Embolization

Information

  • Patent Grant
  • 8012454
  • Patent Number
    8,012,454
  • Date Filed
    Friday, August 29, 2003
    21 years ago
  • Date Issued
    Tuesday, September 6, 2011
    13 years ago
Abstract
A particle includes a ferromagnetic material, a radiopaque material, and/or an MRI-visible material.
Description
TECHNICAL FIELD

This invention relates to embolization.


BACKGROUND

Therapeutic vascular occlusions (embolizations) are used to prevent or treat pathological conditions in situ. Compositions including embolic particles are used for occluding vessels in a variety of medical applications. Delivery of embolic particles through a catheter is dependent on size uniformity, density and compressibility of the embolic particles.


SUMMARY

In one aspect, the invention features a particle that includes a polymeric matrix and a ferromagnetic material distributed in the polymeric matrix. The particle has a diameter of from about ten microns to about 3,000 microns.


In another aspect, the invention features a method of manufacturing particles. The method includes forming a mixture containing a polymer, a gelling compound, and a ferromagnetic material, and treating the mixture to form a particle that includes the polymeric matrix and the ferromagnetic material in the polymeric matrix. The particles have a mean diameter of from about ten microns to about 3,000 microns.


In a further aspect, the invention features a method that includes administering to a subject a therapeutically effective amount of embolic particles. The particles include a polymeric matrix and a ferromagnetic material distributed in the polymeric matrix. The particles have a mean diameter of from about ten microns to about 3,000 microns.


In one aspect, the invention features a particle that includes a polymeric matrix and a radiopaque material distributed in the polymeric matrix. The particle has a diameter of from about ten microns to about 3,000 microns. The particle has an interior with a density of large pores and a surface region with a density of large pores, and the density of large pores of the interior is greater than the density of large pores of the surface region.


In another aspect, the invention features a method of manufacturing particles. The method includes forming a mixture containing a polymer, gelling compound, and a radiopaque material, and treating the mixture to form a particle comprising a polymeric matrix and radiopaque material in the polymeric matrix. The particles have a diameter of from about ten microns to about 3,000 microns. The particles have an interior with a density of large pores and a surface region with a density of large pores, and the density of large pores of the interior is greater than the density of large pores of the surface region.


In a further aspect, the invention features a method that includes administering to a subject a therapeutically effective amount of embolic particles. The particles include a polymeric matrix and a radiopaque material distributed in the polymeric matrix. The particles have a mean diameter of from about ten microns to about 3,000 microns. The particles have an interior with a density of large pores and a surface region with a density of large pores, and the density of large pores of the interior is greater than the density of large pores of the surface region.


In one aspect, the invention features a particle that includes a polymeric matrix and an MRI-visible material distributed in the polymeric matrix. The particle has a diameter of from about ten microns to about 3,000 microns. The particle has an interior with a density of large pores and a surface region with a density of large pores, and the density of large pores of the interior is greater than the density of large pores of the surface region.


In another aspect, the invention features a method of manufacturing particles. The method includes forming a mixture containing a polymer, gelling compound, and an MRI-visible material, and treating the mixture to form a particle comprising a polymeric matrix and the MRI-visible material in the polymeric matrix. The particles have a mean diameter of from about ten microns to about 3,000 microns. The particles have an interior with a density of large pores and a surface region with a density of large pores, and the density of large pores of the interior is greater than the density of large pores of the surface region.


In a further aspect, the invention features a method that includes administering to a subject a therapeutically effective amount of embolic particles. The particles include a polymeric matrix and an MRI-visible material distributed in the polymeric matrix. The particles have a mean diameter of from about ten microns to about 3,000 microns. The particles have an interior with a density of large pores and a surface region with a density of large pores, and the density of large pores of the interior is greater than the density of large pores of the surface region.


In another aspect, the invention features a method that includes heating a plurality of particles disposed in a body lumen. The particles include a polymeric matrix and a ferromagnetic material distributed in the polymeric matrix. The particles have a diameter of from about ten microns to about 3,000 microns.


Embodiments can include one or more of the following.


A ferromagnetic material can be, for example, a metal (e.g., a transition metal), a metal alloy, a metal oxide, a soft ferrite, a rare-earth magnet alloy, or an amorphous and non-earth alloy. Examples of ferromagnetic materials include magnetite, nickel, cobalt, iron and Mu-metal.


A radiopaque material can be, for example, a metal, a metal alloy, a metal oxide, or a contrast agent. Examples of radiopaque materials include titanium dioxide, bismuth subcarbonate, platinum and barium sulfate.


An MRI-visible material can be, for example, a non-ferrous metal-alloy containing paramagnetic elements, a non-ferrous metallic band coated with an oxide or a carbide layer of dysprosium or gadolinium, a non-ferrous metal coated with a layer of superparamagnetic material, or a nanocrystalline particle of a transition metal oxide. Examples of MRI-visible materials include terbium-dysprosium, dysprosium, gadolinium, Dy2O3, and gadolinium-containing compounds (e.g., Gd2O3).


The material (ferromagnetic material, radiopaque material, MRI-visible material) can be in the shape of a particle.


The material (ferromagnetic material, radiopaque material, MRI-visible material) can have a diameter of from about two microns to about 20 microns (e.g., from about ten microns to about 12 microns).


The material (ferromagnetic material, radiopaque material, MRI-visible material) can be substantially homogeneously distributed in the polymeric matrix.


A particle containing a polymer matrix and a material (ferromagnetic material, radiopaque material, MRI-visible material) can have a diameter of at least about 100 microns (e.g., at least about 500 microns, at least about 1,000 microns, at least about 1,500 microns, at least about 2,000 microns, at most about 2,500 microns) and/or at most about 2,000 microns (e.g., at most about 1,500 microns, at most about 1,200 microns, at most about 1,000 microns, at most about 500 microns). For example, such a particle can have a diameter of from about 100 microns to about 500 microns, or from about 500 microns to about 1,200 microns.


A particle containing a polymer matrix and a material (ferromagnetic material, radiopaque material, MRI-visible material) can also include a therapeutic agent (e.g., in the particle and/or on the particle).


A particle containing a polymer matrix and a material (ferromagnetic material, radiopaque material, MRI-visible material) can be substantially spherical.


The polymeric matrix can include a polysaccharide (e.g., alginate).


The polymeric matrix can be formed of one or more polyvinyl alcohols, polyacrylic acids, polymethacrylic acids, poly vinyl sulfonates, carboxymethyl celluloses, hydroxyethyl celluloses, substituted celluloses, polyacrylamides, polyethylene glycols, polyamides, polyureas, polyurethanes, polyesters, polyethers, polystyrenes, polysaccharides, polylactic acids, polyethylenes, polymethylmethacrylates, polycaprolactones, polyglycolic acids, and/or poly(lactic-co-glycolic) acids.


A particle containing a polymer matrix and a material (ferromagnetic material, radiopaque material, MRI-visible material) can include two or more polymers. For example, one of the polymers can form a coating over another (e.g., matrix) polymer. The polymer coating can contain one or more ferromagnetic materials, one or more MRI-visible materials and/or one or more radiopaque materials. The density of the material(s) in the coating can be less than, greater than, or about the same as the density of the material(s) in the matrix polymer. The polymer coating can be bioabsorbable (e.g., formed of a polysaccharide such as alginate).


In some embodiments, a particle containing a polymeric matrix and a ferromagnetic material can contain pores. In certain embodiments, a particle containing a polymeric matrix and a ferromagnetic material can be nonporous.


In some embodiments in which a particle that contains a polymeric matrix and a ferromagnetic material contains pores, the density of large pores in an interior region of the particle can be greater than the density of large pores of the surface region.


A particle containing a polymer matrix and a material (ferromagnetic material, radiopaque material, MRI-visible material) can contain from about 0.1 percent to about 90 percent by weight (e.g., from about 0.1 percent to about 75 percent by weight) of the ferromagnetic material, MRI-visible material or radiopaque material. A particle containing a polymer matrix and a material (ferromagnetic material, radiopaque material, MRI-visible material) can have a coating that includes an inorganic, ionic salt.


The gelling compound used in a method to make a particle can be a polysaccharide (e.g. alginate).


A method of making a particle can include forming drops of the mixture that contains the polymer and gelling agent. The method can include contacting the drops with a gelling agent. The method can further include reacting the polymer. The method can also include removing the gelling compound. The method can include combining the particles with a pharmaceutically acceptable medium.


A method of administering embolic particles can include administration by percutaneous injection.


A method of administering embolic particles can include administration by a catheter.


A method of administering embolic particles can include applying a magnetic field to direct the particles. The magnetic field can be external to a subject, internal to the subject, or both. The particles can be directed with a catheter comprising a magnet.


A method of administering embolic particles can include releasing the therapeutic agent from the particles.


A method can include ablating body tissue.


In some embodiments, heating the particles can include exposing the particles to RF radiation.


In some embodiments, heating the particles heats body tissue.


Embodiments of the invention may have one or more of the following advantages.


In some embodiments, a particle can contain one or more components that are biocompatible. As an example, a particle can include one or more biocompatible polymers (e.g., one or more bioabsorable polymers). As another example, a particle can contain one or more materials (e.g., one or more radiopaque materials, one or more ferromagnetic materials, one or more MRI-visible materials) that are biocompatible. In certain embodiments, a particle can include one or more biocompatible polymers (e.g., one or more bioabsorable polymers) and one or more additional biocompatible materials (e.g., one or more radiopaque materials, one or more ferromagnetic materials, one or more MRI-visible materials).


In embodiments in which a particle contains one or more radiopaque materials, the particle can exhibit enhanced visibility under X-ray fluoroscopy (e.g., when the particle is in a subject). In certain embodiments, the presence of one or more radiopaque materials can allow the particle to be viewed using X-ray fluoroscopy in the absence of a radiopaque contrast agent. This can allow a physician or technician to view the particle in an embolic composition (e.g., prior to delivering the particles from a catheter) via a non-invasive technique, allow the physician or technician to position the particles at a desired location within the subject (e.g., by positioning the delivery portion of the catheter at a desired location within the subject and then delivering the embolic composition into the subject), and/or allow the physician or technician to monitor the progress of a procedure and/or determine whether the particles are migrating to a site that is not targeted for treatment.


