiment of the present invention;



FIG. 6 is a side view of yet another embodiment of the embolic protection device;



FIG. 7 is a side view of still another embodiment of the embolic protection device;



FIG. 8 is a side view of an embolic protection device utilized in an assembly for removing emboli from a blood vessel, in accordance with another embodiment of the present invention, before the emboli have been dislodged from the inner surface of the blood vessel; and



FIG. 9 is a side view of the embolic protection device shown in FIG. 8 after the emboli have been dislodged from the inner surface of the blood vessel.





DETAILED DESCRIPTION

Embodiments of the present invention generally provide embolic protection devices, embolic protection apparatus, and methods for capturing emboli in a body vessel during angioplasty for treatment of a stenosis. One particular stenosis is a carotid artery stenosis. The embodiments solve the concerns of current stenosis treatments, such as the relatively high risks of surgery and the potential release of emboli into the vasculature during the stenosis procedure. Embodiments of the present invention provide a relatively low risk approach to capturing emboli released during a stenosis procedure, e.g., balloon angioplasty.


Referring now to the drawings, FIG. 1 shows an embolic protection device 9 to be positioned within a body vessel, such as a blood vessel 12 having a blood flow in a direction generally indicated by reference numeral 14. More specifically, the embolic device 9 includes a filtering body 10 positioned downstream of emboli 16, such as blood clots and plaque fragments, to trap and to prevent the downstream travel of the emboli 16, thereby reducing the likelihood of downstream blood vessels becoming blocked. As will be discussed in more detail below, the filtering body 10 includes openings 18 that permit blood to flow through and that prevent the emboli 16 from doing the same.


The filtering body 10 is composed of any suitable material 19, a woven mesh or net configuration, but any suitable material may be used. More specifically, the filter material 19 is preferably configured to avoid rupture and to be disposed within the blood vessel 12. Furthermore, the filter material 19 is preferably sufficiently flexible such that the filtering body 10 is able to conform to various shapes and configurations, as may be needed to engage the blood vessel 12.


The filtering body 10 preferably includes a proximally-located lip portion 20 that is substantially opened to an opened state 22 for receiving the emboli 16. More specifically, the lip portion 20 opens in the radial direction such as to form a substantially fluid-tight seal 24 with the blood vessel 12. The seal 24 substantially prevents emboli 16 from flowing around the filtering body 10 and causing the above-described conditions.


The lip portion 20 is held in the opened state 22 by a frame 26 that extends around the perimeter of the lip portion 20. The frame 26 shown in the Figures is a rigid wire formed into a generally circular loop 28 and having an adjustable diameter such as to conform to the inner surface of the blood vessel 12. Additionally, as shown in FIG. 5, the circular loop 28 is collapsible into a closed state 36 to be easily moved within the blood vessel 12 when desirable, such as during deployment into and during removal from the blood vessel 12. When in the closed state 36, the filter 10 has relatively small radial dimensions, and thus a gap 40 exists between the circular loop 28 and the blood vessel 12. Alternatively, other suitable designs may also be used.


In the area adjacent to the lip portion 20, the filtering body 10 includes proximal openings 18a, each defining a fluid flowpath for blood to flow there through. Additionally, each of the proximal openings 18a includes a cross-sectional area 30, configured to permit unoccluded blood to flow there through. The proximal openings 18a are preferably circular and are relatively spaced-apart from each other, but may have any suitable shape and configuration.


The filtering body 10 also includes a distally-located tail portion 32 that is closed-off in order to trap the emboli 16 that flow into lip portion 20 of the filtering body 10. However, similarly to the lip portion 20, the tail portion 32 includes distal openings 18b, each defining a fluid flowpath for blood to flow therethrough. Additionally, each of the distal openings 18b defines a cross-sectional area 34 large enough configured to permit unoccluded blood to flow there through.


The filtering body 10 preferably has a generally decreasing radius such that a first cross-sectional area 21 of the filtering body 10 (FIG. 3) taken along a plane adjacent to the lip portion 20 is substantially larger than a second cross-sectional area 33 of the filtering body 10 (FIG. 4) taken along a second plane adjacent to the tail portion 32. More specifically, the filtering body 10 is generally cone-shaped such as to have a generally constantly decreasing radius along a longitudinal axis 35.


The cross-sectional area 30 of each of the proximal openings 18a is substantially greater than the cross-sectional area 34 of the distal openings 18b in order to maximize the occluding capacity of the filtering body 10 and to promote full expansion of the filtering body 10 within the blood vessel 12, as is discussed in more detail below.


Regarding the tail portion 32, the distal openings 18b are relatively small such as to cause a flow resistance that is sufficient to open the filtering body 10. More specifically, the distal openings 18b are sized and positioned with respect to each other such that the filtering body 10 provides a flow resistance when the tail portion 32 is folded. As shown in FIG. 5, when the filtering body 10 is in a closed state 36, such as when being initially deployed into the blood vessel 12, the filtering body 10 may become folded along creases 38 such that some of the openings 18 become blocked. Therefore, the distal openings 18b are sized and positioned with respect to each other such as to provide a flow resistance unless substantially all of the distal openings 18b are unobstructed. For example, the distal openings 18b define a second diameter 37 and the filtering body 10 defines a spacer distance 39 between adjacent openings 41, 43 of the distal openings 18b; the spacer distance 39 is preferably equal to or greater than one half of the second diameter 37 such as to provide a resistance that is sufficient to open the filtering body 10. Even more preferably, the spacer distance 39 is equal to or greater than the second diameter 37. As another example, the distal openings 18b define a second area 47 and the filtering body 10 defines a spacer area 51 between adjacent openings 41, 43 of the distal openings 18b; the spacer area 51 is preferably equal to or greater than one half of the second area 47 such as to provide a resistance that is sufficient to open the filtering body 10. Even more preferably, the spacer area 51 is equal to or greater than the second area 47.


However, the distal openings 18b are preferably not so small as to restrict blood flow there through when the tail portion 32 is fully opened and unobstructed. As discussed above, restricted blood flow can cause various undesirable medical conditions. Therefore, the distal openings 18b are large enough such as to not reduce blood flow through the filtering body 10.


The distal openings 18b are preferably located along an end face 42 of the filtering body 10 that is substantially perpendicular to the direction 14 of the blood flow. This configuration also causes the filtering body 10 to fully open because the openings along the end face 42 have a maximum effective area when positioned to be perpendicular to the blood flow direction 14. Therefore, the natural properties of fluid flow will cause the cause the end face 42 to be perpendicular to the blood flow direction 14, thus opening the filtering body 10 to its full length 44 and maximizing its trapping volume.


Regarding the lip portion 20, the proximal openings 18a are relatively large to act as overflow passages for the distal openings 18b if they become obstructed. As emboli 16 flow into the filtering body 10 and engage the tail portion 32, the distal openings 18b may become obstructed, thereby limiting the fluid flow through the tail portion 32. To compensate for this reduced flow are, the proximal openings 18a have the relatively large cross-sections 30. Therefore, the large proximal openings 18a substantially prevent flow loss across the embolic protection device 9.


As shown in FIG. 2, intermediate openings 18c are located axially between the proximal and distal openings 18a, 18b such as to define flowpaths there through. The intermediate openings 18c are generally decreasing in size along the axial length 44 in the flow direction 14. Furthermore, the proximal openings 18a are generally more spaced-apart from each other than the distal openings 18b. Additionally, the intermediate openings 18c become generally less spaced-apart along the axial length 44 in the flow direction 14.


The proximal openings 18a may serve as continuously-used passages, such that blood continuously flows through the proximal openings 18a, whether the distal openings 18b are obstructed or unobstructed. However, due to the generally cone-shaped nature of the filtering body 10, the radially central portion of the filter receives the majority of the flow therethrough. More specifically, the natural fluid properties of the blood flow, such as friction between the blood flow and the blood vessel walls, cause the radially central portion of the blood vessel 12 to have a higher mass flow volume than the radially off-set portion of the blood vessel 12. Furthermore, the tapered shape of the filtering body 10 directs blood towards the tail portion 32 and thus towards the distal openings 34.


