This application claims the benefit of priority to co-pending U.S. patent application Ser. No. 10/085,149, filed Feb. 27, 2002 and provisional U.S. patent application Ser. No. 60/272,544, filed Mar. 1, 2001 entitled DISTAL PROTECTION FILTER DELIVERY SHEATH, the entire disclosure of which is herein incorporated by reference.
The present invention pertains generally to the field of embolic distal protection. More particularly, the invention pertains to embolic and distal protection filters.
Embolic protection filters can be used to collect debris dislodged when performing a procedure in a vessel. For example, an embolic protection filter can be placed distally of a lesion in a coronary artery when performing angioplasty. The embolic protection filter is first placed distally of the lesion. An angioplasty catheter can then be advanced to the lesion. The lesion is then dilated. Debris dislodged by the dilation of the lesion can be captured by a filter. After dilatation of the lesion, the angioplasty catheter is removed as well as the filter containing the debris.
The present invention pertains to an embolic protection filter delivery sheath assembly. The present invention include an elongate sheath, an elongate shaft (e.g., a guidewire or filter wire) adapted for being disposed with in the sheath, a filter coupled to the shaft, and a manifold coupled to the sheath. In some embodiments, the manifold including a sheath cutting blade. The sheath cutting blade can be used to split the sheath longitudinally, so that the sheath can be peeled away from the filter wire. In some embodiments, the sheath may include a slit that can allow the sheath to be spit whether the cutting blade is present or absent.
The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings illustrate example embodiments of the claimed invention.
It can be appreciated that sheath 12 is generally tubular and may comprise a number of different medical devices such as a catheter (e.g., a guide, diagnostic, or therapeutic catheter). Sheath 12 may be comprised of a polymer. For example, sheath 12 may be comprised of polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polyether block amide (PEBA), or other suitable materials. Alternatively, sheath 12 may be comprised of a metal, metal alloy, or metal-polymer composite. In general, sheath 12 is comprised of materials having an appropriate amount of flexibility, torquability, and pushability to allow sheath 12 to be advanced through a blood vessel or other body lumen.
Wire 20 may comprise a guidewire, filter wire, or other suitable device. Wire 20 is generally metallic and may be comprised of, for example, stainless steel, nickel-titanium alloy, or other suitable materials. In embodiments where wire 20 is a guidewire, wire 20 may includes a distal tip 24, for example including a coil or spring. In some embodiments, a stop 26 is disposed on wire 20 proximally of filter 22.
Filter 22 may be comprised of a polyurethane sheet disposed over a filter frame. The polyurethane sheet has at least one opening that may be, for example, formed by known laser techniques. The holes or openings are sized to allow blood flow therethrough but restrict flow of debris or emboli floating in the body lumen or cavity. In some embodiments, the filter frame may include one or more struts 25 extending between filter 22 and wire 20.
Filter 22 is adapted to shift between a first generally closed collapsed configuration and a second generally expanded configuration for collecting debris in a body lumen. In some embodiments, filter 22 is biased to be in the expanded configuration. Thus, filter 22 can be at least partially collapsed within sheath 12 and may “self-expand” when sheath 12 is withdrawn from filter 22.
Embolic protection filter delivery sheath assembly 10 includes a manifold housing 28 located at proximal end 16 of sheath 12. Manifold housing 28 is available to the clinician for manipulating or otherwise actuating or holding assembly 10. It can be appreciated that modifications to the general shape or material composition of manifold housing 28 can be substituted without departing from the spirit of the invention.
A hypotube 29 can be affixed to and/or disposed within manifold housing 28 (and/or within a lumen defined by housing 28). Hypotube 29 may serve as a conduit for wire 20 to pass through or otherwise separate from sheath 12. Separation of sheath 12 and wire 20 may be important because sheath 12 may need to be moved relative to wire 20. Moving sheath 12 in the proximal direction relative to wire 20 may allow filter 22 to shift from the collapsed configuration to the expanded configuration.
A blade 30 can be affixed to or within housing 28. Blade 30 may include a distally disposed cutting edge 32. Blade 30 is configured to cut or otherwise split sheath 12. In some embodiments, sheath 12 can be cut by pulling sheath 12 across blade 30 and/or cutting edge 32.
A proximal portion of sheath 12 is disposed within an opening 34 defined by manifold housing 28. Opening 34 may define a position where sheath 12 and wire 20 are separated by manifold housing 28. A opening 34, sheath 12 may curve or bend laterally (i.e., away from the longitudinal axis along the majority of the length of sheath 12). Wire 20 generally continues in the direction of the longitudinal axis. A portion of filter wire 20 can extend longitudinally through hypotube 29 and can be held in place relative to manifold 28 (and, thus, sheath 12) by a collet 36 threadably connected to housing 28. Housing 28 also includes a lure fitting 38 for prepping sheath 10.
