Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access

Information

  • Patent Grant
  • 11141257
  • Patent Number
    11,141,257
  • Date Filed
    Tuesday, April 9, 2019
    5 years ago
  • Date Issued
    Tuesday, October 12, 2021
    2 years ago
Abstract
A blood filter delivery system for delivering a filter into a vein from either a femoral or jugular access. The preferred system includes an introducer and a push-rod with a spline member disposed along the push-rod and a pusher member disposed on a distal end. The spline member has a main body, first and second boss portions spaced apart along the longitudinal axis to provide a gap for retaining anchor members of the filter during delivery via the introducer. In an alternative embodiment, a preferred filter includes first and second filter structures diverging in opposite directions. A link is connected to portions of each of the first and second filter structures so that each filter structure can be independently collapsed into a generally cylindrical shape.
Description
FIELD OF THE INVENTION

Various embodiments described and illustrated herein relates to a blood filter device, delivery system, and retrieval system for such blood filtering device in a blood vessel.


BACKGROUND OF THE INVENTION

In recent years, a number of medical devices have been designed which are adapted for compression into a small size to facilitate introduction into a vascular passageway and which are subsequently expandable into contact with the walls of the passageway. These devices, among others, include blood clot filters which expand and are held in position by engagement with the inner wall of a vein, such as the vena cava. These vena cava filters are generally designed to remain in place permanently. Such filters include structure to anchor the filter in place within the vena cava, such as elongate diverging anchor members with hooked ends that penetrate the vessel wall and positively prevent migration in either direction longitudinally of the vessel. The hooks on filters of this type are rigid, and within two to six weeks after a filter of this type has been implanted, the endothelium layer grows over the diverging anchor members and positively locks the hooks in place. Any attempt to remove the filter results in a risk of injury to or rupture of the vena cava.


A number of medical procedures subject the patient to a short-term risk of pulmonary embolism, which can be alleviated by a filter implant. In such cases, patients are often averse to receiving a permanent implant, for the risk of pulmonary embolism may disappear after a period of several weeks or months. However, most existing filters are not easily or safely removable after they have remained in place for more than two weeks, and consequently longer-term temporary filters that do not result in the likelihood of injury to the vessel wall upon removal are not available.


It is believed that most of the known filters are not capable of being delivered without regard for the orientation of the filter or access site. It is also believed that most of the known filters are not capable of being retrieved in either one of a femoral or jugular approach with one retrieval device.


One of the known filters, described and shown in U.S. Pat. No. 6,251,122 issued to Tsukernik, utilizes a plurality of strands with a sliding member slidingly disposed about a portion of the strands. Recovery of this filter, however, is believed to require two different devices approaching from both the femoral and jugular access sites as shown in FIG. 4 of this patent.


Another known filter, described and shown in U.S. Pat. No. 6,443,972 as a somewhat symmetrical filter. However, this filter, like others, can only be retrieved from one access site.


Applicants have recognized that biological anatomies may vary such that access from the jugular may be inappropriate or that access from a femoral site is similarly inappropriate. For example, in the known filter delivery system, if the jugular (or femoral) site is inappropriate for delivery and the delivery system of a known filter can only be utilized from the jugular (or femoral) approach then the clinician would have to obtain a femoral (jugular) delivery system. To provide immediate access to an alternative delivery device during a procedure, this would require the clinician to have two systems in the clinical inventory prior to the procedure. Similarly, in the known delivery system, if the retrieval is inappropriate for the jugular (or femoral) approach then the clinician would have to obtain a femoral (or jugular) retrieval system prior to the procedure. Immediate access to one or the other retrieval systems would require a clinical inventory of two different retrieval systems prior to the procedure. Hence, applicants have recognized the desirability for a blood filter system that addresses one or more of the above issues.


SUMMARY OF THE INVENTION

The various embodiments provide for a blood filter utilizable with a blood filter delivery or retrieval system that resolves potential problems of the known delivery system and filter and therefore advances the state of the art in blood filter designs, blood filter delivery and retrieval techniques.


In one embodiment, a blood filter is provided that includes first and second filter structures, and a link. The first and second filter structures diverge away from a longitudinal axis in opposite directions in a first configuration of the filter structures. The link is connected to discrete portions of each of the first and second filter structures so that each filter structure is independently collapsed into a generally cylindrical shape in a second configuration.


In yet another embodiment, a delivery catheter sheath for a blood filter is provided that includes a generally tubular member. The generally tubular member has a first end, intermediate end and a second end defining a longitudinal axis extending therethrough. The first end has an inner surface exposed to the longitudinal axis; the inner surface has a plurality of notches formed on the inner surface; the intermediate end includes a boss portion disposed in the tubular member, which has a plurality of grooves formed in the boss portion.


In a further embodiment, a blood filter retrieval device is provided that includes first and second generally tubular members, a collapsible member and a retrieval member. The first generally tubular member extends from a first end to a second end to define a longitudinal axis extending therethrough. The second generally tubular member can be disposed generally coaxially with the first generally tubular member. The collapsible member can be coupled to the second generally tubular member that defines a portion of a cone in one configuration and a cylinder in another configuration. The retrieval member can be disposed in the second tubular member and the collapsible member.


