This invention relates to embolization.
Therapeutic vascular occlusions (embolizations) are used to prevent or treat pathological conditions in situ. Compositions including embolic particles are used for occluding vessels in a variety of medical applications. Delivery of embolic particles through a catheter is dependent on size uniformity, density and compressibility of the embolic particles.
In a first aspect, the invention features an embolic composition. The composition includes substantially spherical embolic particles having a diameter of about 1200 micron or less. The particles include polyvinyl alcohol and an interior having relatively large pores and a surface region with fewer relatively large pores.
In another aspect, the invention features an embolic composition including embolic polymer particles having a diameter of about 1200 micron or less and a surface with a predominant pore size of about 2 micron or less and pores interior to surface of about 10 micron or more.
In another aspect, the invention features an embolic composition including embolic polymer particles including a surface region from about 0.8r to r, the predominant pore size in the surface region being smaller than the predominant pore size in a region C to 0.3r.
In another aspect, the invention features an embolic composition, including embolic particles with a surface region defined primarily by relatively small pores and an interior region defined primarily of relatively large pores.
In another aspect, the invention features a method of manufacturing embolic particles. The method includes generating drops of a base polymer and a gelling compound and combining the particles with a pharmaceutically acceptable medium. The method may optionally include reacting the base polymer and removing the gelling compound. In another aspect, the invention features forming embolic particles by nebulization such as vibratory nebulization.
In another aspect, the invention features embolic compositions including particles formed by the processes described herein.
In another aspect, the invention features a method of delivering a therapeutic agent to a patient. The method includes administering to a patient in need of an embolization a therapeutically effective amount of substantially spherical embolic polymer particles. The particles include polyvinyl alcohol and include an interior region having relatively large pores and a surface region having fewer relatively large pores.
Embodiments may also include one or more of the following. The relatively large pores are about 20 or 30 micron or more. The surface region is about r to 0.8r. The surface region is about r to 2r/3. The particles include a body region from about 2r/3 to r/3 including intermediate size pores and the body region has more intermediate size pores than the surface region. The center region is from about r/3 to 3, the outer region including large size pores and the body region has fewer large size pores than the center region. The intermediate size pores are about 2 to 18 microns. The surface region is substantially free of pores greater than about 5 microns.
Embodiments may also include one of the following. The predominant pore size progressively increases from surface to the center of the particle. The predominant pore size on the particle surface is about 1 micron or less. The particles have a surface region from about (2r)/3 to the surface wherein the predominant pore size is in the range of about 1 micron or less. The predominant pore size is about 0.1 micron or less. Interior of said surface region, the particles have a predominant pore size in the range of about 2 to 35 microns. The particles include a center region from about C to r/3 in which the predominant pore size is about 20 to 35 microns. The particles have a body region from r/3 to (2r)/3 in which the predominant pore size is about 2 to 18 microns. The particles have a surface region from about (2r)/3 to the periphery and the predominant pore size in the surface region is about 10% or less than the predominant pore size in the interior to the surface region. The particles include a surface region from about 0.8r to r wherein the predominate pore size is about 1 micron or less. The particles include a region from about C to 0.8r includes pores having a diameter of 10 microns or more. The region C to 0.8r has a predominant pore size of about 3.5 to 2 microns. The particles have a density of about 1.1 to about 1.4 g/cm3. The particles have a density of about 1.2 to 1.3 g/cm3. The embolic particles have a sphericity of about 90% or more. The particles have an initial sphericity of about 97% or more. The particles have a sphericity of about 0.90 after compression to about 50%. The particles have a size uniformity of about +15% or more.
Embodiments may also include one or more of the following. The particles include about 1% or less polysaccharide. The polysaccharide is alginate. The alginate has a guluronic acid content of about 60% or greater. The embolic particles are substantially insoluble in DMSO. The embolic particles are substantially free of animal-derived compounds. The polyvinyl alcohol is composed of substantially unmodified polyvinyl alcohol prepolymer. The polyvinyl alcohol is predominantly intrachain 1,3-diols acetalized. The composition includes saline and/or contrast agent. The particles and/or composition are sterilized.
Embodiments may also include one or more of the following. The gelling compound is a polysaccharide The gelling compound is alginate. The alginate has a guluronic acid content of about 60% or more. The drops are contacted with a gelling agent. The gelling agent is a divalent cation. The cation is Ca+2. The base polymer is PVA. The PVA is reacted by acetalization. The PVA has a molecular weight of about 75,000 g/mole or greater. The viscosity of the base polymer and gelling compound is modified prior to forming said drops. The viscosity is modified by heating. The drops are formed by vibratory nebulization.
Embodiments may also include one or more of the following. Administration is by percutaneous injection. Administration is by a catheter. The particles are introduced to the body through a lumen, and the lumen has a smaller diameter than the particles. The composition is used for treatment of uterine fibroids. The composition is used for treatment of tumors, including hypervascular tumors and for arteriovenous malformations (AVMs).
Embodiments of the invention may have one or more of the following advantages. Some disorders or physiological conditions can be mediated by delivery of embolic compositions. Embolic compositions can be used, for example, in treatment of fibroids, internal bleeding AVMs and hypervascular tumors. Fibroids can include uterine fibroids which grow within the uterine wall, on the outside of the uterus, inside the uterine cavity, between the layers of broad ligament supporting the uterus, attached to another organ or on a mushroom-like stalk. Internal bleeding includes gastrointestinal, urinary, renal and varicose bleeding. AVMs are, for example, abnormal collections of blood vessels which shunt blood from a high pressure artery to a low pressure vein, resulting in hypoxia and malnutrition of those regions from which the blood is diverted.
Spherical embolic particles in the embolic compositions can be tailored to a particular application by varying particle size, porosity gradient, compressibility, sphericity and density of the particles. The uniform size of the spherical embolic particles can, for example, fit through the aperture of a catheter for administration by injection to a target site without partially or completely plugging the lumen of the catheter. The spherical embolic particles have a diameter of about 1200 micron or less. Size uniformity of ±15% of the spherical embolic particles allows the particles to stack evenly in the cylindrical lumen of the blood vessel to completely occlude the blood vessel lumen. Suspensions containing the embolic particles at density of about 1.1 to about 1.4 g/cm3 can be prepared in calibrated concentrations of the embolic particles for ease of delivery by the physician without rapid settlement of the suspension. Control in sphericity and uniformity of the embolic particles can result in reduction in aggregation caused, for example, by surface interaction of the particles. In addition, the embolic particles are relatively inert in nature.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Composition
Referring to
Referring particularly to
The particles are substantially formed of polymer such as a highly water insoluble, high molecular weight polymer. As will be discussed below, a preferred polymer is high molecular weight polyvinyl alcohol (PVA) that has been acetalized. Preferably, the embolic particles are substantially pure intrachain 1,3 acetalized PVA and substantially free of animal derived residue such as collagen. In embodiments, the particles include a minor amount, e.g. less than about 0.2 weight %, of alginate or another polysaccharide or gelling material.