A pull tab 40 is releasably connected to housing 28. Distal end 16 of sheath 12 is connected to pull tab 40 by adhesive or another method. Pull tab 40 and sheath 12 are connected at or near the portion of sheath 14 that curves laterally away from the longitudinal axis. Pull tab 40 may, for example, comprise a thumb ring, finger ring, or other graspable surface that can be pulled away from manifold housing 28. Because sheath 12 is connected to pull tab 40, pull tab 40 may be used to move sheath 12. Sheath 12 may be split, cut, opened, etc. by using pull tab 40 to pull sheath 12 across blade 30. In embodiments where sheath 12 includes a slit, actuating pull tab 40 may allow sheath 12 to become spit along the slit.
Embolic protection filter delivery sheath 10 can be used in conjunction with filter 22 to provide embolic protection from embolism during procedures performed in a patient's vasculature. For example, filter 22 can be delivered distally of a coronary lesion using assembly 10. Prior to delivery, filter 22 is positioned in sheath 12 as shown. Collet 36 is tightened to fix the position of filter 22 relative to manifold 28 (and sheath 12). Saline is introduced through lure fitting 38 and hypotube 29 to flush air from sheath 12 and distal larger diameter portion 14. When filter 22 is positioned as shown in
Once sheath 10 and filter 22 are advanced distally of the lesion, sheath 12 is “peeled away”, generally moved proximally, and/or removed from the blood vessel to deploy filter 22. In some embodiments, sheath 12 is completed removed from assembly 10 (and, thus, the blood vessel). When sheath 12 is removed, an angioplasty catheter (or any other suitable guide, diagnostic, or therapeutic catheter) can be advanced over filter wire 20 to the lesion. The lesion may then be dilated by the angioplasty catheter. The angioplasty catheter and filter assembly 10 may then removed.
To remove sheath 10 from filter wire 20 and filter 22, pull tab 40 is pulled from manifold 28 generally in the direction of arrow A. This will draw sheath 12 proximally as shown by arrows B. As sheath 12 moves in the direction of arrows B, sheath 12 is sliced longitudinally by cutting edge 32 of blade 30. Thus, an elongate slit will extend from side opening 18 and distal larger diameter portion 14 will move proximally until it becomes disposed proximate manifold 28. In some embodiments, collet 36 is loosened and manifold 28 and larger diameter portion 14 may be removed proximally from filter wire 20. Alternatively, pull tab 40 may be actuated until the entire length of sheath 12 is sliced open and can be removed from assembly 10 and/or the blood vessel.
It can be appreciated that a slit can be pre-formed in sheath 12 such that blade 32 would not be necessary. Alternately, a narrow longitudinal region of sheath 12 could be thinned to peel away sheath 12 from wire 20 without the need of blade 30.
By peeling or otherwise removing sheath 12 at least in part away from wire 20 rather than removing it entirely over the proximal end wire 20, a shorter filter wire 20 can be used. Thus, if sheath 12 is split along a sufficient amount of its length, wire 20 can be short enough to enable single operator removal of sheath 12.
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
3472230 | Fogarty | Oct 1969 | A |
3570485 | Reilly | Mar 1971 | A |
3952747 | Kimmell, Jr. | Apr 1976 | A |
3996938 | Clark, III | Dec 1976 | A |
4046150 | Schwartz et al. | Sep 1977 | A |
4425908 | Simon | Jan 1984 | A |
4590938 | Segura et al. | May 1986 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4650466 | Luther | Mar 1987 | A |
4706671 | Weinrib | Nov 1987 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4790813 | Kensey | Dec 1988 | A |
4794928 | Kletschka | Jan 1989 | A |
4807626 | McGirr | Feb 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4921478 | Solano et al. | May 1990 | A |