In addition to maximizing the trapping volume of and minimizing the flow losses through, the filtering body 10 also includes features that maximize the radial expansion of the embolic protection device 9. More specifically, to effectively form the seal 24 between the filtering body 10 and the blood vessel 12 and thus prevent emboli 16 from flowing past the filtering body 10, the embolic protection device 9 is configured such that blood flow causes the filtering body 10 to be radially opened until it engages the blood vessel 12 inner walls.


One such feature that radially opens the filtering body 10 is the generally cone-shaped design of the filtering body 10. More specifically, as shown in FIGS. 3 and 4, the filtering body 10 includes a radius 45a, 45b of generally diminishing size along the length 44 from the lip portion 20 to the tail portion 32. This shape causes blood flow along the direction 14 to create an axial force component 46 and a radial force component 48. More specifically, the axial force component 46 extends the filtering body 10 along its length 44, as discussed above. Furthermore, the radial force component 48 extends the filtering body 10 outwardly in the radial direction, towards the blood vessel 12 inner walls. Therefore, the cone-shaped nature of the filtering body 10 improves the seal 24 and increases the trapping volume of the device 9.


Another such feature that radially opens the filtering body 10 is a material promoting biofixation between the filtering body 10 and the body vessel 12. More specifically, an outer surface 49 of the filter includes a connective tissue 50 that causes biofixation between the outer surface of the filtering body 10 and the inner surface of the blood vessel 12, thereby sealing the respective components 10, 12 together. The connective tissue 50 is located on the frame 26 and on a portion of the filtering body 10 immediately adjacent to the lip portion 20, as shown in FIG. 1. Additionally, as shown in FIG. 6, the connective tissue 50 may be located on the outer surface 50 along a length 52 of the filtering body 10 such as to increase the surface area of the seal 24.


Reconstituted or naturally-derived collagenous materials can be used as the connective tissue 50 in the present invention to induce tissue growth by the blood vessel. Such materials that are at least bioresorbable will provide advantage in the present invention, with materials that are bioremodelable and promote cellular invasion and ingrowth providing particular advantage. The connective tissue 50 preferably includes an extracellular matrix (ECM).


Suitable bioremodelable materials can be provided by collagenous extracellular matrix materials (ECMs) possessing biotropic properties, including in certain forms angiogenic collagenous extracellular matrix materials. For example, suitable collagenous materials include ECMs such as submucosa, renal capsule membrane, dermal collagen, dura mater, pericardium, fascia lata, serosa, peritoneum or basement membrane layers, including liver basement membrane. Suitable submucosa materials for these purposes include, for instance, intestinal submucosa, including small intestinal submucosa, stomach submucosa, urinary bladder submucosa, and uterine submucosa.


As prepared, the submucosa material and any other ECM used may optionally retain growth factors or other bioactive components native to the source tissue. For example, the submucosa or other ECM may include one or more growth factors such as basic fibroblast growth factor (FGF-2), transforming growth factor beta (TGF-beta), epidermal growth factor (EGF), and/or platelet derived growth factor (PDGF). As well, submucosa or other ECM used in the invention may include other biological materials such as heparin, heparin sulfate, hyaluronic acid, fibronectin and the like. Thus, generally speaking, the submucosa or other ECM material may include a bioactive component that induces, directly or indirectly, a cellular response such as a change in cell morphology, proliferation, growth, protein or gene expression.


Submucosa or other ECM materials of the present invention can be derived from any suitable organ or other tissue source, usually sources containing connective tissues. The ECM materials processed for use in the invention will typically include abundant collagen, most commonly being constituted at least about 80% by weight collagen on a dry weight basis. Such naturally-derived ECM materials will for the most part include collagen fibers that are non-randomly oriented, for instance occurring as generally uniaxial or multi-axial but regularly oriented fibers. When processed to retain native bioactive factors, the ECM material can retain these factors interspersed as solids between, upon and/or within the collagen fibers. Particularly desirable naturally-derived ECM materials for use in the invention will include significant amounts of such interspersed, non-collagenous solids that are readily ascertainable under light microscopic examination with specific staining. Such non-collagenous solids can constitute a significant percentage of the dry weight of the ECM material in certain inventive embodiments, for example at least about 1%, at least about 3%, and at least about 5% by weight in various embodiments of the invention.


The submucosa or other ECM material used in the present invention may also exhibit an angiogenic character and thus be effective to induce angiogenesis in a host engrafted with the material. In this regard, angiogenesis is the process through which the body makes new blood vessels to generate increased blood supply to tissues. Thus, angiogenic materials, when contacted with host tissues, promote or encourage the infiltration of new blood vessels. Methods for measuring in vivo angiogenesis in response to biomaterial implantation have recently been developed. For example, one such method uses a subcutaneous implant model to determine the angiogenic character of a material. See, C. Heeschen et al., Nature Medicine 7 (2001), No. 7, 833-839. When combined with a fluorescence microangiography technique, this model can provide both quantitative and qualitative measures of angiogenesis into biomaterials. C. Johnson et al., Circulation Research 94 (2004), No. 2, 262-268.


Further, in addition or as an alternative to the inclusion of native bioactive components, non-native bioactive components such as those synthetically produced by recombinant technology or other methods, may be incorporated into the submucosa or other ECM tissue. These non-native bioactive components may be naturally-derived or recombinantly produced proteins that correspond to those natively occurring in the ECM tissue, but perhaps of a different species (e.g. human proteins applied to collagenous ECMs from other animals, such as pigs). The non-native bioactive components may also be drug substances. Illustrative drug substances that may be incorporated into and/or onto the ECM materials used in the invention include, for example, antibiotics or thrombus-promoting substances such as blood clotting factors, e.g. thrombin, fibrinogen, and the like. These substances may be applied to the ECM material as a premanufactured step, immediately prior to the procedure (e.g. by soaking the material in a solution containing a suitable antibiotic such as cefazolin), or during or after engraftment of the material in the patient.


Submucosa or other ECM tissue used in the invention is preferably highly purified, for example, as described in U.S. Pat. No. 6,206,931 to Cook et al. Thus, preferred ECM material will exhibit an endotoxin level of less than about 12 endotoxin units (EU) per gram, more preferably less than about 5 EU per gram, and most preferably less than about 1 EU per gram. As additional preferences, the submucosa or other ECM material may have a bioburden of less than about 1 colony forming units (CFU) per gram, more preferably less than about 0.5 CFU per gram. Fungus levels are desirably similarly low, for example less than about 1 CFU per gram, more preferably less than about 0.5 CFU per gram. Nucleic acid levels are preferably less than about 5 μg/mg, more preferably less than about 2 μg/mg, and virus levels are preferably less than about 50 plaque forming units (PFU) per gram, more preferably less than about 5 PFU per gram. These and additional properties of submucosa or other ECM tissue taught in U.S. Pat. No. 6,206,931 may be characteristic of the submucosa tissue used in the present invention.


Referring back to FIG. 1, the frame 26 is connected to, or unitarily formed with, a connecting wire 54 that is slidably coupled to a guidewire 56 to effectively deliver the filtering body 10 into the blood vessel 12. More specifically, as is known in the art, the guidewire 56 is metal wire that is generally rigid in the axial direction and that is generally flexible in the radial direction such that the guidewire 56 can be easily directed through a network of blood vessels. Furthermore, a connecting sleeve 58 includes an outer surface that is fixedly connected to the connecting wire 54 and an inner surface that is able to slidably receive the guidewire 56.


During delivery of the device 9 into the blood vessel 12, the guidewire 56 is first directed into the blood vessel 12 along the path of to a desired location, such as downstream of the site of a thrombus or a blood clot. Next, the device 9, being in the closed state 36, is slidably moved along the guidewire 56 via the connecting sleeve 58 until reaching the desired location. The device 9 is then expanded into the opened state 22 by any suitable means known in the art, such as by a catheter or other means.