Referring to
The region of small pores near the periphery of the embolic particle is relatively stiff and incompressible, which enhances resistance to shear forces and abrasion. In addition, the variable pore size profile produces a symmetric compressibility and, it is believed, a compressibility profile such that the particles are relatively easily compressed from a maximum, at rest diameter to a smaller, compressed first diameter but compression to even smaller diameter requires substantially greater force. A variable compressibility profile is believed to be due to the presence of a relative weak, collapsible inter-pore wall structure in the center region where the pores are large, and a stiffer inter-pore wall structure near the surface of the particle, where the pores are more numerous and relatively small. The variable pore size profile also is believed to enhance elastic recovery after compression. The pore structure also influences the density of the embolic particles and the rate of carrier fluid or body fluid uptake.
The embolic particles can be delivered through a catheter having a lumen area that is smaller, e.g. 50% smaller or less, than the uncompressed cross-sectional area of the particles. As a result, the embolic particles must be compressed to pass through the catheter for delivery into the body. The compression force is provided indirectly by increasing the pressure applied to the carrier fluid by depressing the syringe plunger. The embolic particles are relatively easily compressed to diameters sufficient for delivery through the catheter into the body. The robust, rigid surface region resists abrasion when the embolic particles contact hard surfaces such as syringe surfaces, hard plastic or metal stopcock surfaces, and the catheter lumen wall (e.g. Teflon) during delivery. Once in the body, the embolic particles substantially recover to original diameter and shape for efficient transport in the carrier and body fluid stream. At the point of occlusion, the particles can again compress as they aggregate in the occlusion region. The embolic particles form a dense occluding mass. The compression in the body is determined by the force provided by body fluid flow in the lumen. The compression may be limited by the compression profile of the particles and the number of embolic particles needed to occlude a given diameter may be reduced.
In embodiments, the particles have a diameter of about 1500 or 1200 microns or less, and about 10 microns or more, e.g. about 400 microns or more and the pores are about 50 or 35 to 0.01 micron. The embolic particles can be classified in size ranges of about 500–700 microns, about 700–900 microns, or about 900–1200 microns. The particles typically have a mean diameter in approximately the middle of the range and variance of about 20% or less, e.g. 15% or 10% or less.
Referring particularly to
The size of the pores in each of the regions can also be characterized by a distribution. In embodiments, the predominant pore size(s) in the center region being greater than the predominant pore size(s) in the body region and the predominant pore size(s) in the body region is greater than the predominant pore size(s) in the surface region. In embodiments, in the predominant pore size in the center region is 20 micron or more, e.g. 30 microns or more, or in the range of about 20 to 35 microns. The predominant pore size in the body region is about 18 micron or less, e.g. about 15 micron or less, or in the range of about 18 to 2 micron. The pores in the surface region are preferably predominantly less than about 1 micron, e.g. about 0.1 to 0.01 micron.
In embodiments, the predominant pore size in the body region is about 50 to 70% of the pore size in the center region and the pore size in the surface region is about 10% or less, e.g. about 2% of the pore size in the body region. The size of the pores on the outer surface of the particle is predominantly in the range of about 1 micron or less, e.g. about 0.1 or 0.01 micron. In embodiments, the surface and/or surface region is substantially free of pores having a diameter larger than about 10 micron or larger than about 1 micron. In embodiments, the predominant pore size is in the region 0.8 or 0.9r to r is about 1 micron or less, e.g. 0.5 to 0.1 micron or less. The region from the center of the particle to 0.8 or 0.9r has pores of about 10 micron or greater and/or has a predominant pore size of about 2 to 35 micron. In embodiments, the predominant pore size in the region 0.8 or 0.9r to r is about 5% or less, e.g. 1% or 0.3% or less than the predominant pore size in the region from the center to 0.9r. the largest pores in the particles can have a size in the range of 1% or 5% or 10% or more of the particle diameter.
The size of the pores can be measured by viewing a cross-section as in
The density of the particles is such that they are readily suspended in the carrier fluid such as a mixture of saline and contrast solution and remain suspended during delivery. In embodiments, the density is in about 1.1–1.4 g/cm3. For suspension in a saline-contrast solution, the density is about 1.2–1.3 g/cm3. The sphericity after compression in a catheter to about 50% or more of their cross-sectional area is about 0.90 or 0.95 or greater. In embodiments, the particles can be manually compressed, essentially flattened, while wet to less than 50% of original diameter and then, upon exposure to fluid, regain a sphericity of about 0.9 or more. The carrier fluid is a pharmaceutically acceptable carrier such as saline or contrast agent. The particles can be sterilized prior to use.
Manufacture
Referring to
A base polymer and a gelling precursor are dissolved in water and mixed. The mixture is introduced to a high pressure pumping apparatus, such as a syringe pump (e.g., model PHD4400, Harvard Apparatus, Holliston, Mass.). Examples of base polymers include polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, poly vinyl sulfonate, carboxymethyl cellulose, hydroxyethyl cellulose, substituted cellulose, polyacrylamide, polyethylene glycol, polyamides, polyureas, polyurethanes, polyester, polyethers, polystyrene, polysaccharide, polylactic acid, polyethylene, polymethylmethacrylate and copolymers or mixtures thereof. A preferred polymer is polyvinyl alcohol. The polyvinyl alcohol, in particular, is hydrolyzed in the range of 80 to 99%. The weight average molecular weight of the base polymer can be in the range of 9000 to 186,000, 85,000 to 146,000 or 89,000 to 98,000. Gelling precursors include, for example, alginates, alginate salts, xanthan gums, natural gum, agar, agarose, chitosan, carrageenan, fucoidan, furcellaran, laminaran, hypnea, eucheuma, gum arabic, gum ghatti, gum karaya, gum tragacanth, hyalauronic acid, locust beam gum, arabinogalactan, pectin, amylopectin, other water soluble polysaccharides and other ionically crosslinkable polymers. A particular gelling precursor is sodium alginate. A preferred sodium alginate is high guluronic acid, stem-derived alginate (e.g. about 50 or 60% or more guluronic acid with a low viscosity e.g. about 20 to 80 cps at 20° C.) which produces a high tensile, robust gel. High molecular weight PVA is dissolved in water by heating, typically above about 70° C., while alginates can be dissolved at room temperature. The PVA can be dissolved by mixing PVA and alginate together in a vessel which is heated to autoclave temperature (about 121° C.). Alternatively, the PVA can be disposed in water and heated and the alginate subsequently added at room temperature to avoid exposing the alginate to high temperature. Heat can also be applied by microwave application. In embodiments, for PVA/alginate, the mixture is typically about 7.5 to 8.5%, e.g. about 8% by weight PVA and about 1.5 to 2.5%, e.g. about 2%, by weight alginate.