In yet another embodiment, a blood filter system is provided that includes an introducer, pusher assembly, and a blood filter. The introducer may have a coupling port connected to an elongated generally tubular member. The pusher assembly may have a first end disposed in the storage member and a second end extending out of the Y-adapter and further include a handle disposed along a longitudinal axis of the pusher assembly proximate the second end; a pusher disposed along the longitudinal axis proximate the first end of the elongated assembly; and a generally tubular member having a first end, intermediate end and a second end defining a longitudinal axis extending therethrough, the first end having an inner surface exposed to the longitudinal axis, the inner surface having a plurality of notches formed on the inner surface, the intermediate end including a boss portion coupled to the pusher and disposed in the tubular member having a plurality of grooves formed in the boss portion, the first end coupled to the Y-adapter. The blood filter may include at least a first anchor member having hooks disposed in one of the grooves and notches; and at least a second anchor member having hooks disposed in the other of the grooves and notches.


In yet an alternative embodiment, a blood filter kit is provided that includes a delivery system, blood filter, and instructions for use. The delivery system includes: an introducer having a coupling port connected to an elongated generally tubular member; a dilator configured to be inserted into the introducer to dilate a vessel; a pusher assembly having a first end disposed in the storage member and a second end extending out of the Y-adapter and further having: a handle disposed along a longitudinal axis of the pusher assembly proximate the second end; a pusher member disposed along the longitudinal axis proximate the first end of the elongated assembly; and a generally tubular member having a first end, intermediate end and a second end defining a longitudinal axis extending therethrough, the first end having an inner surface exposed to the longitudinal axis, the inner surface having a plurality of notches formed on the inner surface, the intermediate end including a boss portion coupled to the pusher and disposed in the tubular member having a plurality of grooves formed in the boss portion, the first end coupled to the Y-adapter. The blood filter includes at least a first anchor member having hooks disposed in one of the grooves and notches; at least a second anchor member having hooks disposed in the other of the grooves and notches. The instructions on how to deliver the blood filter to a site in a human readable graphical and textual format using the delivery device.


In yet a further embodiment, a method of delivering a blood filter from either an incision in the femoral or jugular vessels is provided. The method can be achieved by providing a filter, storing such filter, accessing an implant site, and releasing the filter from the sheath proximate the implantation site to engage the filter structures against a vessel wall of the implantation site. The blood filter may have first and second filter structures that diverge away from a longitudinal axis in opposite directions in a first configuration with a link connected to discrete portions of each of the first and second filter structures so that each filter structure is independently collapsed into a generally cylindrical shape in a second configuration. The filter is stored proximate a distal end of a generally tubular sheath having a first end, intermediate end and a second end defining a longitudinal axis extending therethrough. The first end may have an inner surface exposed to the longitudinal axis. The inner surface may have a plurality of notches formed on the inner surface. The intermediate end includes a boss portion coupled to the pusher and disposed in the tubular member having a plurality of grooves formed in the boss portion. The implantation site may be accessed via one of the femoral or jugular vessels.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate presently preferred embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain features of the invention.



FIG. 1 illustrates exemplarily a first embodiment of a blood filter.



FIG. 2A illustrates exemplarily a second embodiment of a blood filter.



FIG. 2B illustrates exemplarily a plurality of embodiments of the blood filter.



FIG. 3 illustrates a delivery system for one of the embodiments of blood filter including instructions for use embodied in paper form.



FIG. 4 illustrates one of the filters as disposed in the sheath of the delivery system in a close up view.



FIG. 5 illustrates a distal end of the sheath in which various retention members of the filter are located in notches.



FIG. 6A illustrates a proximal end of the sheath in which various retention members of the filters are located in a splined member, which is not part of the filter.



FIG. 6B illustrates a splined member that is part of the filter.



FIG. 6C illustrates yet another splined member that is part of the filter with a recovery member provided on the splined member.



FIG. 7 illustrates, in a close up view, one embodiment of a retention member.



FIGS. 8A and 8B illustrate details of another embodiment of a delivery sheath for a filter delivery system.



FIGS. 9A-9I illustrate exemplarily a high level overview of a filter retrieval process using one embodiment of a retrieval system.



FIGS. 10A-10B illustrate exemplarily a high level overview of yet another filter retrieval process using a second embodiment of the retrieval system.



FIGS. 11A-11B illustrate exemplarily a high level overview of another filter retrieval process using a third embodiment of the retrieval system.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following detailed description should be read with reference to the drawings, in which like elements in different drawings are identically numbered. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. The detailed description illustrates by way of example, not by way of limitation, the principles of the invention. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.


As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. Also, as used herein, the terms “patient”, “host” and “subject” refer to any human or animal subject and are not intended to limit the systems or methods to human use, although use of the subject invention in a human patient represents a preferred embodiment.



FIGS. 1-11 illustrate one of many exemplary embodiments. In an overview, as shown in FIG. 3, a blood filter system 100 includes a Y-adapter 10, catheter sheath 15 containing the filter 14, a catheter-like introducer 16 and a pusher assembly 12 to push the filter 14 from the catheter sheath 15, through the introducer 16 and then into the blood vessel. For convenience in illustrating the preferred embodiments, the blood filter system 100 has various components that can be referenced to an imaginary longitudinal axis A-A. Each system is preferably packaged as a “kit” with instructions-for-use IFU for sale to a clinician. Each component of the blood filter system is described in greater detail below.


Referring back to FIG. 1, one exemplary embodiment of the blood filter 14 is illustrated in its first or operational configuration in a blood vessel BV, which has a blood vessel wall BVW disposed about a blood flow path BF.


As implanted, the blood filter 14 may include first and second filter structures 14a and 14b that diverge away from a longitudinal axis A-A in opposite directions in the implanted configuration, as shown here in FIG. 1. First filter structure 14a may have at least two anchor members 14a1 and 14a2. Similarly, second filter structure 14b may have at least two anchor members 14b1 and 14b2. Each of the anchor members can include a retention member 14h disposed at a terminal end thereof, such as, for example, a barbed hook, a curved hook or a double barbed hook.