Referring now to FIGS. 8 and 9, an assembly 100 for removing plaque and other stenotic lesions 102 from the blood vessel 12 is shown. The stenotic lesions 102 are fixed to the inner surface blood vessels 12, causing constricted areas 104 and thereby restricting bloodflow therethrough. The assembly 100 includes an emboli dislodging catheter, such as a balloon 106 that inflates to expand the flowpath of the blood vessel 12. More specifically, the balloon 106 expands to break-up the stenotic lesions 102 and cause fragments thereof to flow downstream as emboli 16.


During delivery of the balloon 106 into the blood vessel 12, an outer catheter 108 delivers the balloon 106 to the constricted area 104 in a deflated state 110, as is known in the art. The balloon 106 is then radially expanded by injecting a fluid, such as saline solution, into the balloon 106 via an inflating tube 112 fluidly connected thereto. The balloon 106 is then in an expanded state 114 to contact and break-up the stenotic lesions 102, thereby expanding the constricted area 104. The fragments of the stenotic lesions 102 then float downstream into the embolic protection device 9. Alternatively to the balloon, the emboli dislodging catheter may be any other suitable design for dislodging emboli, such as a scraping component or an expandable device.


The embolic protection device 9 is preferably expanded before the inflation balloon 106, so that the emboli 16 are prevented from bypassing the filter body 10. Additionally, the connecting wire 54 and the guidewire 56 in the Figures are received within the inflating tube 112, within a conduit that is fluidly-separated from the inflating chamber of the balloon, to control the delivery and the expansion of the embolic protection device 10.


Referring now to FIG. 7, another alternative embodiment of the present invention is shown. The embolic protection device 9 in FIG. 7 includes a tether 60 that is connected to the inner surface of the filtering body 10 and that is slidable along the longitudinal axis 35 with respect to the connecting wire 54 to create a collection area 62 within the filtering body 10 for collecting emboli 16. More specifically, as the tether 60 is pulled against the direction 14 of the blood flow, the portion of the filtering body 10 that is connected to the tether 60 likewise moves against the blood flow. This movement creates an area, the collection area 62, within the filtering body 10 that is furthest downstream from the emboli 16, causing the emboli 16 collect within the collection area 62.


The tether 60 is preferably connected to a radially central portion 64 of the tail 32 such that the collection area 62 is radially off-set from the longitudinal axis 35. More specifically, the central portion of the tail 32 is pulled backwards such that the collection area 62 is a ring-shaped area surrounding the central portion 64. This configuration causes the emboli 16 to collect around the central portion 64 and leaves the central portion 64 substantially unobstructed. A plurality of tethers 60 may be used to create more collection areas.


It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.

Claims
  • 1. An embolic protection device for filtering emboli in a body vessel in which blood flows in a first direction along a blood flow path, the body vessel defining a central longitudinal axis, the device comprising: a filtering body having a lip including a perimeter, the filtering body extending therefrom to a tail having an end face, the filtering body being configured to be folded into a closed state for delivery or retrieval and expanded into an open state for filtering emboli, the filtering body having a first plurality of openings formed therethrough and positioned generally spaced apart from each other and a second plurality of openings formed therethrough and positioned generally spaced apart from each other, the first plurality of openings being located adjacent to the lip, the second plurality of openings being located along the end face of the tail of the filtering body, the end face having a substantially perpendicular orientation that is substantially perpendicular to the first direction of the blood flow, the filtering body providing a flow resistance when the tail is folded, the substantially perpendicular orientation of the end face causing the filtering body to fully open into the open state when placed in the body vessel in the blood flow path, the first plurality of openings each having a first area for maintaining fluid flowpaths through the device and the second plurality of openings each having a second area for filtering emboli in the body vessel, wherein the first area is greater than the second area in both the closed state and the open state, and wherein the first plurality of openings is generally more spaced apart from each other than the second plurality of openings; anda frame connected to the lip for supporting the filtering body, wherein the frame includes a wire formed into a loop that extends around the perimeter of the lip, wherein the frame perpendicularly opens in a radial direction along a plane perpendicular to the central longitudinal axis defining an opened state of the frame;wherein the device further comprises a material promoting biofixation between the filtering body and the body vessel; andwherein the material promoting biofixation includes extracellular matrix material that functions as a remodeling bioscaffold between an outer surface of the filtering body and an inner surface of the body vessel.
  • 2. An embolic protection device as in claim 1, the filtering body further including a third plurality of intermediate openings located between the lip and the tail, the intermediate openings generally decreasing in size along a line extending from the lip to the tail.
  • 3. An embolic protection device as in claim 2, wherein the first plurality of openings is configured such that a fluid flowrate through the filtering body is substantially unhindered when the second plurality of openings becomes obstructed.
  • 4. An embolic protection device as in claim 1, wherein the second plurality of openings is radially closer than the first plurality of openings to the central longitudinal axis of the body vessel.
  • 5. An embolic protection device as in claim 1, the filtering body having a generally tapered shape.
  • 6. An embolic protection device as in claim 1, wherein the first area is at least two times larger than the second area.
  • 7. An embolic protection device as in claim 1, the frame further including a retrieval member extending proximally therefrom to retrieve the embolic protection device from the body vessel.
  • 8. An embolic protection device as in claim 1, further comprising a tether connected to the tail of the filtering body and being movable along the longitudinal axis to create a collection area within the filtering body for collecting emboli.
  • 9. An embolic protection device as in claim 8, wherein the collection area is radially offset from the longitudinal axis.
  • 10. An embolic protection device as in claim 1, wherein the material encircles the filtering body outer surface adjacent to the lip of the filter.
  • 11. An embolic protection device as in claim 10, wherein the material is substantially located only along a portion of the filtering body adjacent to the lip of the filter.
  • 12. An embolic protection device as in claim 1, wherein the extracellular matrix material includes small intestinal submucosa.
  • 13. An embolic protection device as in claim 1, wherein each of the first and second plurality of openings is generally circular in shape.
  • 14. An assembly for removing emboli from a body vessel in which blood flows in a first direction along a blood flow path, the body vessel defining a central longitudinal axis, the assembly comprising: an emboli dislodging catheter configured for dislodging the emboli from an inner wall of the body vessel;an outer catheter for delivering the emboli dislodging catheter into the body vessel; an embolic protection device positioned distally of the emboli dislodging catheter for collecting the dislodged emboli in the body vessel, the embolic protection device including a filtering body having a lip including a perimeter, the filtering body extending therefrom to a tail having an end face, the filtering body being configured to be folded into a closed state for delivery or retrieval and expanded into an open state for filtering emboli, the filtering body having a first plurality of openings formed therethrough and positioned generally spaced apart from each other and a second plurality of openings formed therethrough and positioned generally spaced apart from each other, the first plurality of openings being located adjacent to the lip, the second plurality of openings being located along the end face of the tail of the filtering body, the end face having a substantially perpendicular orientation that is substantially perpendicular to the first direction of the blood flow, the filtering body providing a flow resistance when the tail is folded, the substantially perpendicular orientation of the end face causing the filtering body to fully open into the open state when placed in the body vessel in the blood flow path, the first plurality of openings each having a first area for maintaining fluid flowpaths through the device and the second plurality of openings each having a second area for filtering emboli in the body vessel, wherein the first area is greater than the second area in both the closed state and the open state, and wherein the first plurality of openings is generally more spaced apart from each other than the second plurality of openings; anda frame connected to the lip for supporting the filtering body, wherein the frame includes a wire formed into a loop that extends around the perimeter of the lip, wherein the frame perpendicularly opens in a radial direction along a plane perpendicular to the central longitudinal axis defining an opened state of the frame;wherein the device further comprises a material promoting biofixation between the filtering body and the body vessel; andwherein the material promoting biofixation includes extracellular matrix material that functions as a remodeling bioscaffold between an outer surface of the filtering body and an inner surface of the body vessel; anda guide wire slidably coupled with the embolic protection device to guide the embolic protection device within the body vessel.
  • 15. An assembly as in claim 14, further comprising a connecting wire unitarily formed with the frame, the connecting wire being slidably coupled to the guidewire for effective delivery of the embolic protection device into the blood vessel.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims benefit of U.S. Provisional Application No. 60/661,732, filed Mar. 15, 2005 entitled Embolic Protection Device.