Referring to
The drop generator 310 generates substantially spherical drops of predetermined diameter by forcing a stream of the mixture of base polymer and gelling precursor through a nozzle which is subject to a periodic disturbance to break up the jet stream into drops. The jet stream can be broken into drops by vibratory action generated for example, by an electrostatic or piezoelectric element. The drop size is controlled by controlling the flow rate, viscosity, amplitude, and frequency at which the element is driven. Lower flow rates and higher frequencies produce smaller drops. A suitable electrostatic drop generator is available from NISCO Engineering, model NISCO Encapsulation unit VAR D, Zurich, Switzerland. In embodiments, the frequency is in the range of about 0.1 to 0.8 kHz. The flow rate through the droplet generator is in the range of about 1 to 12 mL per minute. The drop generator can include charging the drops after formation such that mutual repulsion between drops prevents drop aggregation as drops travel from the generator to the gelling vessels. Charging may be achieved by, e.g. an electrostatic charging device such as a charged ring positioned downstream of the nozzle.
Drops of the base polymer and gelling precursor mixture are captured in the gelling vessel 320. The gelling vessel 320 contains a gelling agent which interacts with the gelling precursor to stabilize drops by forming a stable gel. Suitable gelling agents include, for example, a divalent cation such as alkali metal salt, alkaline earth metal salt or a transition metal salt that can ionically crosslink with the gelling agent. An inorganic salt, for example, a calcium, barium, zinc or magnesium salt can be used as a gelling agent. In embodiments, particularly those using an alginate gelling precursor, a suitable gelling agent is calcium chloride. The calcium cations have an affinity for carboxylic groups in the gelling precursor. The cations complex with carboxylic groups in the gelling precursor resulting in encapsulation of the base polymer in a matrix of gelling precursor.
Referring to
Following drop stabilization, the gelling solution is decanted from the solid drops and the stabilized drops are transferred to the reactor vessel 330. In the reactor vessel 330, the stabilized drops are reacted to produce precursor particles. The reactor vessel includes an agent that chemically reacts with the base polymer, e.g. to cause crosslinking between polymer chains and/or within a polymer chain. The agent diffuses into the stabilized drops from the surface of the particle in a gradient which, it is believed, provides more crosslinking near the surface of the stabilized drop compared to the body and center of the drop. Reaction is greatest at the surface of the drop, providing a stiff, abrasion resistant exterior. For polyvinyl alcohol, for example, the vessel 330 includes aldehydes, such as formaldehyde, glyoxal, benzaldehyde, aterephthalaldehyde, succinaldehyde and glutaraldehyde for the acetalization of polyvinyl alcohol. The vessel 330 also includes an acid, for example, strong acids such as sulfuric acid, hydrochloric acid, nitric acid and weak acids such as acetic acid, formic acid and phosphoric acid. In embodiments, the reaction is primarily a 1,3 acetalization:
This intra-chain acetalization reaction can be carried out with relatively low probability of inter-chain crosslinking as described in John G. Pritchard “Poly(Vinyl Alcohol) Basic Properties And Uses (Polymer Monograph, vol. 4) (see p. 93–97), Gordon and Breach, Science Publishers LTD., London, 1970, the entire contents of which is hereby incorporated by reference. Some OH groups along a polymer chain may remain unconverted since the reaction proceeds in a random fashion and there will be left over OH groups that do not react with adjacent groups.
Adjusting the amount of aldehyde and acid used, reaction time and reaction temperature can control the degree of acetalization. In embodiments, the reaction time is e.g., 5 minutes to 1 hour, 10 to 40 minutes or 20 minutes. The reaction temperature can be 25° C. to 150° C. or 75° C. to 130° C. or 65° C. The reactor vessel is placed in a water bath fitted with a orbital motion mixer. The crosslinked precursor particles are washed several times with deionized water to neutralize the particles and remove any residual acidic solution.
The precursor particles are transferred to the dissolution chamber 340 to remove the gelling precursor, e.g. by an ion exchange reaction. In embodiments, sodium alginate is removed by ion exchange with a solution of sodium hexa-metaphosphate (EM Science). The solution can include, for example, ethylenediaminetetracetic acid (EDTA), citric acid, other acids and phosphates. The concentration of the sodium hexa-metaphosphate can be, for example, 1–20 weight %, 1–10 weight % or 5 weight % in deionized water. Residual gelling precursor, for example, sodium alginate, can be determined by assay for detection of uronic acids in, for example, alginates containing mannuronic and guluronic acid residues. Suitable assays include rinsing the particles with sodium tetraborate in sulfuric acid solution to extract alginate and combining the extract with metahydroxydiphenyl colormetric reagent and determining concentration by UV/VIS spectroscopy. Testing can be carried out by alginate suppliers such as FMC Biopolymer, Oslo, Norway. Residual alginate may be present in the range of about 20–35% by weight prior to rinsing and in the range of about 0.01–0.5% or 0.1–0.3% or 0.18% in the particles after rinsing for 30 minutes in water at about 23° C.
The particles are filtered through filter 350 to remove residual debris. Particles of 500 to 700 microns are filtered through a sieve of 710 microns and then a sieve of 300 microns. Particles of 700 to 900 microns are filtered through a sieve of 1000 microns and then a sieve of 500 microns. Particles of 900 to 1200 microns are filtered through a sieve of 1180 microns and then a sieve of 710 microns.