In embodiments in which a particle contains one or more MRI-visible materials, the particle can exhibit enhanced visibility under MRI (e.g., when the particle is in a subject). In certain embodiments, the presence of one or more MRI-visible materials can allow the particle to be viewed using MRI in the absence of an MRI contrast agent. This can allow a physician or technician to view the particle in an embolic composition (e.g., prior to delivering the particles from a catheter) via a non-invasive technique, allow the physician or technician to position the particles at a desired location within the subject (e.g., by positioning the delivery portion of the catheter at a desired location within the subject and then delivering the embolic composition into the subject), and/or allow the physician or technician to monitor the progress of a procedure and/or determine whether the particles are migrating to a site that is not targeted for treatment.


In embodiments in which a particle contains one or more ferromagnetic materials, the positioning of the particle can be relatively easily and/or non-invasively controlled using a magnetic field (e.g., a magnetic field outside a subject, a magnetic field inside a subject, or both). As an example, the particle can be steered through a body lumen (e.g., to a relatively distal location of a lumen that might otherwise be difficult for the particle to reach) by applying a magnetic field to the particle. As another example, the ability of the particle to migrate from a desired location can be reduced by applying a magnetic field.


In some embodiments (e.g., when a particle contains a ferromagnetic material), the particle can enhance RF ablation procedures.


Features and advantages are in the description, drawings, and claims.





DESCRIPTION OF DRAWINGS


FIG. 1 is a cross-sectional view of an embodiment of a particle.



FIG. 2A is a schematic of an embodiment of a system for manufacturing particles, and FIG. 2B is an enlarged schematic of region 2B in FIG. 2A.



FIG. 3A is a schematic illustrating an embodiment of injection of an embolic composition including embolic particles into a vessel, and FIG. 3B is an enlarged view of the region 3B in FIG. 3A.





DETAILED DESCRIPTION

Referring to FIG. 1, a substantially spherical particle 10 includes a matrix 12, a material 14 and pores 16. Material 14, which is formed of one or more radiopaque materials, one or more MRI-visible materials, and/or one or more ferromagnetic materials, is substantially homogeneously distributed in matrix 12. Pores 16 are regions of particle 10 that are substantially devoid of matrix 12 and material 14. In some embodiments, pores 16 contain a gas, such as air.


In general, particle 10 has a diameter of about 3,000 microns or less (e.g., about 2,500 microns or less; about 2,000 microns or less; about 1,500 microns or less; about 1,200 microns or less; about 1,000 microns or less; about 900 microns or less; about 700 microns or less; about 500 microns or less; about 400 microns or less; about 300 microns or less; about 100 microns or less) and/or about ten microns or more (e.g., about 100 microns or more; about 300 microns or more; about 400 microns or more; about 500 microns or more; about 700 microns or more; about 900 microns or more; about 1,000 microns or more; about 1,200 microns or more; about 1,500 microns or more; about 2,000 microns or more; about 2,500 microns or more). In certain embodiments, the diameter of particle 10 can be from about 100 microns to about 700 microns; from about 500 microns to about 700 microns; from about 100 microns to about 500 microns; from about 100 microns to about 300 microns; from about 300 microns to about 500 microns; from about 500 microns to about 1,200 microns; from about 500 microns to about 700 microns; from about 700 microns to about 900 microns; from about 900 microns to about 1,200 microns.


As shown in FIG. 1, particle 10 can be considered to include a center region, C, from the center c′ of particle 10 to a radius of about r/3, a body region, B, from about r/3 to about 2 r/3, and a surface region, S, from about 2 r/3 to r. The regions can be characterized by the relative size of pores 16 present in particle 10 in each region, the density of pores 16 (the number of pores 16 per unit volume of particle 10) in each region, and/or the mass density (the density of the matrix 12 and material 14 mass per unit volume of particle 10) in each region.


In general, the mean size of pores 16 in region C of particle 10 is greater than the mean size of pores 16 at region S of particle 10. In some embodiments, the mean size of pores 16 in region C of particle 10 is greater than the mean size of pores 16 in region B particle 10, and/or the mean size of pores 16 in region B of particle 10 is greater than the mean size of pores 16 at region S particle 10. In some embodiments, the mean size of pores 16 in region C is about 20 microns or more (e.g., about 30 microns or more, from about 20 microns to about 35 microns). In certain embodiments, the mean size of pores 16 in region B is about 18 microns or less (e.g. about 15 microns or less, from about 18 microns to about two microns). In some embodiments, the mean size of pores 16 in region S is about one micron or less (e.g. from about 0.1 micron to about 0.01 micron). In certain embodiments, the mean size of pores 16 in region B is from about 50 percent to about 70 percent of the mean size of pores 16 in region C, and/or the mean size of pores 16 at region S is about ten percent or less (e.g., about two percent or less) of the mean size of pores 16 in region B. In some embodiments, the surface of particle 10 and/or its region S is/are substantially free of pores having a diameter greater than about one micron (e.g., greater than about ten microns). In certain embodiments, the mean size of pores 16 in the region from 0.8 r to r (e.g., from 0.9 r to r) is about one micron or less (e.g., about 0.5 micron or less, about 0.1 micron or less). In some embodiments, pores 16 in the region from the center of particle 10 to 0.9 r (e.g., from the center of particle 10 to 0.8 r) are about ten microns or greater and/or have a mean size of from about two microns to about 35 microns. In certain embodiments, the mean size of pores 16 in the region from 0.8 r to r (e.g., from 0.9 r to r) is about five percent or less (e.g., about one percent or less, about 0.3 percent or less) of the mean size of pores 16 in the region from the center to 0.9 r. In some embodiments, the largest pores in particle 10 can have a size in the range of about one percent or more (e.g., about five percent or more, about ten percent or more) of the diameter of particle 10. The size of pores 16 in particle 10 can be measured by viewing a cross-section of particle 10. For irregularly shaped (nonspherical) pores, the maximum visible cross-section is used.


Generally, the density of pores 16 in region C of particle 10 is greater than the density of pores 16 at region S of particle 10. In some embodiments, the density of pores 16 in region C of particle 10 is greater than the density of pores 16 in region B of particle 10, and/or the density of pores 16 in region B of particle 10 is greater than the density of pores 16 at region S of particle 10.


In general, the mass density in region C of particle 10 is less than the mass density at region S of particle 10. In some embodiments, the mass density in region C of particle 10 is less than the mass density in region B of particle 10, and/or the mass density in region B of particle 10 is less than the mass density at region S of particle 10.


In general, the density of particle 10 (e.g., as measured in grams of material per unit volume) is such that it can be readily suspended in a carrier fluid (e.g., a pharmaceutically acceptable carrier, such as a saline solution, a contrast solution, or a mixture thereof) and remain suspended during delivery. In some embodiments, the density of particle 10 is from about 1.1 grams per cubic centimeter to about 1.4 grams per cubic centimeter. As an example, for suspension in a saline-contrast solution, the density of particle 10 can be from about 1.2 grams per cubic centimeter to about 1.3 grams per cubic centimeter.


In certain embodiments the region of small pores near the surface of particle 10 can be relatively stiff and incompressible, which can enhance resistance to shear forces and abrasion. In addition, the variable pore size profile can produce a symmetric compressibility and, it is believed, a compressibility profile. As a result, particle 10 can be relatively easily compressed from a maximum, at rest diameter to a smaller, compressed first diameter. Compression to an even smaller diameter, however, may involve substantially greater force. Without wishing to be bound by theory, it is believed that a variable compressibility profile can be the result of a relatively weak, collapsible inter-pore wall structure in the center region of particle 10 (where the pores are relatively large), and a stiffer inter-pore wall structure near the surface of particle 10 (where the pores are more numerous and relatively small). It is further believed that a variable pore size profile can enhance elastic recovery after compression. It is also believed that the pore structure can influence the density of particle 10 and the rate of carrier fluid or body fluid uptake.


In some embodiments, a plurality of the particles (e.g., in an embolic composition) can be delivered through a catheter having a lumen with a cross-sectional area that is smaller (e.g., about 50 percent or less) than the uncompressed cross-sectional area of the particles. In such embodiments, the particles are compressed to pass through the catheter for delivery into the body. Typically, the compression force is provided indirectly, by depressing the syringe plunger to increase the pressure applied to the carrier fluid. In general, the particles are relatively easily compressed to diameters sufficient for delivery through the catheter into the body. The relatively robust, rigid surface region of the particles can resist abrasion when the particles contact hard surfaces such as syringe surfaces, hard plastic or metal stopcock surfaces, and/or the catheter lumen wall (made of, e.g., Teflon) during delivery. Once in the body, the particles can substantially recover to original diameter and shape for efficient transport in the carrier and body fluid stream. At the point of occlusion, the particles can again compress as they aggregate in the occlusion region. The particles can form a relatively dense occluding mass. The compression of the particles in the body is generally determined by the force provided by body fluid flow in the lumen. In some embodiments, the compression may be limited by the compression profile of the particles, and the number of particles needed to occlude a given diameter may be reduced.


In certain embodiments, the sphericity of particle 10 after compression in a catheter (e.g., after compression to about 50 percent or more of the cross-sectional area of particle 10) is about 0.8 or more (e.g., about 0.85 or more, about 0.9 or more, about 0.95 or more, about 0.97 or more). Particle 10 can be, for example, manually compressed, essentially flattened, while wet to about 50 percent or less of its original diameter and then, upon exposure to fluid, regain a sphericity of about 0.8 or more (e.g., about 0.85 or more, about 0.9 or more, about 0.95 or more, about 0.97 or more). As referred to herein, the sphericity of a particle is calculated using the equations in Appendix A. The relevant parameters of a particle can be determined using a Beckman Coulter RapidVUE Image Analyzer version 2.06 (Beckman Coulter, Miami, Fla.).