US Referenced Citations (839)
Number Name Date Kind
3108593 Glassman Oct 1963 A
3334629 Cohn Aug 1967 A
3472230 Fogarty Oct 1969 A
3547103 Cook Dec 1970 A
3635223 Klieman Jan 1972 A
3923065 Nozick et al. Dec 1975 A
3952747 Kimmell, Jr. Apr 1976 A
3978863 Fettel et al. Sep 1976 A
3996938 Clark, III Dec 1976 A
4425908 Simon Jan 1984 A
4456000 Schjeldahl et al. Jun 1984 A
4494531 Gianturco Jan 1985 A
4548206 Osborne Oct 1985 A
4561439 Bishop et al. Dec 1985 A
4562039 Koehler Dec 1985 A
4604094 Shook Aug 1986 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4643184 Mobin-Uddin Feb 1987 A
4646736 Auth Mar 1987 A
4650472 Bates Mar 1987 A
4665906 Jervis May 1987 A
4669464 Sulepov Jun 1987 A
4688553 Metals Aug 1987 A
4723549 Wholey et al. Feb 1988 A
4727873 Mobin-Uddin Mar 1988 A
4732152 Wallsten et al. Mar 1988 A
4817600 Herms et al. Apr 1989 A
4824435 Giesy et al. Apr 1989 A
4832055 Palestrant May 1989 A
4848343 Wallsten et al. Jul 1989 A
4873978 Ginsburg Oct 1989 A
4943297 Saveliev et al. Jul 1990 A
4957501 Lahille et al. Sep 1990 A
4990156 Lefebvre Feb 1991 A
4998916 Hammerslag et al. Mar 1991 A
5053008 Bajaj Oct 1991 A
5059205 El-Nounou et al. Oct 1991 A
5069226 Yamauchi et al. Dec 1991 A
5078726 Kreamer Jan 1992 A
5100423 Fearnot Mar 1992 A
5108418 Lefebvre Apr 1992 A
5108419 Reger et al. Apr 1992 A
5112347 Taheri May 1992 A
5129890 Bates et al. Jul 1992 A
5133733 Rasmussen et al. Jul 1992 A
5147379 Sabbaghian et al. Sep 1992 A
5152777 Goldberg Oct 1992 A
5160342 Reger Nov 1992 A
5163927 Woker et al. Nov 1992 A
5203772 Hammerslag et al. Apr 1993 A
5234458 Metais Aug 1993 A
5242462 El-Nounou Sep 1993 A
5243996 Hall Sep 1993 A
5251640 Osborne Oct 1993 A
5263964 Purdy Nov 1993 A
5300086 Gory et al. Apr 1994 A
5324304 Rasmussen Jun 1994 A
5329942 Gunther et al. Jul 1994 A
5344427 Cottenceau et al. Sep 1994 A
5350397 Palermo et al. Sep 1994 A
5350398 Pavcnik et al. Sep 1994 A
5364345 Lowery et al. Nov 1994 A
5370657 Irie Dec 1994 A
5375612 Cottenceau et al. Dec 1994 A
5383887 Nadal Jan 1995 A
5413586 Dibie et al. May 1995 A
5415630 Gory et al. May 1995 A
5417708 Hall et al. May 1995 A
5451233 Yock Sep 1995 A
5458573 Summers Oct 1995 A
5522881 Lentz Jun 1996 A
5527338 Purdy Jun 1996 A
5531788 Dibie et al. Jul 1996 A
5549551 Peacock et al. Aug 1996 A
5549626 Miller et al. Aug 1996 A
5556414 Turi Sep 1996 A
5562698 Parker Oct 1996 A
5591195 Taheri et al. Jan 1997 A
5601595 Smith Feb 1997 A
5624461 Mariant Apr 1997 A
5626605 Irie et al. May 1997 A
5630797 Diedrich et al. May 1997 A
5634942 Chevillon et al. Jun 1997 A
5649953 Lefebvre Jul 1997 A
5662703 Yurek et al. Sep 1997 A
5669933 Simon et al. Sep 1997 A
5681347 Cathcart et al. Oct 1997 A
5690642 Osborne et al. Nov 1997 A
5690667 Gia Nov 1997 A
5693067 Purdy Dec 1997 A
5693087 Parodi Dec 1997 A
5695518 Laerum Dec 1997 A
5695519 Summers et al. Dec 1997 A
5700253 Parker Dec 1997 A
5709704 Nott et al. Jan 1998 A
5713853 Clark et al. Feb 1998 A
5720764 Naderlinger Feb 1998 A
5725550 Nadal Mar 1998 A
5738667 Solar Apr 1998 A
5746767 Smith May 1998 A
5755772 Evans et al. May 1998 A
5755790 Chevillon et al. May 1998 A
5766203 Imran et al. Jun 1998 A
5769816 Barbut et al. Jun 1998 A
5769871 Mers et al. Jun 1998 A
5795322 Boudewijn Aug 1998 A
5800457 Gelbfish et al. Sep 1998 A
5800525 Bachinski et al. Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814027 Hassett et al. Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5820592 Hammerslag Oct 1998 A
5827324 Cassell et al. Oct 1998 A
5830230 Berryman et al. Nov 1998 A
5836968 Simon et al. Nov 1998 A
5836969 Kim et al. Nov 1998 A
5846260 Maahs Dec 1998 A
5853420 Chevillon et al. Dec 1998 A
5876367 Kaganov et al. Mar 1999 A
5893869 Barnhart et al. Apr 1999 A
5895391 Farnholtz Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5895410 Forber et al. Apr 1999 A
5908435 Samuels Jun 1999 A
5910154 Tsugita et al. Jun 1999 A
5911702 Romley et al. Jun 1999 A
5911704 Humes Jun 1999 A
5911717 Jacobsen et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5919224 Thompson et al. Jul 1999 A
5925062 Purdy Jul 1999 A
5925063 Khosravi Jul 1999 A
5928260 Chine et al. Jul 1999 A
5928261 Ruiz Jul 1999 A
5938683 Lefebvre Aug 1999 A
5941896 Kerr Aug 1999 A
5944728 Bates Aug 1999 A
5947985 Imran Sep 1999 A
5947995 Samuels Sep 1999 A
5948017 Taheri Sep 1999 A
5951567 Javier, Jr. et al. Sep 1999 A
5954741 Fox Sep 1999 A
5954742 Osypka Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5968057 Taheri Oct 1999 A
5968071 Chevillon et al. Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5976162 Doan et al. Nov 1999 A
5976172 Homsma et al. Nov 1999 A
5980555 Barbut et al. Nov 1999 A
5984947 Smith Nov 1999 A
5984965 Knapp et al. Nov 1999 A
5989281 Barbut et al. Nov 1999 A
6001118 Daniel et al. Dec 1999 A
6007557 Ambrisco et al. Dec 1999 A
6007558 Ravenscloth et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013093 Nott et al. Jan 2000 A
6015424 Rosenbluth et al. Jan 2000 A
6027520 Tsugita et al. Feb 2000 A
6036717 Mers Kelly et al. Mar 2000 A
6036720 Abrams et al. Mar 2000 A
6042598 Tsugita et al. Mar 2000 A
6051014 Jang Apr 2000 A
6051015 Maahs Apr 2000 A
6053932 Daniel et al. Apr 2000 A
6059745 Gelbfish May 2000 A
6059813 Vrba et al. May 2000 A
6059814 Ladd May 2000 A
6063113 Kavteladze et al. May 2000 A
6066158 Engelson et al. May 2000 A
6068645 Tu May 2000 A
6074357 Kaganov et al. Jun 2000 A
6077274 Ouchi et al. Jun 2000 A
6080178 Meglin Jun 2000 A
6083239 Addis Jul 2000 A
6086577 Ken et al. Jul 2000 A
6086605 Barbut et al. Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096053 Bates Aug 2000 A
6096070 Ragheb et al. Aug 2000 A
6099549 Bosma et al. Aug 2000 A
6106497 Wang Aug 2000 A
6126672 Berryman et al. Oct 2000 A
6126673 Kim et al. Oct 2000 A
6129739 Khosravi Oct 2000 A
6136016 Barbut et al. Oct 2000 A