The filtered particles are sterilized by a low temperature technique such as e-beam irradiation, and packaged, typically about 1 to 5 ml of particles in about 5 to 10 ml saline. In embodiments, electron beam irradiation can be used to pharmaceutically sterilize the particles to reduce bioburden. In e-beam sterilization, an electron beam is accelerated using magnetic and electric fields, and focused into a beam of energy. This resultant beam can be scanned by means of an electromagnet to produce a “curtain” of accelerated electrons. The accelerated electron beam penetrates the collection of embolic particles to confer upon them electrons which destroy bacteria and mold to sterilize and reduce the bioburden in the embolic particles. Electron beam sterilization can be carried out by sterilization vendors such as Titan Scan, Lima, Ohio.
Embolic particles are manufactured from an aqueous solution containing 8 weight % of polyvinyl alcohol, 99+% hydrolyzed, average Mw 89,000–120,000 (ALDRICH) and 2 weight % of gelling precursor, sodium alginate, PRONOVA UPLVG, (FMC BioPolymer, Princeton, N.J.) in deionized water and the mixture is heated to about 121° C. The solution has a viscosity of about 310 centipoise at room temperature and a viscosity of about 160 cps at 65° C. Using a syringe pump (Harvard Apparatus), the mixture is fed to drop generator (Nisco Engineering). Drops are directed into a gelling vessel containing 2 weight % of calcium chloride in deionized water and stirred with a stirring bar. The calcium chloride solution is decanted within about three minutes to avoid substantial leaching of the polyvinyl alcohol from the drops into the solution. The drops are added to the reaction vessel containing a solution of 4% by weight of formaldehyde (37 wt % in methanol) and 20% by weight sulfuric acid (95–98% concentrated). The reaction solution is stirred at 65° C. for 20 minutes. Precursor particles are rinsed with deionized water (3×300 mL) to remove residual acidic solution. The sodium alginate is substantially removed by soaking the precursor particles in a solution of 5 weight % of sodium hexa-methaphosphate in deionized water for 0.5 hour. The solution is rinsed in deionized water to remove residual phosphate and alginate. The particles are filtered by sieving, as discussed above, placed in saline (USP 0.9% NaCl) and followed by irradiation sterilization.
Particles were produced at the nozzle diameters, nozzle frequencies and flow rates (amplitude about 80% of maximum) described in Table I.
Suspendability is measured at room temperature by mixing a solution of 2 ml of particles in 5 ml saline with contrast solution (Omnipaque 300, Nycomed, Buckinghamshire, UK) and observing the time for about 50% of the particles to enter suspension, i.e. have not sunk to the bottom or floated to the top of a container (about 10 ml, 25 mm dia vial). Suspendability provides a practical measure of how long the particles will remain suspended in use. (Omnipaque is an aqueous solution of Iohexol, N.N.-Bis (2,3-dihydroxypropyl)-T-[N-(2,3-dihydroxypropyl)-acetamide]-2,4,6-trilodo-isophthalamide; Omnipaque 300 contains 647 mg of iohexol equivalent to 300 mg of organic iodine per ml. The specific gravity of 1.349 of 37° C. and an absolute viscosity 11.8 cp at 20° C.) The particles remain in suspension for about 2 to 3 minutes.
Particle size uniformity and sphericity is measured using a Beckman Coulter RapidVUE Image Analyzer version 2.06 (Beckman Coulter, Miami, Fla.). Briefly, the RapidVUE takes an image of continuous-tone (gray-scale) form and converts it to a digital form through the process of sampling and quantization. The system software identifies and measures particles in an image in the form of a fiber, rod or sphere. Sphericity computation and other statistical definitions are in Appendix A, attached, which is a page from the RapidVUE operating manual.
Referring to
Referring to
To test deliverability of the particles, syringe 610 and syringe 620 are loaded with embolic composition in saline and contrast (50/50 Ominipaque 300). The embolic composition in syringes 610 and 620 is intermixed by turning the T-valve to allow fluid between the syringes to mix and suspend the particles. After mixing, the embolic composition in syringe 620 flows at a rate of about 10 mL/min. The back pressure generated in the catheter 650 is measured by the pressure transducer 670 in millivolts to measure the clogging of catheter 650. About 1 ml of the particles is mixed in 10 mL of solution.
Results for several different catheters (available from Boston Scientific, Natick, Mass.) and particle sizes are shown in Table 2. The baseline pressure is the pressure observed when injecting carrier fluid only. The delivery pressure is the pressure observed while delivering particles in carrier fluid. The average is the average of the peak pressure observed in the three runs.
As evident, particles in each of the size ranges were successfully delivered without clogging through catheters having a lumen diameter smaller than the largest particle size. The particles exhibit a post-compression sphericity of about 0.9 or more.
Solubility is tested by mixing particles in a solution of solvent at room temperature for about 0.5 hour and observing the mixture for visible signs of dissolution. The particles are insoluble in DMSO (Dimethylsulfoxide), HFIP (Hexafluoro-isopropanol), and THF (Tetrahydrafuran).
Embolic particles include the following glass transition temperatures as measured by differential scanning calorimetry data (DSC)
Referring to
Use
The embolic compositions can be used as pharmaceutically acceptable compositions in the treatment of, for example, fibroids, tumors, internal bleeding, AVMs, hypervascular tumors, fillers for aneurysm sacs, endoleak sealants, arterial sealants, puncture sealants and occlusion of other lumens such as fallopian tubes. Fibroids can include uterine fibroids which grow within the uterine wall (intramural type), on the outside of the uterus (subserosal type), inside the uterine cavity (submucosal type), between the layers of broad ligament supporting the uterus (interligamentous type), attached to another organ (parasitic type), or on a mushroom-like stalk (pedunculated type). Internal bleeding includes gastrointestinal, urinary, renal and varicose bleeding. AVMs are for example, abnormal collections of blood vessels, e.g. in the brain, which shunt blood from a high pressure artery to a low pressure vein, resulting in hypoxia and malnutrition of those regions from which the blood is diverted.
The magnitude of a therapeutic dose of the embolic composition can vary based on the nature, location and severity of the condition to be treated and the route of administration. A physician treating the condition, disease or disorder can determine effective amount of embolic composition. An effective amount of embolic composition refers to the amount sufficient to result in amelioration of symptoms or a prolongation of survival of the patient. The embolic compositions can be administered as pharmaceutically acceptable compositions to a patient in any therapeutically acceptable dosage, including those administered to a patient intravenously, subcutaneously, percutaneously, intratrachealy, intramuscularly, intramucosaly, intracutaneously, intra-articularly, orally or parenterally.