In the preferred embodiments, the first and second filter structures can be integrated with each other. For example, with reference to FIG. 1, a single wire can be configured to have three sections: a first section defining a portion of the first filter structure, a middle section disposed proximate the longitudinal axis, and a second section defining a portion of the second filter structure. As such, for a filter utilizing four anchor members for each of the filter structures, four wires can be utilized. The wires can be bent into the first section, middle and second sections and joining the respective middle sections of the wires together. At the junctures J1 and J2 for the middle and first sections and middle and second sections, a small radius of curvature can be provided to reduce stress concentration at the respective junctures J1 and J2 in the wire. Although the term “wire” herein is utilized to denote an elongated member having a generally circular cross-section, other members formed by suitable techniques with different cross-sections can be utilized. For example, a plurality of wires can be formed by extrusions or by laser cutting a thin tubular form. In the preferred embodiments, a shape memory material such as, for example, Nitinol can be utilized. Other materials can be used instead of Nitinol, such as, for example, shape memory materials (e.g., copper alloy systems (Cu—Zn; Cu—Zn—Al) and alloys of Au—Cd, Ni—Al, Fe—Pt, or shape memory stainless steel), shape memory composites, weak shape memory metals (e.g., stainless steel, platinum, Elgiloy), shape memory polymers, bioresorbable metals, polymers, piezoelectric ceramics (e.g. barium titanate, lead zirconate to name a few), piezoelectric composites, sputter deposited Ni—Ti films, magnetostrictive materials, magnetic shape memory materials, nanocomposites, electroactive polymers that undergo shape change in the presence of voltage potentials.


In the preferred embodiments, the wire can be a material selected from a group consisting essentially of shape memory material, super-elastic material, linear-elastic material, metal, alloys, polymers and combinations thereof. Preferably, the wire has a cross-sectional area of about 0.00013 squared inches.


Instead of joining the wires together proximate the middle sections of the wires, a hub 50 can be utilized to constrain the plurality of wires forming the first and second filter structures, as shown here in FIG. 1. Hub 50 can be coupled to the middle sections by a suitable coupling technique such as, for example, swaging, crimping, welding, bonding, gluing. Hub 50 can be a porous polymer loaded with suitable bio-active agents for elution once filter 14 has been implanted.


Instead of making the filter out of wires, a blood filter of generally the same configuration can be cut out from a thin tubular member using a suitable cutting technique such as, for example, laser cutting (as described and shown in U.S. Pat. No. 6,099,549, which is incorporated by reference herein in its entirety), electric-discharge machining or via etching.


Each of the filter structures 14a and 14b preferably respectively has a link 30a and link 30b, as shown in FIG. 1, which allows each of the filter structures 14a and 14b to be independently collapsed into a generally cylindrical shape in a second or non-operational configuration. The link preferably includes an elongated member connected to the first section of each wire of the first filter structure via a suitable connection, such as, for example, a welded, or a swivel coupling SC, shown here in FIG. 7 with boss portions N1 and N2 to constrain link 30a to anchor portion 30d via a circular hoop N3 so that as a force F is applied, link 30a and anchor 30d rotate relative to each other. That is, the swivel coupling SC allows the link 30a and wire or anchor 30d to rotate relative to each other. Where a hinged connection is desired, a super-elastic coupling SH can be employed in place or interposed between link 30a and loop N3 of the swivel coupling. The super-elastic coupling SH can be, for example, a super elastic hinge such as one shown and described in U.S. Pat. No. 5,776,162 to Kleshinski, issued Jul. 7, 1998, which document is herein incorporated by reference in its entirety. Alternatively, a sliding coupling can be utilized by integrating N1, N2 and N3 together and configuring these members to slide and rotate with respect to anchor 30d. In yet a further alternative, the super-elastic coupling SH can be integrated with the sliding coupling.


Referring again to FIG. 1, one or both of the links 30a, 30b for the filter structures 14a, 14b can include another elongated member connected to the first section of each wire of the filter structures 14a, 14b. More specifically, one or both of the links 30a, 30b can be respectively connected to a hub 32a, 32b. The hubs 32a, 32b are preferably located substantially along the longitudinal axis A-A. Although each of the first and second filter structures are illustrated as having at least two elongated members, it is within the scope of this disclosure to have a single unitary link connecting all of the anchor members (e.g., 2-8 anchor members) together to allow the anchor members to be configured into the collapsed shape such as, for example, shown in FIG. 3.


Each link can be coupled to the anchor member anywhere along the length of the anchor member including any portions proximate the hook 40. Preferably, the link is anchored at a suitable distance from the hook 40 so that tissue in-growth does not substantially prevent the link from swiveling or pivoting. In a preferred embodiment, the link can be made out of a material other than the material or materials in which the filter anchor member is made of. For example, the link can be made out of suture material (resorbable and non-resorbable type) or carbon nanotubes or metal wire.


Variations of the filter 14 can be utilized by a clinician for delivery and extraction. For example, as shown in FIG. 2A, the links are interconnected via a third link 30c extending through hollowed hub 50 so that upon full collapsing of one filter section will lead to the partial or full collapse of the other filter section. That is, one link is interlocked to the other link. Additionally, the hub 32a or 32b can be provided with a retrieval member 32c or 32d for this embodiment.