6146396 Konya et al. Nov 2000 A
6146404 Kim et al. Nov 2000 A
6152931 Nadal et al. Nov 2000 A
6152946 Broome et al. Nov 2000 A
6152947 Ambrisco et al. Nov 2000 A
6156061 Wallace et al. Dec 2000 A
6156062 McGuinness Dec 2000 A
6159230 Samuels Dec 2000 A
6165179 Cathcart et al. Dec 2000 A
6165198 McGurk et al. Dec 2000 A
6165199 Barbut Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6168579 Tsugita et al. Jan 2001 B1
6168603 Leslie et al. Jan 2001 B1
6168610 Marin et al. Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171328 Addis Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6179851 Barbut et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6179860 Fulton, III et al. Jan 2001 B1
6179861 Khosravi et al. Jan 2001 B1
6187025 Machek Feb 2001 B1
6193739 Chevillon et al. Feb 2001 B1
6203561 Ramee et al. Mar 2001 B1
6206931 Cook et al. Mar 2001 B1
6214025 Thistle et al. Apr 2001 B1
6214026 Lepak et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6224620 Maahs May 2001 B1
6231588 Zadno-Azizi May 2001 B1
6231589 Wessman et al. May 2001 B1
6235044 Root et al. May 2001 B1
6235045 Barbut et al. May 2001 B1
6238412 Dubrul et al. May 2001 B1
6241746 Bosma et al. Jun 2001 B1
6245087 Addis Jun 2001 B1
6245088 Lowery Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6251092 Qin et al. Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254550 McNamara et al. Jul 2001 B1
6254633 Pinchuk et al. Jul 2001 B1
6258026 Ravenscroft et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6261305 Marotta et al. Jul 2001 B1
6264672 Fisher Jul 2001 B1
6267776 O'Connell Jul 2001 B1
6267777 Bosma et al. Jul 2001 B1
6273900 Nott et al. Aug 2001 B1
6273901 Whitcher et al. Aug 2001 B1
6277125 Barry et al. Aug 2001 B1
6277126 Barry et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6277139 Levinson et al. Aug 2001 B1
6280451 Bates et al. Aug 2001 B1
6287321 Jang Sep 2001 B1
6290710 Cryer et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306163 Fitz Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6312444 Barbut Nov 2001 B1
6319268 Ambrisco et al. Nov 2001 B1
6325815 Kusleika et al. Dec 2001 B1
6325816 Fulton, III et al. Dec 2001 B1
6328755 Marshall Dec 2001 B1
6331183 Suon Dec 2001 B1
6331184 Abrams Dec 2001 B1
6334864 Amplatz et al. Jan 2002 B1
6336934 Gilson et al. Jan 2002 B1
6338739 Datta et al. Jan 2002 B1
6340364 Kanesaka Jan 2002 B2
6342062 Suon et al. Jan 2002 B1
6342063 DeVries et al. Jan 2002 B1
6344048 Chin et al. Feb 2002 B1
6344049 Levinson et al. Feb 2002 B1
6346116 Brooks et al. Feb 2002 B1
6348041 Klint Feb 2002 B1
6348063 Yassour et al. Feb 2002 B1
6355051 Sisskind et al. Mar 2002 B1
6358228 Tubman et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6361546 Khosravi Mar 2002 B1
6361547 Hieshima Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6364896 Addis Apr 2002 B1
6368338 Konya et al. Apr 2002 B1
6371961 Osborne et al. Apr 2002 B1
6371969 Tsugita et al. Apr 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6375670 Greenhalgh Apr 2002 B1
6379374 Hieshima et al. Apr 2002 B1
6380457 Yurek et al. Apr 2002 B1
6383146 Klint May 2002 B1
6383171 Gifford et al. May 2002 B1
6383174 Eder May 2002 B1
6383193 Cathcart et al. May 2002 B1
6383196 Leslie et al. May 2002 B1
6383205 Samson et al. May 2002 B1
6383206 Gillick et al. May 2002 B1
6391044 Yadav et al. May 2002 B1
6391045 Kim et al. May 2002 B1
6391052 Buirge et al. May 2002 B2
6395014 Macoviak et al. May 2002 B1
6402771 Palmer et al. Jun 2002 B1
6402772 Amplatz et al. Jun 2002 B1
6409742 Fulton, III et al. Jun 2002 B1
6413235 Parodi Jul 2002 B1
6416530 DeVries et al. Jul 2002 B2
6419686 McLeod et al. Jul 2002 B1
6423052 Escano Jul 2002 B1
6423086 Barbut et al. Jul 2002 B1
6425909 Dieck et al. Jul 2002 B1
6428557 Hilaire Aug 2002 B1
6428558 Jones et al. Aug 2002 B1
6428559 Johnson Aug 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436112 Wensel et al. Aug 2002 B2
6436120 Meglin Aug 2002 B1
6436121 Blom Aug 2002 B1
6443926 Kletschka Sep 2002 B1
6443971 Boylan et al. Sep 2002 B1
6443972 Bosma et al. Sep 2002 B1
6447530 Ostrovsky et al. Sep 2002 B1
6447531 Amplatz Sep 2002 B1
6454775 Demarais et al. Sep 2002 B1
6458139 Palmer et al. Oct 2002 B1
6458145 Ravenscroft et al. Oct 2002 B1
6461370 Gray et al. Oct 2002 B1
6468290 Weldon et al. Oct 2002 B1
6468291 Bates et al. Oct 2002 B2
6482222 Bruckheimer et al. Nov 2002 B1
6485456 Kletschka Nov 2002 B1
6485500 Kokish et al. Nov 2002 B1
6485501 Green Nov 2002 B1
6485502 Don Michael et al. Nov 2002 B2
6491712 O'Connor Dec 2002 B1
6494895 Addis Dec 2002 B2
6497709 Heath Dec 2002 B1
6499487 McKenzie et al. Dec 2002 B1
6500166 Zadno Azizi et al. Dec 2002 B1
6500191 Addis Dec 2002 B2
6502606 Klint Jan 2003 B2
6506203 Boyle et al. Jan 2003 B1
6506205 Goldberg et al. Jan 2003 B2
6508826 Murphy et al. Jan 2003 B2
6511492 Rosenbluth et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511497 Braun et al. Jan 2003 B1
6511503 Burkett et al. Jan 2003 B1
6514273 Voss et al. Feb 2003 B1
6517559 O'Connell Feb 2003 B1
6520978 Blackledge et al. Feb 2003 B1
6527746 Oslund et al. Mar 2003 B1
6527791 Fisher Mar 2003 B2
6527962 Nadal Mar 2003 B1
6530935 Wensel et al. Mar 2003 B2
6530939 Hopkins et al. Mar 2003 B1
6530940 Fisher Mar 2003 B2
6533770 Lepulu et al. Mar 2003 B1
6533800 Barbut Mar 2003 B1
6537293 Berryman et al. Mar 2003 B1
6537294 Boyle et al. Mar 2003 B1
6537296 Levinson et al. Mar 2003 B2
6537297 Tsugita et al. Mar 2003 B2
6540722 Boyle et al. Apr 2003 B1
6540767 Walak et al. Apr 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544221 Kokish et al. Apr 2003 B1
6544276 Azizi Apr 2003 B1
6544278 Vrba et al. Apr 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6544280 Daniel et al. Apr 2003 B1
6547759 Fisher Apr 2003 B1