Porous particles are described, for example, in U.S. patent application Ser. No. 10/637,130, filed on Aug. 8, 2003, which issued as U.S. Pat. No. 7,449,236 on Nov. 11, 2008 and entitled “Porous Polymeric Particle Comprising Polyvinyl Alcohol and Having Interior To Surface Porosity Gradient”, which is incorporated herein by reference


In general, matrix 12 is formed of one or more polymers. Examples of polymers include polyvinyl alcohols, polyacrylic acids, polymethacrylic acids, poly vinyl sulfonates, carboxymethyl celluloses, hydroxyethyl celluloses, substituted celluloses, polyacrylamides, polyethylene glycols, polyamides, polyureas, polyurethanes, polyesters, polyethers, polystyrenes, polysaccharides, polylactic acids, polyethylenes, polymethylmethacrylates, polycaprolactones, polyglycolic acids, poly(lactic-co-glycolic) acids (e.g., poly(d-lactic-co-glycolic) acids), and copolymers or mixtures thereof. In some embodiments, matrix 12 can be substantially formed of a highly water insoluble, high molecular weight polymer. An example of such a polymer is a high molecular weight polyvinyl alcohol (PVA) that has been acetalized. Matrix 12 can be substantially pure intrachain 1,3-acetalized PVA and substantially free of animal derived residue such as collagen. In some embodiments, particle 10 includes a minor amount (e.g., about 2.5 weight percent or less, about one weight percent or less, about 0.2 weight percent or less) of a gelling material (e.g., a polysaccharide, such as alginate). In certain embodiments, the majority (e.g., at least about 75 weight percent, at least about 90 weight percent, at least about 95 weight percent) of matrix 12 is formed of a bioabsorbable polymer (e.g., polysaccharide, such as alginate).


In general, the amount of matrix 12 contained in particle 10 can be varied as desired. In some embodiments, particle 10 can include about 99.9 percent by weight or less (e.g., about 99.5 percent by weight or less, about 99 percent by weight or less, about 95 percent by weight or less, about 90 percent by weight or less, about 80 percent by weight or less, about 70 percent by weight or less, about 60 percent by weight or less, about 50 percent by weight or less, about 40 percent by weight or less, about 30 percent by weight or less, about 20 percent by weight or less) and/or about ten percent by weight or more (e.g., about 20 percent by weight or more, about 30 percent by weight or more, about 40 percent by weight or more, about 50 percent by weight or more, about 60 percent by weight or more, about 70 percent by weight or more, about 80 percent by weight or more, about 90 percent by weight or more, about 95 percent by weight or more) of matrix 12.


In some embodiments, material 14 is formed of one or more ferromagnetic materials. As used herein, a ferromagnetic material refers to a material that has a magnetic susceptibility of at least about 0.075 or more (e.g., at least about 0.1 or more; at least about 0.2 or more; at least about 0.3 or more; at least about 0.4 or more; at least about 0.5 or more; at least about one or more; at least about ten or more; at least about 100 or more; at least about 1,000 or more; at least about 10,000 or more) when measured at 25° C. A ferromagnetic material can be, for example, a metal (e.g., a transition metal such as nickel, cobalt, or iron), a metal alloy (e.g., a nickel-iron alloy such as Mu-metal), a metal oxide (e.g., an iron oxide such as magnetite), a ceramic nanomaterial, a soft ferrite (e.g., nickel-zinc-iron), a magnet alloy (e.g., a rare earth magnet alloy such as a neodymium-iron-boron alloy or a samarium-cobalt alloy), an amorphous alloy (e.g., iron-silicon-boron), a non-earth alloy, or a silicon alloy (e.g., an iron-zirconium-copper-boron-silicon alloy, an iron-zirconium-copper-boron-silicon alloy). Magnetite is commercially available from FerroTec Corporation (Nashua, N.H.), under the tradename EMG 1111 Ferrofluid. Iron-copper-niobium-boron-silicon alloys are commercially available from Hitachi Metals of America under the tradename Finemet™. Iron-zirconium-copper-boron-silicon alloys are commercially available from MAGNETEC GmbH under the tradename Nanoperm®.


In embodiments in which material 14 is a ferromagnetic material, a magnetic source can be used to move or direct the particles to a treatment site (see discussion below). The magnetic source can be external to the subject's body, or can be used internally. In some cases, both an external magnetic source and an internal magnetic source can be used to move the particles. An example of an internal magnetic source is a magnetic catheter. Magnetic catheters are described in U.S. patent application Ser. No. 10/108,874, filed on Mar. 29, 2002, and entitled “Magnetically Enhanced Injection Catheter”, which is incorporated herein by reference. An example of an external magnetic source is a magnetic wand.


In some embodiments in which material 14 is a ferromagnetic material, the particles can be used to enhance the effects of an ablation procedure (e.g., an RF ablation procedure). For example, the particles can be used to enhance the ablation of a tumor. First, an RF probe (e.g., a 3.5 centimeter coaxial LeVeen electrode, available from RadioTherapeutics, Mountain View, Calif.) having tines at one end can be inserted into the area of the tumor. The particles can then be delivered to the area around the tines of the RF probe by, e.g., a catheter or a syringe. Thereafter, the tines can be deployed and the RF probe can be activated so that RF energy flows through the tines, thereby heating the tissue around the tines. Eventually, the tumor tissue can die as a result of the heating. Because they include ferromagnetic material, which can be relatively conductive, the particles can enhance the effects of ablation. For example, the circuit can be maintained for a longer period of time, resulting, e.g., in an increase in the area of the ablated surface. The end of the ablation period can be defined, for example, by the temperature of the ablated tissue or by the measured impedance of the circuit.


In certain embodiments in which material 14 is a ferromagnetic material, a magnetic field can be applied to the particles to affect the extent of conductivity. The magnetic field can be varied to adjust the conductivity of the particles (and, therefore, to adjust the extent of heating and ablation).


In some embodiments in which material 14 is a ferromagnetic material, the particles can be used in an agitation ablation process. In such a process, a magnetic field can be used to agitate the particles, such that the particles heat and/or physically deform the surrounding tissue, thereby ablating the surrounding tissue.


In some embodiments, material 14 is formed of one or more radiopaque materials. As used herein, a radiopaque material refers to a material having a density of about ten grams per cubic centimeter or greater (e.g., about 25 grams per cubic centimeter or greater, about 50 grams per cubic centimeter or greater). A radiopaque material can be, for example, a metal (e.g., tungsten, tantalum, platinum, palladium, lead, gold, titanium, silver), a metal alloy (e.g., stainless steel, an alloy of tungsten, an alloy of tantalum, an alloy of platinum, an alloy of palladium, an alloy of lead, an alloy of gold, an alloy of titanium, an alloy of silver), a metal oxide (e.g., titanium dioxide, zirconium oxide, aluminum oxide), bismuth subcarbonate, or barium sulfate. In some embodiments, a radiopaque material is a radiopaque contrast agent. Examples of radiopaque contrast agents include Omnipaque™, Renocal®, iodiamide meglumine, diatrizoate meglumine, ipodate calcium, ipodate sodium, iodamide sodium, iothalamate sodium, iopamidol, and metrizamide. Radiopaque contrast agents are commercially available from, for example, Bracco Diagnostic.


In embodiments in which material 14 is formed of one or more radiopaque materials, particle 10 can exhibit enhanced visibility under X-ray fluoroscopy, such as when particle 10 is in a subject (see discussion below). In some embodiments, X-ray fluoroscopy can be performed without the use of a radiopaque contrast agent.


In some embodiments, material 14 can include one or more MRI-visible materials. As used herein, a MRI-visible material refers to a material that has a magnetic susceptibility of at most about one or less (e.g., at most about 0.5 or less; at most about zero or less) when measured at 25° C. An MRI-visible material can be, for example, a non-ferrous metal-alloy containing paramagnetic elements (e.g., dysprosium or gadolinium) such as terbium-dysprosium, dysprosium, and gadolinium; a non-ferrous metallic band coated with an oxide or a carbide layer of dysprosium or gadolinium (e.g., Dy2O3 or Gd2O3); a non-ferrous metal (e.g., copper, silver, platinum, or gold) coated with a layer of superparamagnetic material, such as nanocrystalline Fe3O4, CoFe2O4, MnFe2O4, or MgFe2O4; or nanocrystalline particles of the transition metal oxides (e.g., oxides of Fe, Co, Ni). In some embodiments in which material 14 is formed of a ferromagnetic material, material 14 can also serve as an MRI-visible material if material 14 is present in a sufficiently low concentration. In some embodiments, an MRI-visible material can be an MRI contrast agent. Examples of MRI contrast agents include superparamagnetic iron oxides (e.g., ferumoxides, ferucarbotran, ferumoxsil, ferumoxtran (e.g., ferumoxtran-10), PEG-feron, ferucarbotran); gadopentetate dimeglumine; gadoterate meglumine; gadodiamide; gadoteridol; gadoversetamide; gadobutrol; gadobenate dimeglumine; mangafodipir trisodium; gadoxetic acid; gadobenate dimeglumine; macromolecular Gd-DOTA derivate; gadobenate dimeglumine; gadopentetate dimeglumine; ferric ammonium citrate; manganese chloride; manganese-loaded zeolite; ferristene; perfluoro-octylbromide; and barium sulfate. MRI contrast agents are described, for example, in U.S. patent application Ser. No. 10/390,202, filed on Mar. 17, 2003, and entitled “Medical Devices”, which is incorporated herein by reference.


In embodiments in which material 14 is formed of one or more MRI-visible materials, particle 10 can exhibit enhanced visibility using MRI, such as when particle 10 is in a subject (see discussion below). In some embodiments, MRI can be performed without the use of an MRI contrast agent.