4921484 | Hillstead | May 1990 | A |
4926858 | Gifford, III et al. | May 1990 | A |
4969891 | Gewertz | Nov 1990 | A |
4997424 | Little | Mar 1991 | A |
4998539 | Delsanti | Mar 1991 | A |
5002560 | Machold et al. | Mar 1991 | A |
5011488 | Ginsburg | Apr 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5100423 | Fearnot | Mar 1992 | A |
5102415 | Guenther et al. | Apr 1992 | A |
5133733 | Rasmussen et al. | Jul 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5152777 | Goldberg et al. | Oct 1992 | A |
5160342 | Reger et al. | Nov 1992 | A |
5224953 | Morgentaler | Jul 1993 | A |
5322513 | Walker | Jun 1994 | A |
5329942 | Gunther et al. | Jul 1994 | A |
5330484 | Gunther | Jul 1994 | A |
5354310 | Garnic et al. | Oct 1994 | A |
5376100 | Lefebvre | Dec 1994 | A |
5421832 | Lefebvre | Jun 1995 | A |
5423742 | Theron | Jun 1995 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
4842579 | Shiber | Oct 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5462529 | Simpson et al. | Oct 1995 | A |
5536242 | Willard et al. | Jul 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5658296 | Bates et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5687727 | Kraus et al. | Nov 1997 | A |
5695519 | Summers et al. | Dec 1997 | A |
5720764 | Naderlinger | Feb 1998 | A |
5728066 | Daneshvar | Mar 1998 | A |
5749848 | Jang et al. | May 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5779716 | Cano et al. | Jul 1998 | A |
5792157 | Mische et al. | Aug 1998 | A |
5795322 | Bouewijn | Aug 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5800525 | Bachinski et al. | Sep 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5833644 | Zadno-Azizi et al. | Nov 1998 | A |
5833650 | Imran | Nov 1998 | A |
5846260 | Maahs | Dec 1998 | A |
5848964 | Samuels | Dec 1998 | A |
5876367 | Kaganov et al. | Mar 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5925016 | Chornenky et al. | Jul 1999 | A |
5925060 | Forber | Jul 1999 | A |
5925062 | Purdy | Jul 1999 | A |
5935139 | Bates | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5941896 | Kerr | Aug 1999 | A |
5947995 | Samuels | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5980555 | Barbut et al. | Nov 1999 | A |
5989281 | Barbut et al. | Nov 1999 | A |
5993469 | McKenzie et al. | Nov 1999 | A |
5997557 | Barbut et al. | Dec 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6007557 | Ambrisco et al. | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6013085 | Howard | Jan 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6051014 | Jang | Apr 2000 | A |
6051015 | Maahs | Apr 2000 | A |
6053932 | Daniel et al. | Apr 2000 | A |
6059814 | Ladd | May 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6068645 | Tu | May 2000 | A |
6074377 | Sanfilippo, II | Jun 2000 | A |
6086605 | Barbut et al. | Jul 2000 | A |
6117154 | Barbut et al. | Sep 2000 | A |
6129739 | Khosravi | Oct 2000 | A |
6136016 | Barbut et al. | Oct 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6171328 | Addis | Jan 2001 | B1 |
6179851 | Barbut et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6179861 | Khosravi et al. | Jan 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6206868 | Parodi | Mar 2001 | B1 |
6214026 | Lepak et al. | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6224620 | Maahs | May 2001 | B1 |
6231544 | Tsugita et al. | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6235045 | Barbut et al. | May 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6245087 | Addis | Jun 2001 | B1 |
6245088 | Lowery | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6251119 | Addis | Jun 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6264672 | Fisher | Jul 2001 | B1 |
6270513 | Tsugita et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6280413 | Clark et al. | Aug 2001 | B1 |
6287321 | Jang | Sep 2001 | B1 |