Compositions containing the embolic particles can be prepared in calibrated concentrations of the embolic particles for ease of delivery by the physician. The density of the composition can be from about 1.1 to 1.4 g/cm3, or from about 1.2 to about 1.3 g/cm3 in saline solution. Suspensions of the embolic particles in saline solution can be prepared to form stable suspensions over duration of time. The suspensions of embolic particles can be stable from 1 to 10 minutes, 2–7 minutes or 3 to 6 minutes. The physician can determine concentration of embolic particles by adjusting the weight ratio of the embolic particles to physiological solution. If weight ratio of the embolic particles is too small, too much liquid could be injected in a blood vessel, possibly allowing the embolic particles to stray into lateral vessels. In embodiments, the weight ratio of the embolic particles to the physiological solution is about 0.01 to 15% by weight. The embolic composition can include a mixture of particles including particles with the pore profiles discussed above and particles with other pore profiles or non-porous particles. Particles can be used for embolic applications without removal of the gelling agent (e.g. alginate) for example at the stabilized drop stage or precursor particle stages described above. While substantially spherical particles are preferred, non-spherical particles can be manufactured and formed by controlling, e.g. drop formation conditions or by post-processing the particles, e.g. by cutting or dicing into other shapes. Particles can also be shaped by physical deformation followed by crosslinking. Particle shaping is described in U.S. Ser. No. 10/116,330 filed Apr. 4, 2002, the entire contents of which is hereby incorporated by reference.
Other embodiments are within the scope of the following claims.
This application is a continuation-in-part (and claims the benefit of priority under 35 U.S.C. § 120) of U.S. application Ser. No. 10/109,966, entitled “Processes for Manufacturing Polymeric Microspheres”, filed Mar. 29, 2002, hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2275154 | Merrill et al. | Mar 1942 | A |
2609347 | Wilson | Sep 1952 | A |
3663470 | Nishimura et al. | May 1972 | A |
3737398 | Yamaguchi | Jun 1973 | A |
3957933 | Egli et al. | May 1976 | A |
4025686 | Zion | May 1977 | A |
4034759 | Haerr | Jul 1977 | A |
4055377 | Erickson et al. | Oct 1977 | A |
4076640 | Forgensi et al. | Feb 1978 | A |
4094848 | Naito | Jun 1978 | A |
4096230 | Haerr | Jun 1978 | A |
4098728 | Rosenblatt | Jul 1978 | A |
4110529 | Stoy | Aug 1978 | A |
4159719 | Haerr | Jul 1979 | A |
4191672 | Salome et al. | Mar 1980 | A |
4198318 | Stowell et al. | Apr 1980 | A |
4243794 | White et al. | Jan 1981 | A |
4246208 | Dundas | Jan 1981 | A |
4266030 | Tschang et al. | May 1981 | A |
4268495 | Muxfeldt et al. | May 1981 | A |
4271281 | Kelley et al. | Jun 1981 | A |
4402319 | Handa et al. | Sep 1983 | A |
4413070 | Rembaum | Nov 1983 | A |
4427794 | Lange et al. | Jan 1984 | A |
4428869 | Munteanu et al. | Jan 1984 | A |
4429062 | Pasztor et al. | Jan 1984 | A |
4442843 | Rasor et al. | Apr 1984 | A |
4444961 | Timm | Apr 1984 | A |
4452773 | Molday | Jun 1984 | A |
4456693 | Welsh | Jun 1984 | A |
4459145 | Elsholz | Jul 1984 | A |
4472552 | Blouin | Sep 1984 | A |
4477255 | Pasztor et al. | Oct 1984 | A |
4492720 | Mosier | Jan 1985 | A |
4522953 | Barby et al. | Jun 1985 | A |
4542178 | Zimmermann et al. | Sep 1985 | A |
4551132 | Pasztor et al. | Nov 1985 | A |
4551436 | Johnson et al. | Nov 1985 | A |
4573967 | Hargrove et al. | Mar 1986 | A |
4622362 | Rembaum | Nov 1986 | A |
4623706 | Timm et al. | Nov 1986 | A |
4640807 | Afghan et al. | Feb 1987 | A |
4657756 | Rasor et al. | Apr 1987 | A |
4661137 | Garnier et al. | Apr 1987 | A |
4663358 | Hyon et al. | May 1987 | A |
4671954 | Goldberg et al. | Jun 1987 | A |
4674480 | Lemelson | Jun 1987 | A |
4675113 | Graves et al. | Jun 1987 | A |
4678710 | Sakimoto et al. | Jul 1987 | A |
4678814 | Rembaum | Jul 1987 | A |
4680320 | Uku et al. | Jul 1987 | A |
4681119 | Rasor et al. | Jul 1987 | A |
4695466 | Morishita et al. | Sep 1987 | A |
4713076 | Draenert | Dec 1987 | A |
4742086 | Masamizu et al. | May 1988 | A |
4743507 | Franses et al. | May 1988 | A |
4772635 | Mitschker et al. | Sep 1988 | A |
4782097 | Jain et al. | Nov 1988 | A |
4789501 | Day et al. | Dec 1988 | A |
4793980 | Torobin | Dec 1988 | A |
4795741 | Leshchiner et al. | Jan 1989 | A |
4801458 | Hidaka et al. | Jan 1989 | A |