Several alternative configurations are exemplarily illustrated in FIG. 2B. In a first configuration, anchor member 140a can be a partially hollow tube with retention member 400 disposed in a telescopic manner. The retention member 400 is preferably provided with a hook 40 that can be straightened as the anchor member 140a is pulled into the tube by a spline member 33. In this configuration, the links 30a are connected to retractable super elastic hooks 42 for respective anchor members, which can range in quantity from 3, 4, 6, 8 or 12 members. The connection allows the hooks to be partially or even fully retracted into hollow anchor members 14a1, 14a2, 14a3, 14a3 when the spline member 33 (or nub 32A) is pulled or pushed along the longitudinal axis. Another embodiment is also illustrated in which the retention member 400a does not utilize smaller cross-sectional area hook 402 as with hook 40. Instead of curved hooks, another embodiment would include linearly angled member 404. Alternatively, more than one linearly angled member 404 can be used as shown here with members 404a and 404b. In yet a further embodiment, an arrow shaped retention member 406 can be utilized.


In the preferred embodiments, retention member 14h is a curved hook 40 that extends for at least forty-five degrees (45°) about a center, and in one variation, the hook can subtend for more than three hundred and sixty degrees (360°) about a center. In the preferred embodiments, the hook 40 can be made from material selected from a group consisting essentially of shape memory material, super-elastic material, linear-elastic material, metal, alloys, polymers and combinations thereof.


Most preferably, the hook 40 is of the configuration shown in FIG. 7 with a proximal hook portion 40p and a distal hook portion 40d on which a sharpened tip 40t is provided. The hook 40 can be formed to have a thickness t3. Where the hook 40 is formed from a wire having a generally circular cross-section, the thickness t3 may be generally equal to the outside diameter of the wire. In an embodiment, the hook thickness t3 is approximately 0.5 to approximately 0.8 that of the anchor thickness t2. The wire can be configured to follow a radius of curvature R2 whose center is located at longitudinal distance L11 and radial distance d9 when the filter is at the temperature of a subject, as discussed above. The tip 40t can be provided with a generally planar surface whose length can be approximately equal to length h1. The tip 40t may be located over a distance h2 from a plane tangential to the curved portion 40s. Preferably, the hook is a curved member having a cross-sectional area of about 0.000086 squared inches (in.2).


Of particular interest is the ability of the preferred hook to take on a curved configuration in an operative condition and towards a generally linear configuration in another condition when axial force is applied along the length of the wire. Details of this ability of the hook (and the pusher assembly along with a similar catheter assembly) are shown and described in U.S. Pat. No. 6,258,026 issued Ravenscroft et al on Jul. 10, 2001; U.S. Pat. No. 6,007,558 issued to Ravenscroft et al on Dec. 28, 1999, provisional application Ser. No. 60/680,601 filed on May 12, 2005, and as well as in a PCT Patent Application that claims priority to the antecedent provisional patent application, which PCT Patent Application is entitled “Removable Embolus Blood Clot Filter,” having PCT Application No. PCT/US06/17889 filed on May 9, 2006, which documents are incorporate herein by reference in their entirety.


The filter 14 can be delivered or implanted using a delivery system 100, illustrated in FIGS. 3-6A that includes a catheter sheath 15 containing the filter 14. Components of the system include an adapter, such as a Y-adapter, and in particular, a Touhy-Borst Adapter 10 (FIG. 3), a catheter sheath 15 (FIG. 5) coupled to the Touhy-Borst Adapter 10 with a filter 14 stored in the catheter sheath 15, and provided with an elongated pusher assembly 12 that can be used to deploy the filter 14 in a blood vessel of a mammal. Other components that can be used with the system include a catheter introducer 16 and a catheter dilator 18.


Referring to FIG. 3 and FIG. 5, the delivery catheter sheath 15 can include a generally tubular member having a first end 15a, intermediate end 15b, and a second end 15c (FIG. 3) defining a longitudinal axis A-A extending therethrough the generally tubular member 15d. The first end 15a preferably has an inner surface 15ID exposed to the longitudinal axis, where the inner surface 15ID has a plurality of notches 15a1, 15a2, 15a3 formed on the inner surface 15ID (FIG. 5). The plurality of notches 15a1-15a3 are preferably configured to engage the hooks 40 of the anchor members 14a1-14a4 to facilitate symmetrical loading of the filter 14. To provide for the plurality of notches 15a1-15a3, the first end 15a is preferably enlarged compared to the remainder of the tubular member 15d. Elimination of the enlarged end 15a can provide for an optional lower profile sheath 15 in instances where symmetrical loading is not necessary.


The intermediate end 15b (FIG. 6A) may include a boss portion 20a disposed in the tubular member 15 having a plurality of grooves 20c formed in the boss portion 20 having a truncated conical surface 20e on which filter hooks 40 (with only one shown for clarity in FIG. 6A) can be mounted thereon with a portion of transition portion 14ab being secured in the groove 20c. Each groove 20c of can be provided with a plurality of widths along a longitudinal length of the groove to provide for various gaps in the groove. The anchor portion of the filter 14 is configured to have a maximum width greater than a minimum width of the groove 20c so that the anchor portion is limited in its longitudinal movement in groove 20c. This feature allows for the splined boss 20 to move anchor portion 14b in the distal direction (leftward in FIG. 6A) when splined boss 20 is moved distally (leftward in FIG. 6A).


The splined boss 20 can be connected to the pusher 12 so that axial movement of the pusher distally would cause the filter 14 to be pushed out of catheter sheath 15 for delivery into the blood vessel. The splined boss 20 may be provided with an opening 20d so that nub 32a or 32b can be inserted into the opening while the filter 14 is in a pre-delivery configuration in sheath 15. Alternatively, the catheter sheath 15 may include a housing or body coupled at the second 15c end of the sheath 15 while an elongated member 12 can be used to push a boss portion 20b, which is part of the filter (FIG. 6B). In yet a further alternative, a boss portion 20b1 (which is part of filter 14) can be provided with a retrieval member 21 as shown, for example, in FIG. 6C.