In certain embodiments, material 14 can be biocompatible. As an example, material 14 can be a biocompatible ferromagnetic material (e.g., magnetite). As another example, material 14 can be a biocompatible radiopaque material (e.g., magnetite). As an additional example, material 14 can be a biocompatible MRI-visible material (e.g., magnetite, gadolinium).


In some embodiments, material 14 can be bioerodable, such that material 14 can eventually break down in the body and either be dispersed throughout the body or excreted from the body. For example, material 14 can be a bioerodable ferromagnetic material. In such cases, material 14 may interfere with MRI-visibility when used in the body in a high concentration and/or a condensed form (e.g., when used in a particle). However, as material 14 is bioeroded and dispersed throughout the body or excreted from the body, its interference with MRI-visibility can decrease. Thus, a bioerodable ferromagnetic material 14 can be used, for example, for short-term embolic applications, without permanently interfering with MRI-visibility.


In some embodiments, both material 14 and matrix 12 can be biocompatible. For example, matrix 12 can be a polysaccharide (e.g., alginate), while material 14 is a biocompatible material (e.g., magnetite).


Generally, the amount of material 14 contained within particle 10 can be varied as desired. In some embodiments, particle 10 can include more than about 0.1 percent by weight (e.g., more than about 0.5 percent by weight, more than about one percent by weight, more than about five percent by weight, more than about ten percent by weight, more than about 20 percent by weight, more than about 30 percent by weight, more than about 40 percent by weight, more than about 50 percent by weight, more than about 60 percent by weight, more than about 70 percent by weight, more than about 80 percent by weight) and/or less than about 90 percent by weight (e.g., less than about 80 percent by weight, less than about 70 percent by weight, less than about 60 percent by weight, less than about 50 percent by weight, less than about 40 percent by weight, less than about 30 percent by weight, less than about 20 percent by weight, less than about ten percent by weight, less than about five percent by weight, less than about one percent by weight, less than about 0.5 percent by weight) of material 14.


In certain embodiments in which material 14 includes one or more ferromagnetic materials, particle 10 can include from about 0.1 percent by weight to about 90 percent by weight (e.g., from about 0.1 percent by weight to about 75 percent by weight, from about 0.1 percent by weight to about 50 percent by weight, from about one percent by weight to about 25 percent by weight) of the ferromagnetic material(s).


In some embodiments in which material 14 includes one or more radiopaque materials, particle 10 can include from about 0.1 percent by weight to about 50 percent by weight (e.g., from about 0.1 percent by weight to about 20 percent by weight, from about one percent by weight to about 20 percent by weight) of the radiopaque material(s).


In certain embodiments in which material 14 includes one or more MRI-visible materials, particle 10 can include from about five percent by weight to about 50 percent by weight (e.g., from about ten percent by weight to about 30 percent by weight) of the MRI-visible material(s).


In general, material 14 can be in any desired form (e.g., a solid, a liquid) and any desired shape (e.g., one or more particles, one or more fibers, one or more flakes, and/or one or more powders). In some embodiments, material 14 (e.g., a particle of material 14, a fiber of material 14, a flake of material 14, a powder of material 14) can have a width or diameter, and/or length, of less than about 40 microns (e.g., less than about 35 microns, less than about 30 microns, less than about 25 microns, less than about 20 microns, less than about 15 microns, less than about ten microns, less than about five microns, less than about one micron, less than about 0.5 micron, less than about 0.1 micron, less than about 0.05 micron, less than about 0.03 micron, less than about 0.01 micron) and/or more than about 0.005 micron (e.g., more than about 0.01 micron, more than about 0.03 micron, more than about 0.05 micron, more than about 0.1 micron, more than about 0.5 micron, more than about one micron, more than about five microns, more than about ten microns, more than about 15 microns, more than about 20 microns, more than about 25 microns, more than about 30 microns, more than about 35 microns). In some embodiments, material 14 (e.g., a particle of material 14, a fiber of material 14, a flake of material 14, a powder of material 14) can have a width or diameter, and/or a length, of from about two microns to about 20 microns (e.g., from about ten microns to about 12 microns).


As used herein, a fiber of material 14 has a ratio of its largest linear dimension to its smallest linear dimension of at least about 2:1 (e.g., at least about 3:1, at least about 5:1, at least about 10:1, at least about 15:1). In some embodiments, a fiber of material 14 has a ratio of its largest linear dimension to its smallest linear dimension of at most about 20:1 (e.g., at most about 15:1, at most about 10:1, about most about 5:1, at most about 3:1). In some embodiments, material 14 includes a mixture of fibers having two or more different aspect ratios.


In general, various methods can be used to prepare particle 10. In some embodiments, particle 10 is formed using a drop generator.



FIG. 2A shows an embodiment of a system for producing particle 10. The system includes a flow controller 300, a drop generator 310, a gelling vessel 320, a reactor vessel 330, a gel dissolution chamber 340 and a filter 350. As shown in FIG. 2B, flow controller 300 delivers a solution that contains the material of matrix 12 (e.g., one or more polymers) and a gelling precursor (e.g., alginate) to a viscosity controller 305, which heats the solution to reduce viscosity prior to delivery to drop generator 310. The solution passes through an orifice in a nozzle in drop generator 310, forming drops of the solution. The drops are then directed into gelling vessel 320, where the drops contact a gelling agent (e.g., calcium chloride) and are stabilized by gel formation. The gel-stabilized drops are transferred from gelling vessel 320 to reactor vessel 330, where the polymer in the gel-stabilized drops is reacted (e.g., cross-linked), forming precursor particles. The precursor particles are transferred to gel dissolution chamber 340, where the gelling precursor is removed. The particles are then filtered in filter 350 to remove debris, and are sterilized and packaged as an embolic composition including the particles. Methods of making particles are described, for example, in U.S. patent application Ser. No. 10/637,130, filed on Aug. 8, 2003, which issued as U.S. Pat. No. 7,449,236 on Nov. 11, 2008 and entitled “Porous Polymeric Particle Comprising Polyvinyl Alcohol and Having Interior To Surface Porosity Gradient”, which is incorporated herein by reference.


In some embodiments in which a drop generator is used in the preparation of particle 10, material 14 is included in the solution delivered by the drop generator, and the solution is processed as described above to form particle 10. In certain embodiments in which a drop generator is used in the preparation of particle 10, material 14 is included in the gelling vessel so that material 14 is incorporated into the drop when the drop contacts the gelling agent. Combinations of these methods can be used.


In some embodiments, material 14 is added to particle 10 in a separate operation. For example, material 14 can be applied to the surface of particle 10 by compounding matrix material 12 with one or more of the coating materials (described below) and then applying the compounded coating material to the surface of particle 10. In certain embodiments, material 14 can be placed in particle 10 (e.g., in one or more pores 16 or cavities of particle 10). In embodiments in which material 14 is in liquid form (e.g., a contrast agent) prior to being incorporated into particle 10, material 14 can be incorporated into the particles by, for example, absorption. Combinations of these methods can be used. For example, in some embodiments, one material can be incorporated into a cavity in a particle, while another material (either the same as, or different from, the first material) can be absorbed through the surface of the particle.


In some embodiments, multiple particles are combined with a carrier fluid (e.g., a saline solution, a contrast agent, or both) to form an embolic composition. Such embolic compositions can be used in, for example, neural, pulmonary, and/or AAA (abdominal aortic aneurysm) applications. The compositions can be used in the treatment of, for example, fibroids, tumors, internal bleeding, arteriovenous malformations (AVMs), and/or hypervascular tumors. The compositions can be used as, for example, fillers for aneurysm sacs, AAA sac (Type II endoleaks), endoleak sealants, arterial sealants, and/or puncture sealants, and/or can be used to provide occlusion of other lumens such as fallopian tubes. Fibroids can include uterine fibroids which grow within the uterine wall (intramural type), on the outside of the uterus (subserosal type), inside the uterine cavity (submucosal type), between the layers of broad ligament supporting the uterus (interligamentous type), attached to another organ (parasitic type), or on a mushroom-like stalk (pedunculated type). Internal bleeding includes gastrointestinal, urinary, renal and varicose bleeding. AVMs are for example, abnormal collections of blood vessels, e.g. in the brain, which shunt blood from a high pressure artery to a low pressure vein, resulting in hypoxia and malnutrition of those regions from which the blood is diverted. In some embodiments, a composition containing the particles can be used to prophylactically treat a condition.


The magnitude of a dose of an embolic composition can vary based on the nature, location and severity of the condition to be treated, as well as the route of administration. A physician treating the condition, disease or disorder can determine an effective amount of embolic composition. An effective amount of embolic composition refers to the amount sufficient to result in amelioration of symptoms or a prolongation of survival of the subject. The embolic compositions can be administered as pharmaceutically acceptable compositions to a subject in any therapeutically acceptable dosage, including those administered to a subject intravenously, subcutaneously, percutaneously, intratrachealy, intramuscularly, intramucosaly, intracutaneously, intra-articularly, orally or parenterally.


An embolic composition can be prepared in calibrated concentrations of the particles for ease of delivery by the physician. Suspensions of the particles in saline solution can be prepared to remain stable (e.g., to not precipitate) over a duration of time. A suspension of the particles can be stable, for example, for from about one minute to about 20 minutes (e.g. from about one minute to about ten minutes, from about two minutes to about seven minutes, from about three minutes to about six minutes). The concentration of particles can be determined by adjusting the weight ratio of the particles to the physiological solution. If the weight ratio of the particles is too small, then too much liquid could be injected into a blood vessel, possibly allowing the particles to stray into lateral vessels. In some embodiments, the physiological solution can contain from about 0.01 weight percent to about 15 weight percent of the particles. A composition can include a mixture of particles, such as particles including ferromagnetic material, and particles including radiopaque material.


Referring to FIGS. 3A and 3B, an embolic composition, including embolic particles 111 and a carrier fluid, is injected into a vessel through an instrument such as a catheter 150.