4804366 | Zdeb et al. | Feb 1989 | A |
4819637 | Dormandy, Jr. et al. | Apr 1989 | A |
4822535 | Ekman et al. | Apr 1989 | A |
4833237 | Kawamura et al. | May 1989 | A |
4850978 | Dudar et al. | Jul 1989 | A |
4859711 | Jain et al. | Aug 1989 | A |
4863972 | Itagaki et al. | Sep 1989 | A |
4897255 | Fritzberg et al. | Jan 1990 | A |
4929400 | Rembaum et al. | May 1990 | A |
4933372 | Feibush et al. | Jun 1990 | A |
4938967 | Newton et al. | Jul 1990 | A |
4946899 | Kennedy et al. | Aug 1990 | A |
4954399 | Tani et al. | Sep 1990 | A |
4981625 | Rhim et al. | Jan 1991 | A |
4990340 | Hidaka et al. | Feb 1991 | A |
4999188 | Solodovnik et al. | Mar 1991 | A |
5007940 | Berg | Apr 1991 | A |
5011677 | Day et al. | Apr 1991 | A |
H915 | Gibbs | May 1991 | H |
5015423 | Eguchi et al. | May 1991 | A |
5032117 | Motta | Jul 1991 | A |
5034324 | Shinozaki et al. | Jul 1991 | A |
5047438 | Feibush et al. | Sep 1991 | A |
5079274 | Schneider et al. | Jan 1992 | A |
5091205 | Fan | Feb 1992 | A |
5106903 | Vanderhoff et al. | Apr 1992 | A |
5114421 | Polak | May 1992 | A |
5116387 | Berg | May 1992 | A |
5120349 | Stewart et al. | Jun 1992 | A |
5125892 | Drudik | Jun 1992 | A |
5147631 | Glajch et al. | Sep 1992 | A |
5147937 | Frazza et al. | Sep 1992 | A |
5149543 | Cohen et al. | Sep 1992 | A |
5158573 | Berg | Oct 1992 | A |
5171214 | Kolber et al. | Dec 1992 | A |
5171217 | March et al. | Dec 1992 | A |
5181921 | Makita et al. | Jan 1993 | A |
5190760 | Baker | Mar 1993 | A |
5190766 | Ishihara | Mar 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5202352 | Okada et al. | Apr 1993 | A |
5216096 | Hattori et al. | Jun 1993 | A |
5253991 | Yokota et al. | Oct 1993 | A |
5260002 | Wang | Nov 1993 | A |
5262176 | Palmacci et al. | Nov 1993 | A |
5263992 | Guire | Nov 1993 | A |
5288763 | Li et al. | Feb 1994 | A |
5292814 | Bayer et al. | Mar 1994 | A |
5302369 | Day et al. | Apr 1994 | A |
5314974 | Ito et al. | May 1994 | A |
5316774 | Eury et al. | May 1994 | A |
RE34640 | Kennedy et al. | Jun 1994 | E |
5320639 | Rudnick | Jun 1994 | A |
5328936 | Leifholtz et al. | Jul 1994 | A |
5336263 | Ersek et al. | Aug 1994 | A |
5344452 | Lemperle | Sep 1994 | A |
5344867 | Morgan et al. | Sep 1994 | A |
5354290 | Gross | Oct 1994 | A |
5369133 | Ihm et al. | Nov 1994 | A |
5369163 | Chiou et al. | Nov 1994 | A |
5382260 | Dormandy, Jr. et al. | Jan 1995 | A |
5384124 | Courteille et al. | Jan 1995 | A |
5397303 | Sancoff et al. | Mar 1995 | A |
5398851 | Sancoff et al. | Mar 1995 | A |
5403870 | Gross | Apr 1995 | A |
5417982 | Modi | May 1995 | A |
5431174 | Knute | Jul 1995 | A |
5435645 | Faccioli et al. | Jul 1995 | A |
5443495 | Buscemi et al. | Aug 1995 | A |
5456693 | Conston et al. | Oct 1995 | A |
5468801 | Antonelli et al. | Nov 1995 | A |
5469854 | Unger et al. | Nov 1995 | A |
5476472 | Dormandy, Jr. et al. | Dec 1995 | A |
5484584 | Wallace et al. | Jan 1996 | A |
5490984 | Freed | Feb 1996 | A |
5494682 | Cohen et al. | Feb 1996 | A |
5494940 | Unger et al. | Feb 1996 | A |
5512604 | Demopolis | Apr 1996 | A |
5514090 | Kriesel et al. | May 1996 | A |
5525334 | Ito et al. | Jun 1996 | A |
5534589 | Hager et al. | Jul 1996 | A |
5541031 | Yamashita et al. | Jul 1996 | A |
5542935 | Unger et al. | Aug 1996 | A |
5553741 | Sancoff et al. | Sep 1996 | A |
5556391 | Cercone et al. | Sep 1996 | A |
5556610 | Yan et al. | Sep 1996 | A |
5558255 | Sancoff et al. | Sep 1996 | A |
5558822 | Gitman et al. | Sep 1996 | A |
5558856 | Klaveness et al. | Sep 1996 | A |
5559266 | Klaveness et al. | Sep 1996 | A |
5567415 | Porter | Oct 1996 | A |
5569193 | Hofstetter et al. | Oct 1996 | A |
5569449 | Klaveness et al. | Oct 1996 | A |
5569468 | Modi | Oct 1996 | A |
5571182 | Ersek et al. | Nov 1996 | A |
5580575 | Unger et al. | Dec 1996 | A |
5583162 | Li et al. | Dec 1996 | A |
5585112 | Unger et al. | Dec 1996 | A |
5595821 | Hager et al. | Jan 1997 | A |
5622657 | Takada et al. | Apr 1997 | A |
5624685 | Takahashi et al. | Apr 1997 | A |
5635215 | Boschetti et al. | Jun 1997 | A |
5637087 | O'Neil et al. | Jun 1997 | A |
5639710 | Lo et al. | Jun 1997 | A |
5648095 | Illum et al. | Jul 1997 | A |
5648100 | Boschetti et al. | Jul 1997 | A |
5650116 | Thompson | Jul 1997 | A |
5651990 | Takada et al. | Jul 1997 | A |
5653922 | Li et al. | Aug 1997 | A |
5657756 | Vrba | Aug 1997 | A |
5681576 | Henry | Oct 1997 | A |
5695480 | Evans et al. | Dec 1997 | A |
5695740 | Porter | Dec 1997 | A |
5698271 | Liberti et al. | Dec 1997 | A |
5701899 | Porter | Dec 1997 | A |