Each of the various embodiments of the splined boss 20 is utilized to maintain the hooks 40 in a non-interference configuration, i.e., non-crossed configuration, while the filter 14 is in the sheath 15. In these embodiments, the splined boss is utilized to transmit motion in the distal direction from the handle 12a into the anchor members 14a1, 14a2, and 14a3 and so on during delivery of the filter out of the sheath 15 into the blood vessel. The splined boss achieves this by having various cross-sectional areas of the groove 20c where at least one cross-sectional area of the groove is smaller than the smallest cross-sectional area (e.g. 14ab) of the anchor member 14a1 (but exclusive of the cross-sectional area of the hooks 40, which is smaller than any of the above). Further, where the splined boss is integral with the pusher 12, the boss is designed so that movement of the splined boss 20 in the proximal direction while in the sheath 15 is restrained so that substantial inadvertent movement of the pusher 12 in the proximal direction does not result in the filter 14 being pulled towards the Y-adapter 10.


In the configurations of FIG. 3, the elongated member 12 extends from the one end through another end of the body to provide a portion that can be utilized as a handle 12a. In the preferred embodiments, the body is a Y-adapter 10 with a marker disposed proximate the first end of the sheath. The elongated member 12 includes a generally cylindrical member 12b having at least two different cross-sectional areas, e.g., a larger diameter portion. For example, distal of the handle 12a, the elongated member 12 can have a stainless steel tube (not shown) disposed about the cylindrical member 12b to allow for sufficient rigidity while being handled by a clinician while still allowing for flexibility proximate the tip when navigating a tortuous blood vessel. Also preferably, the sheath 15 includes a polymeric tube having at least two different Shore durometer of hardness proximate one of the first and second ends.


The hooks of the preferred embodiments allow for removal of the filter 14 with minimal injury to a blood vessel. In particular, with reference to FIG. 7, the hook 40 can be provided with a proximal hook portion 40p and a distal hook portion 40d on which a sharpened tip 40t is provided. The hook 40 can be formed to have a thickness t3. Where the hook 40 is formed from a wire having a generally circular cross-section, the thickness t3 may be generally equal to the outside diameter of the wire. In an embodiment, the hook thickness t3 is approximately one-half that of the anchor thickness t2. The wire can be configured to follow a radius of curvature R2 whose center is located at longitudinal distance L11 and radial distance d9 when the filter is at the temperature of a subject, as discussed above. The tip 40t can be provided with a generally planar surface 40d whose length can be approximately equal to length h1. The tip 40t may be located over a distance h2 from a plane tangential to the curved portion 40s. Preferably, the radius of curvature R2 is about 0.03 inches and the thickness t2 of the anchor member is about 0.013 inches.


Once implanted, the hooks 40 may be removed from the Inferior Vena Cava (“IVC”) wall during filter removal procedure when longitudinal force is applied to the hub 50 in the direction of the BF. Under this concentrated stress, the hooks will tend to straighten and transition to the martensitic state, thereby becoming super-elastic. Thus the hooks 40 are designed to bend toward a substantially straight configuration as seen, for example in FIG. 9H, when a specific hook migration force is applied and spring back to their original shape once the hook migration force is removed. By virtue of this design, the hooks 40 will tend to leave a small generally circular incision EP in the vessel wall as the hooks are super elastically straightened (without suffering from catastrophic failure) during removal rather than a large gash or tear in the vessel wall, as is the case with known hooks that do not utilize the features discussed herein.


Alternatively, a reduction in temperature below an Af temperature can be applied to the shape memory material to cause a change in the crystalline phase of the material so as to render the material malleable during loading or retrieval of the filter. Various techniques can be used to cause a change in crystalline phase such as, for example, cold saline, low temperature fluid or thermal conductor.


In another embodiment, shown in FIG. 8A, a dilator 174 and introducer sheath 172 (that are similar to the dilator and introducer of FIG. 3) can be interlocked together and operated as a single unit 208. In this example, the overall length L13 of the combined unit is about 26 inches; the length L14 of the dilator 174 measured from the base of the fluid infusion hub to a tip 176 of the dilator is about 24 inches; the length L15 of the tapered tip portion of the dilator 174 is about 0.2 inches; the length L16 of the introducer sheath 172 measured from the base of the fluid infusion hub to the tip 196 of the sheath is about 21 inches; and the length L17 of the tapered distal portion of the introducer sheath is about 0.2 inches. Side ports 194 are provided along the length of the distal portion of the dilator such that fluid infused through the dilator 174 may exit the side ports 194 and dilate the blood vessel or provide contrast agent for real-time imaging of the dilator tip. The dilator/introducer sheath unit 208 may then be inserted over a suitable sized guidewire into the patient's circulatory system. Once the distal end 196 of the introducer sheath 172 is placed at the desired location in the blood vessel, the surgeon may disengage the dilator 174 from the introducer sheath 172 and withdraw the dilator 174 and the guidewire from the lumen of the introducer sheath 172.