6551303 Van Tassel et al. Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6554849 Jones et al. Apr 2003 B1
6558404 Tsukernik May 2003 B2
6558405 McInnes May 2003 B1
6558406 Okada May 2003 B2
6562058 Seguin et al. May 2003 B2
6565591 Brady et al. May 2003 B2
6569147 Evans et al. May 2003 B1
6569183 Kim et al. May 2003 B1
6569184 Huter May 2003 B2
6575995 Huter et al. Jun 2003 B1
6575996 Denison et al. Jun 2003 B1
6575997 Palmer et al. Jun 2003 B1
6579303 Amplatz Jun 2003 B2
6582396 Parodi Jun 2003 B1
6582447 Patel et al. Jun 2003 B1
6582448 Boyle et al. Jun 2003 B1
6589227 Klint Jul 2003 B2
6589230 Gia et al. Jul 2003 B2
6589263 Hopkins et al. Jul 2003 B1
6589264 Barbut et al. Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6589266 Whitcher et al. Jul 2003 B2
6592546 Barbut et al. Jul 2003 B1
6592606 Huter et al. Jul 2003 B2
6592616 Stack et al. Jul 2003 B1
6595983 Voda Jul 2003 B2
6596011 Johnson et al. Jul 2003 B2
6599275 Fischer, Jr. Jul 2003 B1
6599307 Huter et al. Jul 2003 B1
6599308 Amplatz Jul 2003 B2
6602271 Adams et al. Aug 2003 B2
6602273 Marshall Aug 2003 B2
6602280 Chobotov Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6607506 Kletschka Aug 2003 B2
6610077 Hancock et al. Aug 2003 B1
6611720 Hata et al. Aug 2003 B2
6613074 Mitelberg et al. Sep 2003 B1
6616679 Khosravi et al. Sep 2003 B1
6616680 Theilen Sep 2003 B1
6616681 Hanson et al. Sep 2003 B2
6616682 Joergensen et al. Sep 2003 B2
6620148 Tsugita Sep 2003 B1
6620182 Khosravi et al. Sep 2003 B1
6623450 Dutta Sep 2003 B1
6623506 McGuckin, Jr. et al. Sep 2003 B2
6629953 Boyd Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635069 Teoh et al. Oct 2003 B1
6635070 Leeflang et al. Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6638294 Palmer Oct 2003 B1
6638372 Abrams et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6641605 Stergiopulos Nov 2003 B1
6645160 Heesch Nov 2003 B1
6645220 Huter et al. Nov 2003 B1
6645221 Richter Nov 2003 B1
6645222 Parodi et al. Nov 2003 B1
6645223 Boyle et al. Nov 2003 B2
6645224 Gilson et al. Nov 2003 B2
6652554 Wholey et al. Nov 2003 B1
6652557 MacDonald Nov 2003 B1
6652558 Patel et al. Nov 2003 B2
6656201 Ferrera et al. Dec 2003 B2
6656202 Papp et al. Dec 2003 B2
6656203 Roth et al. Dec 2003 B2
6656204 Ambrisco et al. Dec 2003 B2
6656351 Boyle Dec 2003 B2
6660021 Palmer et al. Dec 2003 B1
6663613 Evans et al. Dec 2003 B1
6663650 Sepetka et al. Dec 2003 B2
6663651 Krolik et al. Dec 2003 B2
6663652 Daniel et al. Dec 2003 B2
6676682 Tsugita et al. Jan 2004 B1
6679902 Boyle et al. Jan 2004 B1
6689144 Gerberding Feb 2004 B2
6695813 Boyle et al. Feb 2004 B1
6695865 Boyle et al. Feb 2004 B2
6702834 Boylan et al. Mar 2004 B1
6709450 Kang et al. Mar 2004 B2
6712835 Mazzocchi et al. Mar 2004 B2
6716207 Farnholtz Apr 2004 B2
6716231 Rafiee et al. Apr 2004 B1
6726701 Gilson et al. Apr 2004 B2
6730064 Ragheb et al. May 2004 B2
6755855 Yurek et al. Jun 2004 B2
6755856 Fierens et al. Jun 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6761727 Ladd Jul 2004 B1
6773446 Dwyer et al. Aug 2004 B1
6773448 Kusleika et al. Aug 2004 B2
6774278 Ragheb et al. Aug 2004 B1
6780175 Sachdeva et al. Aug 2004 B1
6793667 Hebert et al. Sep 2004 B2
6793668 Fisher Sep 2004 B1
6833002 Stack et al. Dec 2004 B2
6866677 Douk et al. Mar 2005 B2
6866680 Yassour et al. Mar 2005 B2
6896691 Boylan et al. May 2005 B2
6929709 Smith Aug 2005 B2
6932831 Forber Aug 2005 B2
6942682 Vrba et al. Sep 2005 B2
6955685 Escamilla et al. Oct 2005 B2
6964670 Shah et al. Nov 2005 B1
6964674 Matsuura et al. Nov 2005 B1
6969396 Krolik et al. Nov 2005 B2
6974473 Barclay et al. Dec 2005 B2
6986784 Weiser et al. Jan 2006 B1
6991641 Diaz et al. Jan 2006 B2
7128073 Van Der Burg et al. Oct 2006 B1
7189249 Hart et al. Mar 2007 B2
7255687 Huang et al. Aug 2007 B2
7285130 Austin Oct 2007 B2
7306619 Palmer Dec 2007 B1
7371248 Dapolito et al. May 2008 B2
7393358 Malewicz Jul 2008 B2
7766934 Pal et al. Aug 2010 B2
7918882 Pavcnik et al. Apr 2011 B2
8133253 Bosma et al. Mar 2012 B2
20010000799 Wessman et al. May 2001 A1
20010001817 Humes May 2001 A1
20010005789 Root et al. Jun 2001 A1
20010007947 Kanesaka Jul 2001 A1
20010011181 DiMatteo Aug 2001 A1
20010011182 Dubrul et al. Aug 2001 A1
20010012951 Bates et al. Aug 2001 A1
20010016755 Addis Aug 2001 A1
20010020175 Yassour et al. Sep 2001 A1
20010023358 Tsukernik Sep 2001 A1
20010025187 Okada Sep 2001 A1
20010031980 Wensel et al. Oct 2001 A1
20010031981 Evans et al. Oct 2001 A1
20010031982 Peterson et al. Oct 2001 A1
20010039431 DeVries et al. Nov 2001 A1
20010039432 Whitcher et al. Nov 2001 A1
20010041908 Levinson et al. Nov 2001 A1
20010041909 Tsugita et al. Nov 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20010044632 Daniel et al. Nov 2001 A1
20010044634 Don Michael et al. Nov 2001 A1
20010053921 Jang Dec 2001 A1
20020002383 Sepetka et al. Jan 2002 A1
20020002384 Gilson et al. Jan 2002 A1
20020004667 Adams et al. Jan 2002 A1
20020016564 Courtney et al. Feb 2002 A1
20020016609 Wensel et al. Feb 2002 A1
20020022858 Demond et al. Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi et al. Feb 2002 A1
20020026212 Wholey et al. Feb 2002 A1
20020026213 Gilson et al. Feb 2002 A1
20020032460 Kusleika et al. Mar 2002 A1
20020032461 Marshall Mar 2002 A1
20020042626 Hanson et al. Apr 2002 A1
20020042627 Brady et al. Apr 2002 A1
20020045915 Balceta et al. Apr 2002 A1
20020045916 Gray et al. Apr 2002 A1
20020045918 Suon et al. Apr 2002 A1
20020049452 Kurz et al. Apr 2002 A1
20020049468 Streeter et al. Apr 2002 A1
20020052627 Boylan et al. May 2002 A1
20020058904 Boock et al. May 2002 A1
20020058911 Gilson et al. May 2002 A1
20020058963 Vale et al. May 2002 A1
20020058964 Addis May 2002 A1
20020062133 Gilson et al. May 2002 A1
20020062134 Barbut et al. May 2002 A1
20020062135 Mazzocchi et al. May 2002 A1
20020065507 Zadno-Azizi May 2002 A1