5715824 | Unger et al. | Feb 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5718884 | Klaveness et al. | Feb 1998 | A |
5723269 | Akagi et al. | Mar 1998 | A |
5725534 | Rasmussen | Mar 1998 | A |
5733925 | Kunz et al. | Mar 1998 | A |
5741331 | Pinchuk | Apr 1998 | A |
5746734 | Dormandy, Jr. et al. | May 1998 | A |
5752974 | Rhee et al. | May 1998 | A |
5756127 | Grisoni et al. | May 1998 | A |
5760097 | Li et al. | Jun 1998 | A |
5766147 | Sancoff et al. | Jun 1998 | A |
5770222 | Unger et al. | Jun 1998 | A |
5779668 | Grabenkort | Jul 1998 | A |
5785642 | Wallace et al. | Jul 1998 | A |
5785682 | Grabenkort | Jul 1998 | A |
5792478 | Lawin et al. | Aug 1998 | A |
5795562 | Klaveness et al. | Aug 1998 | A |
5797953 | Tekulve | Aug 1998 | A |
5807323 | Kriesel et al. | Sep 1998 | A |
5813411 | Van Bladel et al. | Sep 1998 | A |
5823198 | Jones et al. | Oct 1998 | A |
5827502 | Klaveness et al. | Oct 1998 | A |
5827531 | Morrison et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5833361 | Funk | Nov 1998 | A |
5840387 | Berlowitz-Tarrant et al. | Nov 1998 | A |
5846518 | Yan et al. | Dec 1998 | A |
5853752 | Unger et al. | Dec 1998 | A |
5855615 | Bley et al. | Jan 1999 | A |
5863957 | Li et al. | Jan 1999 | A |
5876372 | Grabenkort et al. | Mar 1999 | A |
5877224 | Brocchini et al. | Mar 1999 | A |
5885216 | Evans, III et al. | Mar 1999 | A |
5885547 | Gray | Mar 1999 | A |
5888546 | Ji et al. | Mar 1999 | A |
5888930 | Smith et al. | Mar 1999 | A |
5891155 | Irie | Apr 1999 | A |
5894022 | Ji et al. | Apr 1999 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5895411 | Irie | Apr 1999 | A |
5899877 | Leibitzki et al. | May 1999 | A |
5902832 | Van Bladel et al. | May 1999 | A |
5902834 | Porrvik | May 1999 | A |
5922025 | Hubbard | Jul 1999 | A |
5922304 | Unger | Jul 1999 | A |
5928626 | Klaveness et al. | Jul 1999 | A |
5935553 | Unger et al. | Aug 1999 | A |
5951160 | Ronk | Sep 1999 | A |
5957848 | Sutton et al. | Sep 1999 | A |
5959073 | Schlameus et al. | Sep 1999 | A |
6003566 | Thibault et al. | Dec 1999 | A |
6015546 | Sutton et al. | Jan 2000 | A |
6027472 | Kriesel et al. | Feb 2000 | A |
6028066 | Unger | Feb 2000 | A |
6047861 | Vidal et al. | Apr 2000 | A |
6048908 | Kitagawa | Apr 2000 | A |
6051247 | Hench et al. | Apr 2000 | A |
6056721 | Shulze | May 2000 | A |
6056844 | Guiles et al. | May 2000 | A |
6059766 | Greff | May 2000 | A |
6063068 | Fowles et al. | May 2000 | A |
6071495 | Unger et al. | Jun 2000 | A |
6071497 | Steiner et al. | Jun 2000 | A |
6073759 | Lamborne et al. | Jun 2000 | A |
6090925 | Woiszwillo et al. | Jul 2000 | A |
6096344 | Liu et al. | Aug 2000 | A |
6099064 | Lund | Aug 2000 | A |
6099864 | Morrison et al. | Aug 2000 | A |
6100306 | Li et al. | Aug 2000 | A |
6139963 | Fujii et al. | Oct 2000 | A |
6149623 | Reynolds | Nov 2000 | A |
6160084 | Langer et al. | Dec 2000 | A |
6162377 | Ghosh et al. | Dec 2000 | A |
6165193 | Greene, Jr. et al. | Dec 2000 | A |
6179817 | Zhong | Jan 2001 | B1 |
6191193 | Lee et al. | Feb 2001 | B1 |
6214331 | Vanderhoff et al. | Apr 2001 | B1 |
6214384 | Pallado et al. | Apr 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6224794 | Amsden et al. | May 2001 | B1 |
6235224 | Mathiowitz et al. | May 2001 | B1 |
6238403 | Greene, Jr. et al. | May 2001 | B1 |
6245090 | Gilson et al. | Jun 2001 | B1 |
6251661 | Urabe et al. | Jun 2001 | B1 |
6258338 | Gray | Jul 2001 | B1 |
6261585 | Sefton et al. | Jul 2001 | B1 |
6264861 | Tavernier et al. | Jul 2001 | B1 |
6267154 | Felicelli et al. | Jul 2001 | B1 |
6268053 | Woiszwillo et al. | Jul 2001 | B1 |
6277392 | Klein | Aug 2001 | B1 |
6280457 | Wallace et al. | Aug 2001 | B1 |
6291605 | Freeman et al. | Sep 2001 | B1 |
6296604 | Garibaldi et al. | Oct 2001 | B1 |
6296622 | Kurz et al. | Oct 2001 | B1 |
6296632 | Luscher et al. | Oct 2001 | B1 |
6306418 | Bley | Oct 2001 | B1 |
6306419 | Vachon et al. | Oct 2001 | B1 |
6306425 | Tice et al. | Oct 2001 | B1 |
6306427 | Annonier et al. | Oct 2001 | B1 |
6312407 | Zadno-Azizi et al. | Nov 2001 | B1 |
6312942 | Pluss-Wenzinger et al. | Nov 2001 | B1 |
6315709 | Garibaldi et al. | Nov 2001 | B1 |
6335384 | Evans et al. | Jan 2002 | B1 |
6344182 | Sutton et al. | Feb 2002 | B1 |
6355275 | Klein | Mar 2002 | B1 |
6364823 | Garibaldi et al. | Apr 2002 | B1 |
6368658 | Schwarz et al. | Apr 2002 | B1 |
6379373 | Sawhney et al. | Apr 2002 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6394965 | Klein | May 2002 | B1 |
6423332 | Huxel et al. | Jul 2002 | B1 |