Catheter 150 is connected to a syringe barrel 10 with a plunger 160. Catheter 150 is inserted, for example, into a femoral artery 120 of a subject. Catheter 150 delivers the embolic composition to, for example, occlude a uterine artery 130 leading to a fibroid 140. Fibroid 140 is located in the uterus of a female subject. The embolic composition is initially loaded into syringe 110. Plunger 160 of syringe 110 is then compressed to deliver the embolic composition through catheter 150 into a lumen 165 of uterine artery 130.


Referring particularly to FIG. 3B, which is an enlarged view of section 3B of FIG. 3A, uterine artery 130 is subdivided into smaller uterine vessels 170 (e.g., having a diameter of about two millimeters or less) which feed fibroid 140. The embolic particles 111 in the embolic composition partially or totally fill the lumen of uterine artery 130, either partially or completely occluding the lumen of the uterine artery 130 that feeds uterine fibroid 140.


In some embodiments, among the particles delivered to a subject in an embolic composition, the majority (e.g., about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more) of the particles have a diameter of about 3,000 microns or less (e.g., about 2,500 microns or less; about 2,000 microns or less; about 1,500 microns or less; about 1,200 microns or less; about 900 microns or less; about 700 microns or less; about 500 microns or less; about 400 microns or less; about 300 microns or less; about 100 microns or less) and/or about ten microns or more (e.g., about 100 microns or more; about 300 microns or more; about 400 microns or more; about 500 microns or more; about 700 microns or more; about 900 microns or more; about 1,200 microns or more; about 1,500 microns or more; about 2,000 microns or more; about 2,500 microns or more).


In certain embodiments, the particles delivered to a subject in an embolic composition have a mean diameter of about 3,000 microns or less (e.g., about 2,500 microns or less; about 2,000 microns or less; about 1,500 microns or less; about 1,200 microns or less; about 900 microns or less; about 700 microns or less; about 500 microns or less; about 400 microns or less; about 300 microns or less; about 100 microns or less) and/or about ten microns or more (e.g., about 100 microns or more; about 300 microns or more; about 400 microns or more; about 500 microns or more; about 700 microns or more; about 900 microns or more; about 1,200 microns or more; about 1,500 microns or more; about 2,000 microns or more; about 2,500 microns or more). Exemplary ranges for the mean diameter of particles delivered to a subject include from about 100 microns to about 300 microns; from about 300 microns to about 500 microns; from about 500 microns to about 700 microns; and from about 900 microns to about 1,200 microns. In general, the particles delivered to a subject in an embolic composition have a mean diameter in approximately the middle of the range of the diameters of the individual particles, and a variance of about 20 percent or less (e.g. about 15 percent or less, about ten percent or less).


In some embodiments, the mean size of the particles delivered to a subject in an embolic composition can vary depending upon the particular condition to be treated. As an example, in embodiments in which the particles in an embolic composition are used to treat a liver tumor, the particles delivered to the subject can have a mean diameter of about 500 microns or less (e.g., from about 100 microns to about 300 microns; from about 300 microns to about 500 microns). As another example, in embodiments in which the particles in an embolic composition are used to treat a uterine fibroid, the particles delivered to the subject in an embolic composition can have a mean diameter of about 1,200 microns or less (e.g., from about 500 microns to about 700 microns; from about 700 microns to about 900 microns; from about 900 microns to about 1,200 microns).


While certain embodiments have been described, the invention is not so limited.


As an example, in some embodiments, a particle can contain combinations of different types of materials (e.g., one or more ferromagnetic materials and one or more radiopaque materials; one or more radiopaque materials and one or more MRI-visible materials; one or more ferromagnetic materials and one or more MRI-visible materials; one or more MRI-visible materials, one or more ferromagnetic materials, and one or more radiopaque materials).


As another example, a particle can be prepared (e.g., for use in an embolic composition) without removal of the gelling precursor (e.g. alginate). Such particles can be prepared, for example, using a drop generator as described above, but without removing the gelling precursor from the particle after cross-linking.


As an additional example, in some embodiments a particle can include one or more therapeutic agents (e.g., drugs). The therapeutic agent(s) can be in and/or on the particle. Therapeutic agents include agents that are negatively charged, positively charged, amphoteric, or neutral. Therapeutic agents can be, for example, materials that are biologically active to treat physiological conditions; pharmaceutically active compounds; gene therapies; nucleic acids with and without carrier vectors; oligonucleotides; gene/vector systems; DNA chimeras; compacting agents (e.g., DNA compacting agents); viruses; polymers; hyaluronic acid; proteins (e.g., enzymes such as ribozymes); cells (of human origin, from an animal source, or genetically engineered); stem cells; immunologic species; nonsteroidal anti-inflammatory medications; oral contraceptives; progestins; gonadotrophin-releasing hormone agonists; chemotherapeutic agents; and radioactive species (e.g., radioisotopes, radioactive molecules). Non-limiting examples of therapeutic agents include anti-thrombogenic agents; antioxidants; angiogenic and anti-angiogenic agents and factors; anti-proliferative agents (e.g., agents capable of blocking smooth muscle cell proliferation); anti-inflammatory agents; calcium entry blockers; antineoplastic/antiproliferative/anti-mitotic agents (e.g., paclitaxel, doxorubicin, cisplatin); antimicrobials; anesthetic agents; anti-coagulants; vascular cell growth promoters; vascular cell growth inhibitors; cholesterol-lowering agents; vasodilating agents; agents which interfere with endogenous vasoactive mechanisms; and survival genes which protect against cell death. Therapeutic agents are described, for example, in co-pending U.S. patent application Ser. No. 10/615,276, filed on Jul. 8, 2003, and entitled “Agent Delivery Particle”, which is incorporated herein by reference.


As a further example, in some embodiments a particle can be coated (e.g., with a bioabsorable material). For example, a particle can include a polyvinyl alcohol matrix polymer with a sodium alginate coating. The coating can contain, for example, one or more therapeutic agents. In certain embodiments, a particle can be coated to include a high concentration of one or more therapeutic agents and/or loaded into the interior of the particle. The surface can release an initial dosage of therapeutic agent after which the body of the particle can provide a burst release of therapeutic agent. The therapeutic agent on the surface can be the same as or different from the therapeutic agent in the body of the particle. The therapeutic agent on the surface can be applied by exposing the particle to a high concentration solution of the therapeutic agent. The therapeutic agent coated particle can include another coating over the surface the therapeutic agent (e.g., a degradable and/or bioabsorbable polymer which erodes when the particle is administered). The coating can assist in controlling the rate at which therapeutic agent is released from the particle. For example, the coating can be in the form of a porous membrane. The coating can delay an initial burst of therapeutic agent release. The coating can be applied by dipping or spraying the particle. The erodible polymer can be a polysaccharide (such as an alginate). In some embodiments, the coating can be an inorganic, ionic salt. Other erodible coatings include water soluble polymers (such as polyvinyl alcohol, e.g., that has not been cross-linked), biodegradable poly DL-lactide-poly ethylene glycol (PELA), hydrogels (e.g., polyacrylic acid, haluronic acid, gelatin, carboxymethyl cellulose), polyethylene glycols (PEG), chitosan, polyesters (e.g., polycaprolactones), and poly(lactic-co-glycolic) acids (e.g., poly(d-lactic-co-glycolic) acids). The coating can include therapeutic agent or can be substantially free of therapeutic agent. The therapeutic agent in the coating can be the same as or different from an agent on a surface layer of the particle and/or within the particle. A polymer coating, e.g. an erodible coating, can be applied to the particle surface in cases in which a high concentration of therapeutic agent has not been applied to the particle surface. In some embodiments, the coating can include a ferromagnetic material, a radiopaque material, and/or an MRI-visible material. Alternatively or in addition, the particle interior can include a ferromagnetic material, a radiopaque material, and/or an MRI-visible material. The coating can include a higher, equal, or lower concentration of ferromagnetic material, radiopaque material, and/or MRI-visible material relative to the particle interior. In some embodiments, the interior of the particle can include one type of material (e.g., a ferromagnetic material), while the coating includes a different type of material (e.g., a radiopaque material). Coatings are described, for example, in U.S. patent application Ser. No. 10/615,276, filed on Jul. 8, 2003, and entitled “Agent Delivery Particle”, which is incorporated herein by reference.


As an additional example, in some embodiments one or more particles is/are substantially nonspherical. In some embodiments, particles can be shaped (e.g., molded, compressed, punched, and/or agglomerated with other particles) at different points in the particle manufacturing process. In some embodiments (e.g., where the matrix polymer is a polyvinyl alcohol and the gelling precursor is sodium alginate), after contacting the particles with the gelling agent but before cross-linking, the particles can be physically deformed into a specific shape and/or size. After shaping, the matrix polymer (e.g., polyvinyl alcohol) can be cross-linked, optionally followed by substantial removal of the gelling precursor (e.g., alginate). While substantially spherical particles are preferred, non-spherical particles can be manufactured and formed by controlling, for example, drop formation conditions. In some embodiments, nonspherical particles can be formed by post-processing the particles (e.g., by cutting or dicing into other shapes). Particle shaping is described, for example, in co-pending U.S. patent application Ser. No. 10/402,068, filed Mar. 28, 2003, and entitled “Forming a Chemically Cross-Linked Particle of a Desired Shape and Diameter”, which is incorporated herein by reference.