6290710 | Cryer et al. | Sep 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6319268 | Ambrisco et al. | Nov 2001 | B1 |
6344049 | Levinson et al. | Feb 2002 | B1 |
6391044 | Yadav et al. | May 2002 | B1 |
6497681 | Brenner | Dec 2002 | B1 |
6540722 | Boyle et al. | Apr 2003 | B1 |
6562058 | Seguin et al. | May 2003 | B2 |
6602271 | Adams et al. | Aug 2003 | B2 |
6602273 | Marshall | Aug 2003 | B2 |
6620182 | Khosravi et al. | Sep 2003 | B1 |
6623506 | McGuckin, Jr. et al. | Sep 2003 | B2 |
6652505 | Tsugita | Nov 2003 | B1 |
6656203 | Roth et al. | Dec 2003 | B2 |
6656351 | Boyle | Dec 2003 | B2 |
Number | Date | Country |
---|---|---|
28 21 048 | Jul 1980 | DE |
34 17 738 | Nov 1985 | DE |
40 30 998 | Oct 1990 | DE |
199 36 207 | Aug 1999 | DE |
199 16 162 | Oct 2000 | DE |
0 200 688 | Nov 1986 | EP |
0 293 605 | Dec 1988 | EP |
0 391 544 | Oct 1990 | EP |
0 411 118 | Feb 1991 | EP |
0 427 429 | May 1991 | EP |
0 437 121 | Jul 1991 | EP |
0 472 334 | Feb 1992 | EP |
0 472 368 | Feb 1992 | EP |
0 533 511 | Mar 1993 | EP |
0 655 228 | Nov 1994 | EP |
0 686 379 | Jun 1995 | EP |
0 696 447 | Feb 1996 | EP |
0 732 087 | Sep 1996 | EP |
0 737 450 | Oct 1996 | EP |
0 743 046 | Nov 1996 | EP |
0 759 287 | Feb 1997 | EP |
0 771 549 | May 1997 | EP |
0 784 988 | Jul 1997 | EP |
0 852 132 | Jul 1998 | EP |
1 127 556 | Aug 2001 | EP |
2 580 504 | Oct 1986 | FR |
2 643 250 | Aug 1990 | FR |
2 666 980 | Mar 1992 | FR |
2 694 687 | Aug 1992 | FR |
2 768 326 | Mar 1999 | FR |
2 020 557 | Jan 1983 | GB |
8-187294 | Jul 1996 | JP |
764684 | Sep 1980 | SU |
WO 8809683 | Dec 1988 | WO |
WO 9203097 | Mar 1992 | WO |
WO 9414389 | Jul 1994 | WO |
WO 9424946 | Nov 1994 | WO |
WO 9601591 | Jan 1996 | WO |
WO 9610375 | Apr 1996 | WO |
WO 9619941 | Jul 1996 | WO |
WO 9623441 | Aug 1996 | WO |
WO 9633677 | Oct 1996 | WO |
WO 9717100 | May 1997 | WO |
WO 9727808 | Aug 1997 | WO |
WO 9742879 | Nov 1997 | WO |
WO 9802084 | Jan 1998 | WO |
WO 9802112 | Jan 1998 | WO |
WO 9823322 | Jun 1998 | WO |
WO 9833443 | Aug 1998 | WO |
WO 9834673 | Aug 1998 | WO |
WO 9836786 | Aug 1998 | WO |
WO 9838920 | Sep 1998 | WO |
WO 9838929 | Sep 1998 | WO |
WO 9839046 | Sep 1998 | WO |
WO 9839053 | Sep 1998 | WO |
WO 9846297 | Oct 1998 | WO |
WO 9847447 | Oct 1998 | WO |
WO 9849952 | Nov 1998 | WO |
WO 9850103 | Nov 1998 | WO |
WO 9851237 | Nov 1998 | WO |
WO 9855175 | Dec 1998 | WO |
WO 9909895 | Mar 1999 | WO |
WO 9922673 | May 1999 | WO |
WO 9923976 | May 1999 | WO |
WO 9925252 | May 1999 | WO |
WO 9930766 | Jun 1999 | WO |
0 934 729 | Aug 1999 | WO |
WO 9940964 | Aug 1999 | WO |
WO 9942059 | Aug 1999 | WO |
WO 9944510 | Sep 1999 | WO |
WO 9944542 | Sep 1999 | WO |
WO 9955236 | Nov 1999 | WO |
WO 9958068 | Nov 1999 | WO |
WO 0007521 | Feb 2000 | WO |
WO 0007655 | Feb 2000 | WO |
WO 0009054 | Feb 2000 | WO |
WO 0016705 | Mar 2000 | WO |
WO 0049970 | Aug 2000 | WO |
WO 0053120 | Sep 2000 | WO |
WO 0067664 | Nov 2000 | WO |
WO 0067665 | Nov 2000 | WO |
WO 0067666 | Nov 2000 | WO |
WO 0067668 | Nov 2000 | WO |
WO 0067669 | Nov 2000 | WO |
WO 0105462 | Jan 2001 | WO |
WO 0108595 | Feb 2001 | WO |
WO 0108596 | Feb 2001 | WO |
WO 0108742 | Feb 2001 | WO |
WO 0108743 | Feb 2001 | WO |
WO 0110320 | Feb 2001 | WO |
WO 0115629 | Mar 2001 | WO |
WO 0121077 | Mar 2001 | WO |
WO 0121100 | Mar 2001 | WO |
WO 0126726 | Apr 2001 | WO |
WO 0135857 | May 2001 | WO |
WO 0143662 | Jun 2001 | WO |
WO 0147579 | Jul 2001 | WO |
WO 0149208 | Jul 2001 | WO |
WO 0149209 | Jul 2001 | WO |
WO 0149215 | Jul 2001 | WO |
WO 0149355 | Jul 2001 | WO |
WO 0152768 | Jul 2001 | WO |
WO 0158382 | Aug 2001 | WO |
WO 0160442 | Aug 2001 | WO |
WO 0167989 | Sep 2001 | WO |
WO 0170326 | Sep 2001 | WO |
WO 0172205 | Oct 2001 | WO |
WO 0187183 | Nov 2001 | WO |
WO 0189413 | Nov 2001 | WO |
WO 0191824 | Dec 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040158277 A1 | Aug 2004 | US |