20020068954 Foster Jun 2002 A1
20020068955 Khosravi Jun 2002 A1
20020072764 Sepetka et al. Jun 2002 A1
20020072765 Mazzocchi et al. Jun 2002 A1
20020077596 McKenzie et al. Jun 2002 A1
20020082558 Samson et al. Jun 2002 A1
20020082639 Broome et al. Jun 2002 A1
20020087187 Mazzocchi et al. Jul 2002 A1
20020090389 Humes et al. Jul 2002 A1
20020091407 Zadno-Azizi et al. Jul 2002 A1
20020091408 Sutton et al. Jul 2002 A1
20020091409 Sutton et al. Jul 2002 A1
20020095170 Krolik et al. Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020095172 Mazzocchi et al. Jul 2002 A1
20020095173 Mazzocchi et al. Jul 2002 A1
20020095174 Tsugita et al. Jul 2002 A1
20020099405 Yurek et al. Jul 2002 A1
20020099407 Becker et al. Jul 2002 A1
20020099435 Stinson Jul 2002 A1
20020103501 Diaz et al. Aug 2002 A1
20020107541 Vale et al. Aug 2002 A1
20020111647 Khairkhahan et al. Aug 2002 A1
20020111648 Kusleika et al. Aug 2002 A1
20020111649 Russo et al. Aug 2002 A1
20020116024 Goldberg et al. Aug 2002 A1
20020120226 Beck Aug 2002 A1
20020120286 DoBrava et al. Aug 2002 A1
20020120287 Huter Aug 2002 A1
20020123720 Kusleika et al. Sep 2002 A1
20020123755 Lowe et al. Sep 2002 A1
20020123759 Amplatz Sep 2002 A1
20020123766 Seguin et al. Sep 2002 A1
20020128679 Turovskiy et al. Sep 2002 A1
20020128680 Pavlovic Sep 2002 A1
20020128681 Broome et al. Sep 2002 A1
20020133191 Khosravi et al. Sep 2002 A1
20020133192 Kusleika et al. Sep 2002 A1
20020138094 Borillo et al. Sep 2002 A1
20020138095 Mazzocchi et al. Sep 2002 A1
20020138096 Hieshima Sep 2002 A1
20020138097 Ostrovsky et al. Sep 2002 A1
20020143360 Douk et al. Oct 2002 A1
20020143361 Douk et al. Oct 2002 A1
20020143362 Macoviak et al. Oct 2002 A1
20020151927 Douk et al. Oct 2002 A1
20020151928 Leslie et al. Oct 2002 A1
20020156520 Boylan et al. Oct 2002 A1
20020161389 Boyle et al. Oct 2002 A1
20020161390 Mouw Oct 2002 A1
20020161391 Murphy et al. Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161393 Demond et al. Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020161395 Douk et al. Oct 2002 A1
20020161396 Jang et al. Oct 2002 A1
20020165557 McAlister Nov 2002 A1
20020165573 Barbut Nov 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020165598 Wahr et al. Nov 2002 A1
20020169472 Douk et al. Nov 2002 A1
20020169474 Kusleika et al. Nov 2002 A1
20020173815 Hogendijk et al. Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020177872 Papp et al. Nov 2002 A1
20020177899 Eum et al. Nov 2002 A1
20020183781 Casey et al. Dec 2002 A1
20020183782 Tsugita et al. Dec 2002 A1
20020183783 Shadduck Dec 2002 A1
20020188313 Johnson et al. Dec 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20020193824 Boylan et al. Dec 2002 A1
20020193825 McGuckin et al. Dec 2002 A1
20020193826 McGuckin et al. Dec 2002 A1
20020193827 McGuckin et al. Dec 2002 A1
20020193828 Griffin et al. Dec 2002 A1
20020198561 Amplatz Dec 2002 A1
20030004536 Boylan et al. Jan 2003 A1
20030004537 Boyle et al. Jan 2003 A1
20030004538 Secrest et al. Jan 2003 A1
20030004539 Linder et al. Jan 2003 A1
20030004540 Linder et al. Jan 2003 A1
20030004541 Linder et al. Jan 2003 A1
20030004542 Wensel et al. Jan 2003 A1
20030009146 Muni et al. Jan 2003 A1
20030009189 Gilson et al. Jan 2003 A1
20030009190 Kletschka et al. Jan 2003 A1
20030009191 Wensel et al. Jan 2003 A1
20030014072 Wensel et al. Jan 2003 A1
20030018354 Roth et al. Jan 2003 A1
20030018355 Goto et al. Jan 2003 A1
20030023263 Krolik et al. Jan 2003 A1
20030023264 Dieck et al. Jan 2003 A1
20030023265 Forber Jan 2003 A1
20030032976 Boucck Feb 2003 A1
20030032977 Brady Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030045897 Huter et al. Mar 2003 A1
20030045898 Harrison et al. Mar 2003 A1
20030050662 Don Michael Mar 2003 A1
20030055452 Joergensen et al. Mar 2003 A1
20030055480 Fischell et al. Mar 2003 A1
20030060843 Boucher Mar 2003 A1
20030060844 Borillo et al. Mar 2003 A1
20030065354 Boyle et al. Apr 2003 A1
20030065355 Weber Apr 2003 A1
20030065356 Tsugita et al. Apr 2003 A1
20030069596 Eskuri Apr 2003 A1
20030073979 Naimark et al. Apr 2003 A1
20030074019 Gray et al. Apr 2003 A1
20030078614 Salahieh et al. Apr 2003 A1
20030083608 Evans et al. May 2003 A1
20030083692 Vrba et al. May 2003 A1
20030083693 Daniel et al. May 2003 A1
20030088211 Anderson et al. May 2003 A1
20030088266 Bowlin May 2003 A1
20030093110 Vale May 2003 A1
20030093112 Addis May 2003 A1
20030097094 Ouriel et al. May 2003 A1
20030097145 Goldberg et al. May 2003 A1
20030100917 Boyle et al. May 2003 A1
20030100918 Duane May 2003 A1
20030100919 Hopkins et al. May 2003 A1
20030105472 McAlister Jun 2003 A1
20030105484 Boyle et al. Jun 2003 A1
20030105486 Murphy et al. Jun 2003 A1
20030109824 Anderson et al. Jun 2003 A1
20030109897 Walak et al. Jun 2003 A1
20030109916 Don Michael Jun 2003 A1
20030114879 Euteneuer et al. Jun 2003 A1
20030114880 Hansen et al. Jun 2003 A1
20030120303 Boyle et al. Jun 2003 A1
20030120304 Kaganov et al. Jun 2003 A1
20030125764 Brady et al. Jul 2003 A1
20030125765 Blackledge et al. Jul 2003 A1
20030130680 Russell Jul 2003 A1
20030130681 Ungs Jul 2003 A1
20030130682 Broome et al. Jul 2003 A1
20030130684 Brady et al. Jul 2003 A1
20030130685 Daniel et al. Jul 2003 A1
20030130686 Daniel et al. Jul 2003 A1
20030130687 Daniel et al. Jul 2003 A1
20030130688 Daniel et al. Jul 2003 A1
20030135232 Douk et al. Jul 2003 A1
20030135233 Bates et al. Jul 2003 A1
20030139764 Levinson et al. Jul 2003 A1
20030139765 Patel et al. Jul 2003 A1
20030144685 Boyle et al. Jul 2003 A1
20030144686 Martinez et al. Jul 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030144688 Brady et al. Jul 2003 A1
20030144689 Brady et al. Jul 2003 A1
20030150821 Bates et al. Aug 2003 A1
20030153935 Mialhe Aug 2003 A1
20030153942 Wang et al. Aug 2003 A1
20030153943 Michael et al. Aug 2003 A1