As a further example, in some embodiments the particles can be used for tissue bulking. As an example, the particles can be placed (e.g., injected) into tissue adjacent to a body passageway. The particles can narrow the passageway, thereby providing bulk and allowing the tissue to constrict the passageway more easily. The particles can be placed in the tissue according to a number of different methods, for example, percutaneously, laparoscopically, and/or through a catheter. In certain embodiments, a cavity can be formed in the tissue, and the particles can be placed in the cavity. Particle tissue bulking can be used to treat, for example, intrinsic sphincteric deficiency (ISD), vesicoureteral reflux, gastroesophageal reflux disease (GERD), and/or vocal cord paralysis (e.g., to restore glottic competence in cases of paralytic dysphonia). In some embodiments, particle tissue bulking can be used to treat urinary incontinence and/or fecal incontinence. The particles can be used as a graft material or a filler to fill and/or to smooth out soft tissue defects, such as for reconstructive or cosmetic applications (e.g., surgery). Examples of soft tissue defect applications include cleft lips, scars (e.g., depressed scars from chicken pox or acne scars), indentations resulting from liposuction, wrinkles (e.g., glabella frown wrinkles), and soft tissue augmentation of thin lips. Tissue bulking is described, for example, in co-pending U.S. patent application Ser. No. 10/231,664, filed on Aug. 30, 2002, and entitled “Tissue Treatment”, which is incorporated herein by reference.


As an additional example, in certain embodiments one or more ferromagnetic materials, one or more MRI-visible materials and/or one or more radiopaque materials can be nonhomogeneously distributed in a particle. As an example, the density of the ferromagnetic, MRI-visible and/or radiopaque material(s) can be higher in the center region of the particle than at the surface region of the particle. As another example, the density of the ferromagnetic, MRI-visible and/or radiopaque material(s) can be higher at the surface region of the particle than in the center region of the particle.


As another example, in certain embodiments a particle can have a cavity (a portion that is substantially devoid of a matrix material such as a matrix polymer) that has a diameter of at least about 50 microns (e.g., at least about 100 microns, at least about 150 microns). In some embodiments, such a cavity can contain one or more ferromagnetic materials, one or more MRI-visible materials and/or one or more radiopaque materials. In such embodiments, the ferromagnetic, MRI-visible and/or radiopaque material(s) can be nonhomogeneously distributed in the particle.


As a further example, in some embodiments one or more ferromagnetic materials, one or more MRI-visible materials and/or one or more radiopaque materials can be located at the surface of the particle. In such embodiments, the interior of the particle can be substantially devoid the ferromagnetic, MRI-visible and/or radiopaque material(s), or the interior of the particle can further include the ferromagnetic, MRI-visible and/or radiopaque material(s).


As an additional example, in certain embodiments one or more ferromagnetic materials, one or more MRI-visible materials and/or one or more radiopaque materials can be attached to the surface of a particle (e.g., via a chemical linker).


As another example, in some embodiments a particle can be formed with no pores and/or no cavities.


As a further example, in some embodiments a particle can be formed without pores (nonporous particle).


U.S. patent application Ser. No. 10/232,265, entitled “Drug Delivery Particle,” and filed on Aug. 30, 2002, is incorporated herein by reference.


Other embodiments are in the claims.