FIG. 8B illustrates a proximal end of the introducer sheath 186 engaged with the fluid infusion hub 202 on the delivery catheter 198 so as to interlock the two devices together. As shown, a block-stop 221 is positioned within a channel 216 in the delivery hub extension housing 218. The block-stop 221 prevents the user from over withdrawal of the pusher member 228. Moreover, the block stop 221 can prevent the pusher member 228 from backing out in the proximal direction during shipping. As shown in FIG. 8B, when the pusher member 228 is fully displaced in the proximal direction, the stop member 221 abuts the proximal wall of the delivery hub extension 218 and prevents further withdrawal of the pusher member 228. Optionally, the stop member 221 may be configured with a cross-sectional profile, such as square, that matches the inner surface of the delivery hub extension housing 218 to prevent the pusher member 228 from rotating. This anti-rotational mechanism may be particularly useful to prevent rotation of the filter and/or entanglement of the legs. However, in a design utilizing a pusher 12, such as the one shown in FIG. 3, an anti-rotational mechanism is not necessary.


In the preferred embodiments, a kit is provided that includes the filter delivery system 100 along with instructions IFU for a clinician to deliver the filter to a target site in a host. The instructions on delivery of the filter can include the following guidelines.


i. A suitable femoral or jugular venous vessel site in the host may be selected. Typically, this is the vessel on either the left or right side, depending upon the patient's size or anatomy, the clinician's preference and/or the location of a venous thrombosis.


ii. The site can be nicked with a blade and the vein punctured with a suitable entry needle, such as an 18-gage needle, or trocar.


iii. A suitable guidewire, such as a J-tipped guidewire, is inserted into the needle and advanced into a distal vena cava or iliac vessel where a filter is to be delivered. Once the guidewire is in position, the entry needle is removed from the patient and slipped off the proximal end of the guide wire.


iv. The dilator 18 is inserted into the introducer 16. Then the proximal end of the guidewire is inserted into both the introducer 16 and dilator 18. Saline or a suitable bio-compatible fluid is provided to the introducer valve 16d to remove air in the introducer 16, and then the assembly is inserted into the patient and advanced along the guidewire until it reaches a desired position in the vena cava or iliac vessel. Positioning of the introducer tip 16a1 within the vein at the site for delivering the filter may be confirmed by fluoroscopy, aided by the radio-opaque markers on or within the introducer 16. Contrasting agent or dye can also be provided to the ports 18d (or 194 of FIG. 8A) of the dilator tube 18b via the dilator body 18a to provide for visual imaging of the introducer tip 16a1 via suitable fluoroscopic imaging equipment. The guidewire and the dilator 18 can be removed once the user or physician has determined that the introducer tip 16a1 is at the desired location in the vein or vessel.


v. The dilator 18 can be separated from a snap-fit of the introducer 16 by bending and pulling the two components. The introducer can be left with its tip in the vena cava. Fluid can be introduced into the introducer via valve 16d.


vi. The filter 14, which is pre-stored in the catheter sheath 15, can be coupled to the coupling port 16b via the snap-fitting, and saline can be permitted to flow through the catheter sheath 15 to provide lubricity between various components of the delivery system 100. The saline may be chilled during portions of the procedure. Similarly, the saline may be warmed during portions of the procedure, such as just prior to releasing the filter into the vein, to help raise the filter and pusher assembly 12 components above the martensitic-to-austenitic transition temperature, causing the filter to seek its annealed shape. The introducer 16, catheter sheath 15 and elongated pusher assembly 12 are preferably held in a linear configuration to avoid kinking and minimize friction. The filter 14 is physically advanced from the catheter sheath 15 through the introducer 16 to a position near the distal tip 16a1 of the introducer 16. The advancement of the filter 14 can be accomplished by maintaining the introducer 16 stationary while pushing on the handle 12a of the elongated pusher assembly 12 in the distal direction. The filter 14 is maintained inside the introducer 16, i.e., undeployed at this point. Markings on the pusher assembly 12 may permit the clinician to determine the position of the filter 14 with respect to the end of the introducer 16. Additionally, fluoroscopy may be used to track the position of the filter 14 within the introducer 16 and with respect to the patient. When the filter hub 50 approaches the distal end of the introducer 16, the filter is ready to be deployed.


vii. To deploy the filter 14, the elongated pusher assembly 12 and the introducer hub 16c are moved relative to each other over a first predetermined distance. At this point, the introducer 16 is retracted proximally while the pusher 12 is held in stationary position to allow the anchor members 14b1-14b5 to become unconstrained by the introducer sheath 16a and free to expand radially. Hooks 40 at the ends of the anchor members 14b1-14b5 begin to dig or penetrate into the blood vessel wall to maintain the filter 14 at approximately the desired location.


It should be noted that the instructions IFU for the kit could be embodied in any suitable format such as, for example, in paper or electronic forms (e.g., a web site, PDFs, video or audio).


To recover the filter 14, there are at least three different embodiments of a recovery device suitable to remove filter 14. The first embodiment is shown in FIGS. 9A-9I whereas the second embodiment is shown in FIGS. 10A-10B and the third embodiment is shown in FIGS. 11A-11B. Each embodiment is discussed in turn below. It should be noted that both embodiments could be utilized to remove the filter either from a jugular or a femoral approach.


Referring to FIG. 9A, the recovery device 200a is graphically illustrated as being utilized from a jugular approach. Alternatively, the recovery device 200b can be utilized from a femoral approach, illustrated here based on the direction of blood flow BF in FIG. 9B. The retrieval device may include first and second generally tubular retrieval sheaths or members 210 and 220 where the first generally tubular member 210 extends from a first end to a second end to define a longitudinal axis A-A extending therethrough, and the second generally tubular member 220 is disposed generally coaxially with the first generally tubular member 210. The retrieval device 200a may also include a collapsible member 230 coupled to the second generally tubular member 220 that defines a portion of a cone in a first configuration (FIG. 9A) and a cylinder (FIG. 9I) in another configuration where a retrieval member 240 is disposed in the second tubular member 220 and the collapsible member 230. The retrieval member 240 in this embodiment includes at least one claw 242. Markers M can be provided in at least one or more of the components described in relation to FIGS. 9A, 10A and 11A.