20030153944 Phung et al. Aug 2003 A1
20030153945 Patel et al. Aug 2003 A1
20030158518 Schonholz et al. Aug 2003 A1
20030158574 Esch et al. Aug 2003 A1
20030158575 Boylan et al. Aug 2003 A1
20030163158 White Aug 2003 A1
20030163159 Patel et al. Aug 2003 A1
20030167068 Amplatz Sep 2003 A1
20030167069 Gonzales et al. Sep 2003 A1
20030171769 Barbut Sep 2003 A1
20030171770 Kusleika et al. Sep 2003 A1
20030171771 Anderson et al. Sep 2003 A1
20030171772 Amplatz Sep 2003 A1
20030171800 Bicek et al. Sep 2003 A1
20030171803 Shimon Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030176885 Broome et al. Sep 2003 A1
20030176886 Wholey et al. Sep 2003 A1
20030176887 Petersen Sep 2003 A1
20030176888 O'Connell Sep 2003 A1
20030176889 Boyle et al. Sep 2003 A1
20030181942 Sutton et al. Sep 2003 A1
20030181943 Daniel et al. Sep 2003 A1
20030187474 Keegan et al. Oct 2003 A1
20030187475 Tsugita et al. Oct 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030191492 Gellman et al. Oct 2003 A1
20030191493 Epstein et al. Oct 2003 A1
20030195554 Shen et al. Oct 2003 A1
20030195555 Khairkhahan et al. Oct 2003 A1
20030195556 Stack et al. Oct 2003 A1
20030199819 Beck Oct 2003 A1
20030199917 Knudson et al. Oct 2003 A1
20030199918 Patel et al. Oct 2003 A1
20030199919 Palmer et al. Oct 2003 A1
20030199920 Boylan et al. Oct 2003 A1
20030199921 Palmer et al. Oct 2003 A1
20030204168 Bosma et al. Oct 2003 A1
20030204202 Palmer et al. Oct 2003 A1
20030204203 Khairkhahan et al. Oct 2003 A1
20030208222 Zadno-Azizi Nov 2003 A1
20030208224 Broome Nov 2003 A1
20030208225 Goll et al. Nov 2003 A1
20030208226 Bruckheimer et al. Nov 2003 A1
20030208227 Thomas Nov 2003 A1
20030208228 Gilson et al. Nov 2003 A1
20030208229 Kletschka Nov 2003 A1
20030208253 Beyer et al. Nov 2003 A1
20030212428 Richter Nov 2003 A1
20030212429 Keegan et al. Nov 2003 A1
20030212431 Brady et al. Nov 2003 A1
20030212432 Khairkhahan et al. Nov 2003 A1
20030212433 Ambrisco et al. Nov 2003 A1
20030212434 Thielen Nov 2003 A1
20030216774 Larson Nov 2003 A1
20030220665 Eskuri et al. Nov 2003 A1
20030220667 Van der Burg et al. Nov 2003 A1
20030225418 Esksuri et al. Dec 2003 A1
20030225435 Hunter et al. Dec 2003 A1
20030229374 Brady et al. Dec 2003 A1
20030233117 Adams et al. Dec 2003 A1
20040006364 Ladd Jan 2004 A1
20040006370 Tsugita Jan 2004 A1
20040015152 Day Jan 2004 A1
20040039412 Isshiki et al. Feb 2004 A1
20040049226 Keegan et al. Mar 2004 A1
20040054394 Lee Mar 2004 A1
20040054395 Lee et al. Mar 2004 A1
20040059372 Tsugita Mar 2004 A1
20040064067 Ward Apr 2004 A1
20040064179 Linder et al. Apr 2004 A1
20040068271 McAlister Apr 2004 A1
20040078044 Kear Apr 2004 A1
20040082962 Demarais et al. Apr 2004 A1
20040088038 Dehnad et al. May 2004 A1
20040093009 Denison et al. May 2004 A1
20040093012 Cully et al. May 2004 A1
20040093016 Root et al. May 2004 A1
20040093059 Lee et al. May 2004 A1
20040098022 Barone May 2004 A1
20040098026 Joergensen et al. May 2004 A1
20040098033 Leeflang et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040102719 Keith et al. May 2004 A1
20040106944 Daniel et al. Jun 2004 A1
20040116831 Vrba Jun 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040138696 Drasler et al. Jul 2004 A1
20040153118 Clubb et al. Aug 2004 A1
20040158278 Becker et al. Aug 2004 A1
20040162576 Barbut et al. Aug 2004 A1
20040164030 Lowe et al. Aug 2004 A1
20040167567 Cano et al. Aug 2004 A1
20040176794 Khosravi Sep 2004 A1
20040176833 Pavcnik et al. Sep 2004 A1
20040199203 Oslund et al. Oct 2004 A1
20040204737 Boismier et al. Oct 2004 A1
20040215322 Kerr Oct 2004 A1
20040225321 Krolik et al. Nov 2004 A1
20040236369 Dubrul Nov 2004 A1
20050004663 Llanos et al. Jan 2005 A1
20050027345 Horan et al. Feb 2005 A1
20050038468 Panetta et al. Feb 2005 A1
20050038503 Greenhalgh Feb 2005 A1
20050049668 Jones et al. Mar 2005 A1
20050126979 Lowe et al. Jun 2005 A1
20050137696 Salahieh et al. Jun 2005 A1
20050149110 Wholey et al. Jul 2005 A1
20050165480 Jordan et al. Jul 2005 A1
20050177186 Cully et al. Aug 2005 A1
20050177246 Datta et al. Aug 2005 A1
20050197688 Theron et al. Sep 2005 A1
20050209634 Brady et al. Sep 2005 A1
20050216053 Douk et al. Sep 2005 A1
20050217767 Barvosa-Carter et al. Oct 2005 A1
20050228474 Laguna Oct 2005 A1
20060009798 Callister et al. Jan 2006 A1
20060009799 Kleshinski et al. Jan 2006 A1
20060020334 Lashinski et al. Jan 2006 A1
20060030923 Gunderson Feb 2006 A1
20060074474 Theron Apr 2006 A1
20060100544 Ayala et al. May 2006 A1
20060100545 Ayala et al. May 2006 A1
20060184194 Pal et al. Aug 2006 A1
20060200221 Malewicz Sep 2006 A1
20060229660 Pal et al. Oct 2006 A1
20060264707 Kinney Nov 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20070038241 Pal Feb 2007 A1
20070100372 Schaeffer May 2007 A1
20070112374 Paul, Jr. et al. May 2007 A1
20070129752 Webler et al. Jun 2007 A1
20070167974 Cully et al. Jul 2007 A1
20070185521 Bui et al. Aug 2007 A1
20070288054 Tanaka et al. Dec 2007 A1
20080015518 Huang et al. Jan 2008 A1
20080027481 Gilson et al. Jan 2008 A1
20080154236 Elkins et al. Jun 2008 A1
20080167629 Dann et al. Jul 2008 A1
20080167677 Vale et al. Jul 2008 A1
20080255587 Cully et al. Oct 2008 A1
20080255606 Mitra et al. Oct 2008 A1
20080262337 Falwell et al. Oct 2008 A1
20080275569 Lesh Nov 2008 A1
20100222805 Pal et al. Sep 2010 A1
20110098738 Hunt Apr 2011 A1
Foreign Referenced Citations (12)
Number Date Country
3429850 Feb 1986 DE
1127556 Aug 2001 EP
1310219 May 2003 EP
1516601 Mar 2005 EP
1557137 Jul 2005 EP
WO 9203097 Mar 1992 WO
WO 9610591 Apr 1996 WO
WO 9916382 Apr 1999 WO
WO 9923976 May 1999 WO
WO 9944510 Sep 1999 WO
WO 0182831 Nov 2001 WO
WO 03077799 Sep 2003 WO
Related Publications (1)
Number Date Country
20060229660 A1 Oct 2006 US
Provisional Applications (1)
Number Date Country
60661732 Mar 2005 US