Claims
  • 1. A particle, comprising a polymeric matrix; anda radiopaque material distributed in the polymeric matrix, wherein: the particle has a diameter of from about ten microns to about 3,000 microns,the particle has a center region with pores having a mean size of about 20 microns or more,the particle has a surface region with pores having a mean size of about one micron or less, andthe polymeric matrix comprises a cross-linked polymer.
  • 2. The particle of claim 1, wherein the radiopaque material is selected from the group consisting of metals, metal alloys, and contrast agents.
  • 3. The particle of claim 1, wherein the radiopaque material comprises a member selected from the group consisting of titanium dioxide and bismuth subcarbonate.
  • 4. The particle of claim 1, wherein the radiopaque material comprises platinum or barium sulfate.
  • 5. The particle of claim 1, wherein the radiopaque material is substantially homogeneously distributed throughout the polymeric matrix.
  • 6. The particle of claim 1, wherein the polymeric matrix comprises a polysaccharide.
  • 7. The particle of claim 1, wherein the cross-linked polymer comprises a member selected from the group consisting of cross-linked polyvinyl alcohols, cross-linked polyacrylic acids, cross-linked polymethacrylic acids, cross-linked poly vinyl sulfonates, cross-linked carboxymethyl celluloses, cross-linked hydroxyethyl celluloses, cross-linked substituted celluloses, cross-linked polyacrylamides, cross-linked polyethylene glycols, cross-linked polyamides, cross-linked polyureas, cross-linked polyurethanes, cross-linked polyesters, cross-linked polyethers, cross-linked polystyrenes, cross-linked polysaccharides, cross-linked polylactic acids, cross-linked polyethylenes, cross-linked polymethylmethacrylates, cross-linked polycaprolactones, cross-linked polyglycolic acids, cross-linked poly(lactic-co-glycolic) acids, and combinations thereof.
  • 8. The particle of claim 1, wherein the particle further comprises a therapeutic agent.
  • 9. The particle of claim 1, wherein the polymeric matrix comprises a first polymer and a second polymer.
  • 10. The particle of claim 9, wherein the second polymer forms a coating over the first polymer.
  • 11. The particle of claim 1, wherein the particle is substantially spherical.
  • 12. The particle of claim 1, wherein the particle comprises from about 0.1 percent to about 50 percent by weight of the radiopaque material.
  • 13. The particle of claim 1, wherein the mean size of the pores of the center region is 30 microns or more.
  • 14. The particle of claim 1, wherein the mean size of the pores of the center region is from about 20 microns to about 35 microns.
  • 15. The particle of claim 1, wherein the mean size of the pores of the surface region is from about 0.1 micron to about 0.01 micron.
  • 16. The particle of claim 15, wherein the mean size of the pores of the center region is 30 microns or more.
  • 17. The particle of claim 15, wherein the mean size of the pores of the center region is from 20 microns to about 35 microns.
  • 18. The particle of claim 1, wherein the particle includes a body region between the center region and the surface region.
  • 19. The particle of claim 18, wherein the mean size of the pores of the center region is about 30 microns or more.
  • 20. The particle of claim 18, wherein the mean size of the pores of the center region is from about 20 microns to about 35 microns.
  • 21. The particle of claim 18, wherein the mean size of the pores of the surface region is from about 0.1 micron to about 0.01 micron.
  • 22. The particle of claim 21, wherein the mean size of the pores of the center region is 30 microns or more.
  • 23. The particle of claim 21, wherein the mean size of the pores of the center region is from about 20 microns to about 35 microns.
  • 24. The particle of claim 18, wherein the body region has pores having a mean pore size of 18 microns or less.
  • 25. The particle of claim 24, wherein the mean size of the pores of the center region is 30 microns or more.
  • 26. The particle of claim 24, wherein the mean size of the pores of the center region is from about 20 microns to about 35 microns.
  • 27. The particle of claim 24, wherein the mean size of the pores of the surface region is from about 0.1 micron to about 0.01 micron.
  • 28. The particle of claim 27, wherein the mean size of the pores of the center region is about 30 microns or more.
  • 29. The particle of claim 27, wherein the mean size of the pores of the center region is from about 20 microns to about 35 microns.
  • 30. The particle of claim 18, wherein the body region has pores having a mean pore size of 15 microns or less.
  • 31. The particle of claim 29, wherein the mean size of the pores of the center region is about 30 microns or more.
  • 32. The particle of claim 29, wherein the mean size of the pores of the center region is from about 20 microns to about 35 microns.
  • 33. The particle of claim 29, wherein the mean size of the pores of the surface region is from about 0.1 micron to about 0.01 micron.
  • 34. The particle of claim 33, wherein the mean size of the pores of the center region is 30 microns or more.
  • 35. The particle of claim 33, wherein the mean size of the pores of the center region is from about 20 microns to about 35 microns.
  • 36. The particle of claim 18, wherein the body region has pores having a mean pore size of from about 18 microns to about two microns.
  • 37. The particle of claim 36, wherein the mean size of the pores of the center region is 30 microns or more.
  • 38. The particle of claim 36, wherein the mean size of the pores of the center region is from about 20 microns to about 35 microns.
  • 39. The particle of claim 36, wherein the mean size of the pores of the surface region is from about 0.1 micron to about 0.01 micron.
  • 40. The particle of claim 39, wherein the mean size of the pores of the center region is 30 microns or more.
  • 41. The particle of claim 39, wherein the mean size of the pores of the center region is from about 20 microns to about 35 microns.
  • 42. A particle, comprising: a polymeric matrix; anda radiopaque material distributed in the polymeric matrix,wherein: the particle has a diameter of from about ten microns to about 3,000 microns,the particle has a center region having pores with a mean size,the particle has a surface region having pores with a mean size,the particle has a body region having pores with a mean size,the body region is between the center region and the surface region,the mean size of the pores of the center region is greater than the mean size of the pores of the surface region,the mean size of the pores in the body region is from about 50 percent to about 70 percent of the mean size of the pores in the center region, andthe polymeric matrix comprises a cross-linked polymer.
  • 43. The particle of claim 42, wherein the mean size of the pores of the surface region is about 10 percent or less of the mean size of the pores of the body region.
US Referenced Citations (353)
Number Name Date Kind
2275154 Merrill et al. Mar 1942 A
2609347 Wilson Sep 1952 A
3663470 Nishimura et al. May 1972 A
3737398 Yamaguchi Jun 1973 A
3957933 Egli et al. May 1976 A
4025686 Zion May 1977 A
4034759 Haerr Jul 1977 A
4055377 Erickson et al. Oct 1977 A
4076640 Forgensi et al. Feb 1978 A
4094848 Naito Jun 1978 A
4096230 Haerr Jun 1978 A
4098728 Rosenblatt Jul 1978 A
4110529 Stoy Aug 1978 A
4159719 Haerr Jul 1979 A
4191672 Salome et al. Mar 1980 A
4198318 Stowell et al. Apr 1980 A
4243794 White et al. Jan 1981 A
4246208 Dundas Jan 1981 A
4266030 Tschang et al. May 1981 A
4268495 Muxfeldt et al. May 1981 A
4271281 Kelley et al. Jun 1981 A
4402319 Handa et al. Sep 1983 A
4413070 Rembaum Nov 1983 A
4427794 Lange et al. Jan 1984 A
4428869 Munteanu et al. Jan 1984 A
4429062 Pasztor et al. Jan 1984 A
4442843 Rasor et al. Apr 1984 A
4444961 Timm Apr 1984 A
4452773 Molday Jun 1984 A
4456693 Welsh Jun 1984 A
4459145 Elsholz Jul 1984 A
4472552 Blouin Sep 1984 A
4477255 Pasztor et al. Oct 1984 A
4492720 Moiser Jan 1985 A
4515906 Friesen et al. May 1985 A
4522953 Barby et al. Jun 1985 A
4542178 Zimmermann et al. Sep 1985 A
4551132 Pasztor et al. Nov 1985 A
4551436 Johnson et al. Nov 1985 A
4573967 Hargrove et al. Mar 1986 A
4622362 Rembaum Nov 1986 A
4623706 Timm et al. Nov 1986 A
4629464 Takata et al. Dec 1986 A
4640807 Afghan et al. Feb 1987 A
4657756 Rasor et al. Apr 1987 A
4661137 Garnier et al. Apr 1987 A
4663358 Hyon et al. May 1987 A
4671954 Goldberg et al. Jun 1987 A
4671994 Cochran, Jr. Jun 1987 A
4674480 Lemelson Jun 1987 A
4675113 Graves et al. Jun 1987 A
4678710 Sakimoto et al. Jul 1987 A
4678814 Rembaum Jul 1987 A
4680320 Uku et al. Jul 1987 A
4681119 Rasor et al. Jul 1987 A
4695466 Morishita et al. Sep 1987 A
4713076 Draenert Dec 1987 A
4742086 Masamizu et al. May 1988 A
4743507 Franses et al. May 1988 A
4772635 Mitschker et al. Sep 1988 A
4782097 Jain et al. Nov 1988 A
4789501 Day et al. Dec 1988 A
4793980 Torobin Dec 1988 A
4795741 Leshchiner et al. Jan 1989 A
4801458 Hidaka et al. Jan 1989 A
4804366 Zdeb et al. Feb 1989 A
4819637 Dormandy, Jr. et al. Apr 1989 A
4822535 Ekman et al. Apr 1989 A
4833237 Kawamura et al. May 1989 A
4850978 Dudar et al. Jul 1989 A
4859711 Jain et al. Aug 1989 A
4863972 Itagaki et al. Sep 1989 A
4897255 Fritzberg et al. Jan 1990 A
4929400 Rembaum et al. May 1990 A
4933372 Feibush et al. Jun 1990 A
4938967 Newton et al. Jul 1990 A
4946899 Kennedy et al. Aug 1990 A
4954399 Tani et al. Sep 1990 A
4970062 Atcher et al. Nov 1990 A
4981625 Rhim et al. Jan 1991 A
4990340 Hidaka et al. Feb 1991 A
4999188 Solodovnik et al. Mar 1991 A
5007940 Berg Apr 1991 A
5011677 Day et al. Apr 1991 A
H915 Gibbs May 1991 H
5015423 Eguchi et al. May 1991 A
5032117 Motta Jul 1991 A
5034324 Shinozaki et al. Jul 1991 A
5047438 Feibush et al. Sep 1991 A
5079274 Schneider et al. Jan 1992 A
5091205 Fan Feb 1992 A
5106903 Vanderhoff et al. Apr 1992 A
5114421 Polak May 1992 A
5116387 Berg May 1992 A
5120349 Stewart et al. Jun 1992 A
5125892 Drudik Jun 1992 A
5147631 Glajch et al. Sep 1992 A
5147937 Frazza et al. Sep 1992 A
5149543 Cohen et al. Sep 1992 A
5158573 Berg Oct 1992 A
5171214 Kolber et al. Dec 1992 A
5171217 March et al. Dec 1992 A
5181921 Makita et al. Jan 1993 A
5190760 Baker Mar 1993 A
5190766 Ishihara Mar 1993 A
5192301 Kamiya et al. Mar 1993 A
5202352 Okada et al. Apr 1993 A