As shown in FIG. 9A, the collapsible member 230 can be configured as a plurality of radially extending members 230a-230d connected together via a membrane 232 to define a generally truncated cone 234 in a deployed configuration of the retrieval device 200a. The membrane can be made from suitable material such as, for example, (and not limited to) ePTFE, Dacron, polyurethane, polytetrafluoroethylene, nylon, PET, PEBAK, barium sulfate, and combinations thereof. To assist a clinician in determining the location of the retrieval device in relation to the filter, a radiopaque marker can be disposed on at least one of the first, second and third tubular members.


Retrieval can be performed as follows. In FIG. 9B, the retrieval member 240 is maneuvered into position so that it engages the links 30b1 and 30b2 (or 30a1 and 30a2 if the retrieval device is utilized with the jugular approach). Instead of a nub, the splined member with retrieval hook 21 (FIG. 6C) can be utilized with a retrieval member in the configuration of a looped snare, shown for example, in the preferred embodiment of FIGS. 11A-11B. Proximal movement R of the retrieval member 240 results in the links being pulled in the proximal direction which results in the extraction of hooks 40 from the vessel wall BVW. The extraction of the hooks 40 generally leaves very small incision opening on the vessel wall that are slightly larger than the cross-sectional area of each hook with little or almost no tear or injury to the vessel wall. As the retrieval member 240 is continued to be pulled relative to the retrieval sheaths (or the retrieval sheaths 210 and 220 are moved distally while the retrieval member 240 is stationary), shown here in FIGS. 9D and 9E, the filter structure 14b is converted from a generally conic configuration towards a generally cylindrical configuration. The sheaths 210 and 220 are moved distally once the filter structure 14b is in the cylindrical configuration. The sheaths 210 and 220 continue to move distally towards filter structure 14a, shown here in FIGS. 9F and 9G. Continued movement of the sheaths 210 and 220 will cause the collapsible member 230 to engage the anchor members 14a1 and 14a2 (FIGS. 9G and 9H) at which point the membrane 232 or the radially extending members 230a-230d causes the filter structure 14a to collapse into a cylindrical configuration, which causes the hooks 40 to straighten and explant from the vessel wall with small incision points EP. Continued relative movement of the sheaths 210, 220 relative to retrieval member 240 causes the filter 14 to be retracted into the collapsible member 230. In one preferred embodiment, the entire filter 14 and collapsible structure are retracted within the sheath 210 and the sheaths 210 and 220 are removed from the blood vessel.


In the second embodiment illustrated in FIGS. 10A and 10B, the retrieval device 200b includes a third sheath or generally tubular member 250 disposed about a portion of retrieval member 240′ where the retrieval member 240′ includes plurality of claws 244 and 246. Retrieval of the filter is performed by engaging the claws 244 and 246 against links 30b1 and 30b2. The claws 244, 246 are pulled into the third sheath 250 to force the claws to move toward each other and thereby capture the links therebetween. Once the claws are retracted into the third sheath 250, the third sheath 250 is moved relative to the collapsible member 230 (i.e., the sheath 250 can move relative to stationary sheaths 210 and 220 or sheaths 210, 220 can move relative to sheath 250). Extraction of the filter can be performed in a manner similar to FIGS. 9F-9I.


In the third embodiment illustrated in FIGS. 11A and 11B, the retrieval device 200b includes retrieval member 240″ having a collapsible looped snare, such as for example, an Amplatz GOOSE NECK snare from eV3 Inc., preferably configured to engage the retrieval hook 21 of the filter 14, as shown for example, in FIG. 6C. Retrieval of the filter is performed by engaging the looped snare of the retrieval member 240″ with the retrieval hook 21 of the filter 14. Proximal movement R of the retrieval member 240″ results in the links being pulled in the proximal direction which results in the extraction of hooks 40 from the vessel wall BVW. Extraction of the filter can be performed in a manner similar to FIGS. 9F-9I. It should be noted that the three extraction methods described herein can also be embodied as instructions-for-use with the retrieval system as a kit, in somewhat of a similar configuration as the delivery kit.


The blood filter and retrieval system may comprise: a catheter sheath apparatus comprising a generally tubular member having a first end 15a, intermediate section 15b and a second end 15c, the tubular member extending along a longitudinal axis A-A, the first end having an inner surface 15ID exposed to the longitudinal axis, the inner surface surrounding a catheter lumen or bore; a blood filter having a first diameter, the blood filter including a first filter structure 14a comprising at least two elongated members, a second filter structure 14b comprising at least two elongated members, one or more first links 30a1, 30a2 connected between elongated members of the first filter structure at a longitudinal middle section of the elongated members, portions of the one or more first links extending inwardly from the elongated members to a midpoint, and one or more second links connected between elongated members of the second filter structure 14b at a longitudinal middle section of the elongated members, portions of the one or more second links extending inwardly from the elongated members to a midpoint, wherein each filter structure diverges from the longitudinal axis A-A in opposite directions in a first expanded configuration of the filter structures having a first diameter; wherein each filter structure is collapsible into a reduced diameter shape in a second configuration having a second diameter that is smaller than the first diameter; a retrieval member 240, 240′, 240″ contained in the catheter sheath 15 in a first stored position and extendable from the catheter sheath to a second extended position that positions some or all of the retrieval member 240, 240′, 240″ outside of the catheter sheath; and the retrieval member including a conically or frusto-conically shaped membrane and a grab device that is connectable to the filter structure at a link or links.