6432437 | Hubbard | Aug 2002 | B1 |
6436112 | Wensel et al. | Aug 2002 | B2 |
6443941 | Slepian et al. | Sep 2002 | B1 |
6458296 | Heinzen et al. | Oct 2002 | B1 |
6476069 | Krall et al. | Nov 2002 | B2 |
6495155 | Tice et al. | Dec 2002 | B1 |
6544503 | Vanderhoff et al. | Apr 2003 | B1 |
6544544 | Hunter et al. | Apr 2003 | B2 |
6545097 | Pinchuk et al. | Apr 2003 | B2 |
6575896 | Silverman et al. | Jun 2003 | B2 |
6602261 | Greene, Jr. et al. | Aug 2003 | B2 |
6602524 | Batich et al. | Aug 2003 | B2 |
6605111 | Bose et al. | Aug 2003 | B2 |
6629947 | Sahatjian et al. | Oct 2003 | B1 |
6632531 | Blankenship | Oct 2003 | B2 |
6652883 | Goupil et al. | Nov 2003 | B2 |
6680046 | Boschetti | Jan 2004 | B1 |
6699222 | Jones et al. | Mar 2004 | B1 |
7131664 | Pang et al. | Nov 2006 | B1 |
20010001835 | Greene, Jr. et al. | May 2001 | A1 |
20010016210 | Mathiowitz et al. | Aug 2001 | A1 |
20010036451 | Goupil et al. | Nov 2001 | A1 |
20010051670 | Goupil et al. | Dec 2001 | A1 |
20020054912 | Kim et al. | May 2002 | A1 |
20020061954 | Davis et al. | May 2002 | A1 |
20020160109 | Yeo et al. | Oct 2002 | A1 |
20020182190 | Naimark et al. | Dec 2002 | A1 |
20020197208 | Ruys et al. | Dec 2002 | A1 |
20030007928 | Gray | Jan 2003 | A1 |
20030032935 | Damiano, Jr. et al. | Feb 2003 | A1 |
20030108614 | Volkonsky et al. | Jun 2003 | A1 |
20030183962 | Buiser et al. | Oct 2003 | A1 |
20030185895 | Lanphere et al. | Oct 2003 | A1 |
20030187320 | Freyman | Oct 2003 | A1 |
20030194390 | Krall et al. | Oct 2003 | A1 |
20030203985 | Baldwin et al. | Oct 2003 | A1 |
20030206864 | Mangin | Nov 2003 | A1 |
20030215519 | Schwarz et al. | Nov 2003 | A1 |
20030233150 | Bourne et al. | Dec 2003 | A1 |
20040091543 | Bell et al. | May 2004 | A1 |
20040186377 | Zhong et al. | Sep 2004 | A1 |
20050025800 | Tan | Feb 2005 | A1 |
20050037047 | Song | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
A-7618698 | Oct 1998 | AU |
3834705 | Apr 1990 | DE |
9414868.6 | Sep 1994 | DE |
100 26 620 | May 2000 | DE |
297 24 255 | Oct 2000 | DE |
0 067 459 | Dec 1982 | EP |
0 122 624 | Oct 1984 | EP |
0 123 235 | Oct 1984 | EP |
0 243 165 | Oct 1987 | EP |
0 294 206 | Dec 1988 | EP |
0 402 031 | May 1990 | EP |
0 422 258 | Apr 1991 | EP |
0 458 079 | Nov 1991 | EP |
0 458 745 | Nov 1991 | EP |
0 470 569 | Feb 1992 | EP |
0 547 530 | Jun 1993 | EP |
0 600 529 | Dec 1993 | EP |
0 623 012 | Nov 1994 | EP |
0 706 376 | Apr 1996 | EP |
0 730 847 | Sep 1996 | EP |
0 744 940 | Dec 1996 | EP |
0 797 988 | Oct 1997 | EP |
0 067 459 | Mar 1998 | EP |
0 764 047 | Aug 2003 | EP |
0 993 337 | Apr 2004 | EP |
2 096 521 | Mar 1997 | ES |
59-196738 | Nov 1884 | JP |
62-45637 | Feb 1987 | JP |
4-74117 | Mar 1992 | JP |
05-076598 | Mar 1993 | JP |
6-57012 | Mar 1994 | JP |
09-078494 | Mar 1997 | JP |
9-110678 | Apr 1997 | JP |
9-165328 | Jun 1997 | JP |
9-316271 | Dec 1997 | JP |
10-130329 | May 1998 | JP |
04-057836 | Feb 1999 | JP |
11-092568 | Apr 1999 | JP |
2000189511 | Jul 2000 | JP |
2001079011 | Mar 2001 | JP |
2002 017848 | Jan 2002 | JP |
2005-521520 | Jul 2005 | JP |
255409 | Feb 1997 | NZ |
517377 | Aug 2003 | NZ |
421658 | Feb 2001 | TW |
WO 9112823 | May 1991 | WO |
WO9221327 | Dec 1992 | WO |
WO 9300063 | Jan 1993 | WO |
WO9319702 | Oct 1993 | WO |
WO9410936 | May 1994 | WO |
WO9503036 | Feb 1995 | WO |
WO9522318 | Aug 1995 | WO |
WO 9533553 | Dec 1995 | WO |
WO9637165 | Nov 1996 | WO |
WO9639464 | Dec 1996 | WO |
WO9804616 | Feb 1998 | WO |
WO9810798 | Mar 1998 | WO |
WO 9826737 | Jun 1998 | WO |
WO9847532 | Oct 1998 | WO |
WO 9900187 | Jan 1999 | WO |
WO9943380 | Feb 1999 | WO |
WO9912577 | Mar 1999 | WO |
WO 9951278 | Oct 1999 | WO |
WO9957176 | Nov 1999 | WO |
WO 0023054 | Apr 2000 | WO |
WO 00032112 | Jun 2000 | WO |
WO 0040259 | Jul 2000 | WO |
WO 0071196 | Nov 2000 | WO |
WO 0074633 | Dec 2000 | WO |
WO 0112359 | Feb 2001 | WO |
WO9804616 | Feb 2001 | WO |
WO 0166016 | Sep 2001 | WO |
WO 0170291 | Sep 2001 | WO |
WO 0172281 | Oct 2001 | WO |
WO 0176845 | Oct 2001 | WO |
WO 0193920 | Dec 2001 | WO |
WO 0211696 | Feb 2002 | WO |
WO 0234298 | May 2002 | WO |
WO 0234299 | May 2002 | WO |
WO 0234300 | May 2002 | WO |
WO 0243580 | Jun 2002 | WO |
WO 03016364 | Feb 2003 | WO |
WO 03051451 | Jun 2003 | WO |
WO03082359 | Sep 2003 | WO |
WO 2004019999 | Mar 2004 | WO |
WO 2004020011 | Mar 2004 | WO |
WO 2004073688 | Sep 2004 | WO |
WO 2004075989 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20030185896 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10109966 | Mar 2002 | US |
Child | 10215594 | US |