5216096 Hattori et al. Jun 1993 A
5236410 Granov et al. Aug 1993 A
5253991 Yokota et al. Oct 1993 A
5260002 Wang Nov 1993 A
5262176 Palmacci et al. Nov 1993 A
5263992 Guire Nov 1993 A
5288763 Li et al. Feb 1994 A
5292814 Bayer et al. Mar 1994 A
5302369 Day et al. Apr 1994 A
5314974 Ito et al. May 1994 A
5316774 Eury et al. May 1994 A
RE34640 Kennedy et al. Jun 1994 E
5320639 Rudnick Jun 1994 A
5328936 Leifholtz et al. Jul 1994 A
5336263 Ersek et al. Aug 1994 A
5344452 Lemperle Sep 1994 A
5344867 Morgan et al. Sep 1994 A
5349957 Yudelson Sep 1994 A
5354290 Gross Oct 1994 A
5369133 Ihm et al. Nov 1994 A
5369163 Chiou et al. Nov 1994 A
5382260 Dormandy, Jr. et al. Jan 1995 A
5384124 Courteille et al. Jan 1995 A
5397303 Sancoff et al. Mar 1995 A
5398851 Sancoff et al. Mar 1995 A
5403870 Gross Apr 1995 A
5417982 Modi May 1995 A
5431174 Knute Jul 1995 A
5435645 Faccioli et al. Jul 1995 A
5441746 Chagnon Aug 1995 A
5443495 Buscemi et al. Aug 1995 A
5456693 Conston et al. Oct 1995 A
5468801 Antonelli et al. Nov 1995 A
5469854 Unger et al. Nov 1995 A
5476472 Dormandy, Jr. et al. Dec 1995 A
5484584 Wallace et al. Jan 1996 A
5490984 Freed Feb 1996 A
5494682 Cohen et al. Feb 1996 A
5494940 Unger et al. Feb 1996 A
5512604 Demopolis Apr 1996 A
5514090 Kriesel et al. May 1996 A
5514379 Weissleder et al. May 1996 A
5525334 Ito et al. Jun 1996 A
5534589 Hager et al. Jul 1996 A
5541031 Yamashita et al. Jul 1996 A
5542935 Unger et al. Aug 1996 A
5553741 Sancoff et al. Sep 1996 A
5556391 Cercone et al. Sep 1996 A
5556610 Yan et al. Sep 1996 A
5558255 Sancoff et al. Sep 1996 A
5558822 Gitman et al. Sep 1996 A
5558856 Klaveness et al. Sep 1996 A
5559266 Klaveness et al. Sep 1996 A
5567415 Porter Oct 1996 A
5569193 Hofstetter et al. Oct 1996 A
5569449 Klaveness et al. Oct 1996 A
5569468 Modi Oct 1996 A
5571182 Ersek et al. Nov 1996 A
5580575 Unger et al. Dec 1996 A
5583162 Li et al. Dec 1996 A
5585112 Unger et al. Dec 1996 A
5595821 Hager et al. Jan 1997 A
5622657 Takada et al. Apr 1997 A
5624685 Takahashi et al. Apr 1997 A
5635215 Boschetti et al. Jun 1997 A
5637087 O'Neil et al. Jun 1997 A
5639710 Lo et al. Jun 1997 A
5648095 Illum et al. Jul 1997 A
5648100 Boschetti et al. Jul 1997 A
5650116 Thompson Jul 1997 A
5651990 Takada et al. Jul 1997 A
5653922 Li et al. Aug 1997 A
5657756 Vrba Aug 1997 A
5681576 Henry Oct 1997 A
5695480 Evans et al. Dec 1997 A
5695740 Porter Dec 1997 A
5698271 Liberti et al. Dec 1997 A
5701899 Porter Dec 1997 A
5715824 Unger et al. Feb 1998 A
5716981 Hunter et al. Feb 1998 A
5718884 Klaveness et al. Feb 1998 A
5723269 Akagi et al. Mar 1998 A
5725534 Rasmussen Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5741331 Pinchuk Apr 1998 A
5746734 Dormandy, Jr. et al. May 1998 A
5752974 Rhee et al. May 1998 A
5756127 Grisoni et al. May 1998 A
5760097 Li et al. Jun 1998 A
5766147 Sancoff et al. Jun 1998 A
5770222 Unger et al. Jun 1998 A
5779668 Grabenkort Jul 1998 A
5785642 Wallace et al. Jul 1998 A
5785682 Grabenkort Jul 1998 A
5792478 Lawin et al. Aug 1998 A
5795562 Klaveness et al. Aug 1998 A
5797953 Tekulve Aug 1998 A
5807323 Kriesel et al. Sep 1998 A
5813411 Van Bladel et al. Sep 1998 A
5823198 Jones et al. Oct 1998 A
5827502 Klaveness et al. Oct 1998 A
5827531 Morrison et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5833361 Funk Nov 1998 A
5840387 Berlowitz-Tarrant et al. Nov 1998 A
5846518 Yan et al. Dec 1998 A
5853752 Unger et al. Dec 1998 A
5855615 Bley et al. Jan 1999 A
5863957 Li et al. Jan 1999 A
5876372 Grabenkort et al. Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5885216 Evans, III et al. Mar 1999 A
5885547 Gray Mar 1999 A
5888546 Ji et al. Mar 1999 A
5888930 Smith et al. Mar 1999 A
5891155 Irie Apr 1999 A
5894022 Ji et al. Apr 1999 A
5895398 Wensel et al. Apr 1999 A
5895411 Irie Apr 1999 A
5899877 Leibitzki et al. May 1999 A
5902832 Van Bladel et al. May 1999 A
5902834 Porrvik May 1999 A
5922025 Hubbard Jul 1999 A
5922304 Unger Jul 1999 A
5928626 Klaveness et al. Jul 1999 A
5935553 Unger et al. Aug 1999 A
5951160 Ronk Sep 1999 A
5957848 Sutton et al. Sep 1999 A
5959073 Schlameus et al. Sep 1999 A
5964797 Ho Oct 1999 A
6003566 Thibault et al. Dec 1999 A
6015546 Sutton et al. Jan 2000 A
6027472 Kriesel et al. Feb 2000 A
6028066 Unger Feb 2000 A
6047861 Vidal et al. Apr 2000 A
6048908 Kitagawa Apr 2000 A
6051247 Hench et al. Apr 2000 A
6056721 Shulze May 2000 A
6056844 Guiles et al. May 2000 A
6059766 Greff May 2000 A
6063068 Fowles et al. May 2000 A
6071495 Unger et al. Jun 2000 A
6071497 Steiner et al. Jun 2000 A
6073759 Lamborne et al. Jun 2000 A
6090925 Woiszwillo et al. Jul 2000 A
6096344 Liu et al. Aug 2000 A
6099064 Lund Aug 2000 A
6099864 Morrison et al. Aug 2000 A
6100306 Li et al. Aug 2000 A
6139963 Fujii et al. Oct 2000 A
6149623 Reynolds Nov 2000 A
6160084 Langer et al. Dec 2000 A
6162377 Ghosh et al. Dec 2000 A
6165193 Greene, Jr. et al. Dec 2000 A
6167313 Gray et al. Dec 2000 A
6179817 Zhong Jan 2001 B1
6191193 Lee et al. Feb 2001 B1
6214331 Vanderhoff et al. Apr 2001 B1
6214384 Pallado et al. Apr 2001 B1
6224630 Bao et al. May 2001 B1
6224794 Amsden et al. May 2001 B1
6235224 Mathiowitz et al. May 2001 B1
6238403 Greene, Jr. et al. May 2001 B1
6245090 Gilson et al. Jun 2001 B1
6251661 Urabe et al. Jun 2001 B1
6258338 Gray Jul 2001 B1
6261585 Sefton et al. Jul 2001 B1
6264861 Tavernier et al. Jul 2001 B1
6267154 Felicelli et al. Jul 2001 B1
6268053 Woiszwillo et al. Jul 2001 B1
6277392 Klein Aug 2001 B1
6280457 Wallace et al. Aug 2001 B1
6291605 Freeman et al. Sep 2001 B1
6296604 Garibaldi et al. Oct 2001 B1
6296622 Kurz et al. Oct 2001 B1
6296632 Luscher et al. Oct 2001 B1
6306418 Bley Oct 2001 B1
6306419 Vachon et al. Oct 2001 B1
6306425 Tice et al. Oct 2001 B1
6306427 Annonier et al. Oct 2001 B1
6312407 Zadno-Azizi et al. Nov 2001 B1
6312942 Plüss-Wenzinger et al. Nov 2001 B1
6315709 Garibaldi et al. Nov 2001 B1
6335384 Evans et al. Jan 2002 B1
6344182 Sutton et al. Feb 2002 B1
6355275 Klein Mar 2002 B1
6364823 Garibaldi et al. Apr 2002 B1
6368658 Schwarz et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6388043 Langer et al. May 2002 B1
6394965 Klein May 2002 B1
6410508 Isales et al. Jun 2002 B1
6423332 Huxel et al. Jul 2002 B1
6432437 Hubbard Aug 2002 B1
6436112 Wensel et al. Aug 2002 B2
6443941 Slepian et al. Sep 2002 B1
6458296 Heinzen et al. Oct 2002 B1
6476069 Krall et al. Nov 2002 B2
6495155 Tice et al. Dec 2002 B1
6544503 Vanderhoff et al. Apr 2003 B1
6544544 Hunter et al. Apr 2003 B2
6545097 Pinchuk et al. Apr 2003 B2
6565887 Gray et al. May 2003 B1
6575896 Silverman et al. Jun 2003 B2
6586364 Kubota et al. Jul 2003 B2
6602261 Greene, Jr. et al. Aug 2003 B2
6602524 Batich et al. Aug 2003 B2
6605111 Bose et al. Aug 2003 B2
6629947 Sahatjian et al. Oct 2003 B1
6632531 Blankenship Oct 2003 B2
6652883 Goupil et al. Nov 2003 B2
6680046 Boschetti Jan 2004 B1
6699222 Jones et al. Mar 2004 B1
6706394 Kuehnle et al. Mar 2004 B2
6777001 Umezu et al. Aug 2004 B1
6998137 Shih et al. Feb 2006 B2
7591993 Boschetti Sep 2009 B2
20010001835 Greene, Jr. et al. May 2001 A1
20010016210 Mathiowitz et al. Aug 2001 A1
20010036451 Goupil et al. Nov 2001 A1
20010051670 Goupil et al. Dec 2001 A1
20020054912 Kim et al. May 2002 A1
20020061954 Davis et al. May 2002 A1
20020160109 Yeo et al. Oct 2002 A1
20020182190 Naimark et al. Dec 2002 A1
20020197208 Ruys et al. Dec 2002 A1
20030007928 Gray Jan 2003 A1
20030032935 Damiano et al. Feb 2003 A1
20030108614 Volkonsky et al. Jun 2003 A1
20030163187 Weber Aug 2003 A1
20030183962 Buiser et al. Oct 2003 A1
20030185895 Lanphere et al. Oct 2003 A1
20030185896 Buiser et al. Oct 2003 A1
20030187320 Freyman Oct 2003 A1
20030194390 Krall et al. Oct 2003 A1
20030203985 Baldwin et al. Oct 2003 A1
20030206864 Mangin Nov 2003 A1
20030215519 Schwarz et al. Nov 2003 A1
20030233150 Bourne et al. Dec 2003 A1
20040076582 DiMatteo et al. Apr 2004 A1
20040091543 Bell et al. May 2004 A1
20040092883 Casey, II et al. May 2004 A1
20040096662 Lanphere et al. May 2004 A1
20040186377 Zhong et al. Sep 2004 A1
20050025800 Tan Feb 2005 A1
20050037047 Song Feb 2005 A1
Foreign Referenced Citations (101)
Number Date Country
A-7618698 Oct 1998 AU
2326977 Oct 1999 CA
3834705 Apr 1990 DE
42 01 461 Jul 1993 DE
9414868 Sep 1994 DE
100 26 620 May 2000 DE
297 24 255 Oct 2000 DE
297 24 255 Oct 2000 DE
0 067 459 Dec 1982 EP
0 122 624 Oct 1984 EP
0 123 235 Oct 1984 EP
0 243 165 Oct 1987 EP
0 294 206 Dec 1988 EP
0 402 031 May 1990 EP
0 422 258 Apr 1991 EP
0 458 079 Nov 1991 EP
0 458 745 Nov 1991 EP
0 470 569 Feb 1992 EP
0 547 530 Jun 1993 EP
0 600 529 Dec 1993 EP
0 623 012 Nov 1994 EP
0 706 376 Apr 1996 EP
0 730 847 Sep 1996 EP
0 744 940 Dec 1996 EP
0 797 988 Oct 1997 EP
0 067 459 Mar 1998 EP
0 764 047 Aug 2003 EP
0 993 337 Apr 2004 EP
2 096 521 Mar 1997 ES
59-196738 Nov 1984 JP
62-45637 Feb 1987 JP
4-057836 Feb 1992 JP
4-74117 Mar 1992 JP
6-57012 Mar 1994 JP
6-218271 Aug 1994 JP
7018357 Jan 1995 JP
9-110678 Apr 1997 JP
9-165328 Jun 1997 JP
9-316271 Dec 1997 JP
10-085224 Apr 1998 JP
10127754 May 1998 JP
10-130329 May 1998 JP
10-158075 Jun 1998 JP
10337335 Dec 1998 JP
11-92568 Apr 1999 JP
2000189511 Jul 2000 JP
2001079011 Mar 2001 JP
2002 017848 Jan 2002 JP
255409 Feb 1997 NZ
517377 Aug 2003 NZ
421658 Feb 2001 TW
WO 9112823 May 1991 WO
WO 9221327 Dec 1992 WO
WO 9300063 Jan 1993 WO
WO 9319702 Oct 1993 WO
WO 9410936 May 1994 WO
WO 9503036 Feb 1995 WO
WO 9522318 Aug 1995 WO
WO 9533553 Dec 1995 WO
WO 9637165 Nov 1996 WO
WO 9639464 Dec 1996 WO
WO 9804616 Feb 1998 WO
WO 9810798 Mar 1998 WO
WO 9826737 Jun 1998 WO
WO9847532 Oct 1998 WO
WO 9900187 Jan 1999 WO
WO 9943380 Feb 1999 WO
WO 9912577 Mar 1999 WO
9951278 Oct 1999 WO
WO 9951278 Oct 1999 WO
WO 9957176 Nov 1999 WO
WO 0023054 Apr 2000 WO
WO 0032112 Jun 2000 WO
WO 0040259 Jul 2000 WO
0044287 Aug 2000 WO
WO 0066183 Sep 2000 WO
WO 0066183 Nov 2000 WO
WO-0066183 Nov 2000 WO
WO 0071196 Nov 2000 WO
WO 0074633 Dec 2000 WO
WO 0112359 Feb 2001 WO
WO-0166016 Sep 2001 WO
WO 0166016 Sep 2001 WO
WO 0170291 Sep 2001 WO
WO 0172281 Oct 2001 WO
WO 0176845 Oct 2001 WO
WO 0193920 Dec 2001 WO
WO 0211696 Feb 2002 WO
WO 0234298 May 2002 WO
WO 0234299 May 2002 WO
WO 0234300 May 2002 WO
WO 0243580 Jun 2002 WO
WO 03013552 Feb 2003 WO
WO 03016364 Feb 2003 WO
WO 03051451 Jun 2003 WO
WO03082359 Sep 2003 WO
WO 2004019999 Mar 2004 WO
WO 2004020042 Mar 2004 WO
WO 2004040972 May 2004 WO
WO 2004073688 Sep 2004 WO
WO 2004075989 Sep 2004 WO
Related Publications (1)
Number Date Country
20040101564 A1 May 2004 US