As illustrated in FIGS. 9A-9F, 10A-10B, and 11A-11B, the system may further comprise one or more hubs 32a, 32b that each connect to a link.


As illustrated in FIGS. 9A-9C, the grab device may comprise a claw with a hook shape.


As illustrated in FIG. 10A, the grab device may comprise a pair of claws 244, 246, each having a hook shape.


As illustrated in FIG. 10A, each claw 244, 246 may be configured to grab a different link 30b1, 30b2.


As illustrated in FIG. 9I, the retrieval member may be housed in a tubular member.


As illustrated in FIGS. 11A-11B, the grab device may comprise a looped snare and the links may comprise a hooked member.


As illustrated in FIG. 9A, the conically or frusto-conically shaped membrane may be reinforced with a plurality of radially extending ribs or struts 230a, 230b, 230c, 230d, 230e.


As illustrated in FIGS. 1 and 9H, the system may further comprise an anchor 14a1, 14a2, 14b1, 14b2 on each elongated member.


Also, the blood filter system may comprise a tubular member having a first end 15a, intermediate section 15b and a second end 15c, the tubular member extending along a longitudinal axis A-A, the first end having an inner surface 15ID exposed to the longitudinal axis, the inner surface surrounding a tubular member bore; a first filter structure 14a comprising at least two elongated members; a second filter structure 14b comprising at least two elongated members; one or more first links connected between elongated members of the first filter structure at a longitudinal middle section of the elongated members, portions of the one or more first links extending inwardly from the elongated members; one or more second links connected between elongated members of the second filter structure, at a longitudinal middle section of the elongated members portions of the one or more second links extending inwardly from the elongated members; wherein each filter structure diverges from the longitudinal axis in opposite directions in a first expanded configuration of the filter structures having a first diameter, and each filter structure is collapsible into second collapsed configuration having a second diameter that is smaller than the first diameter; a retrieval member movably mounted in the tubular member between retracted and extended positions; and wherein in the extended position, the retrieval member 240, 240′, 240″ is connectable to a filter structure by engaging a link or links at a position outside of the tubular member bore.


As illustrated in FIGS. 9A-9D, 10A-10B, and 11A-11B, the retrieval member 240, 240′, 240″ may include a grab device.


As illustrated in FIGS. 9A-9D and 10A-10B, the grab device may include one or more hook shaped members.


Utilizing the embodiments set forth in FIGS. 9A-9I, 10A-10B, and 11A-11B, a method of retrieving a blood filter from the circulatory system of a patient may comprise the steps of: providing a retrieval device and a retrieval sheath for retrieving a filter comprising a first filter structure 14a comprising at least two elongated members, a second filter structure 14b comprising at least two elongated members, one or more first links connected between elongated members of the first filter structure at a longitudinal middle section of the elongated members, portions of the one or more first links extending inwardly from the elongated members, and one or more second links connected between elongated members of the second filter structure at a longitudinal middle section of the elongated members, portions of the one or more second links extending inwardly from the elongated members; wherein each filter structure diverges from the longitudinal middle section in opposite directions in a first expanded configuration of the filter structures having a first diameter, and each filter structure is collapsible into a reduced diameter shape in a second configuration having a second diameter that is smaller than the first diameter; wherein the filter structures are engaged against a vessel wall of an implantation site; and retrieving the filter by forming an access to the implantation site via a selected vessel and retrieving the filter with the retrieval device into the retrieval sheath by connecting the retrieval device with one or more of the links.


The method may further comprise retrieval of the blood filter by forming an access to the implantation site via a selected vessel and retrieving the filter with a retrieval device into a retrieval sheath, as illustrated in FIGS. 9A-9I, 10A-10B, and 11A-11B.


The method may further comprise a retrieval device which includes a grab device that is connectable to one or more of the links, as illustrated in FIGS. 9A-9D, 10A, and 11A-11B.


The method may further comprise a hub that connects with one or more of the links and wherein the retrieval device connects with the hub, as illustrated in FIG. 9C.


In the method each elongated member may have an anchor and the retrieval device may include a cone or frusto-cone shaped portion that engages and collapses the elongated members to remove the anchors from the vessel wall, as illustrated in FIGS. 9B-9I.


In the method, the anchor may have a hook shape, as illustrated in FIGS. 9B-9G, 10A-10B, and 11A-11B.


In the method, the grab device may include one or more hook shaped members, as illustrated in FIGS. 9B-9D, 10A-10B.


In the method, the grab device may include a pair of claws, each claw having a hook shape, as illustrated in FIG. 10A.


In the method, the grab device may include first and second interlocking portions, the first interlocking portion on the filter, the second interlocking portion on the grab device, as illustrated in FIGS. 11A-11B.


By virtue of the filter, delivery system and retrieval system described herein, a method of delivering a filter and extracting such filter can be provided. In particular, the method allows for delivery of a blood filter from either an incision in the femoral or jugular vessels. The method can be achieved by providing a filter having first and second filter structures that diverge away from a longitudinal axis in opposite directions in a first configuration and a link connected to discrete portions of each of the first and second filter structures so that each filter structure is independently collapsed into a generally cylindrical shape in a second configuration; storing the filter proximate a distal end of a generally tubular sheath having a first end, intermediate end and a second end defining a longitudinal axis extending therethrough, the first end having an inner surface exposed to the longitudinal axis, the inner surface having a plurality of notches formed on the inner surface, the intermediate end including a boss portion coupled to the pusher and disposed in the tubular member having a plurality of grooves formed in the boss portion; accessing an implantation site via one of the femoral or jugular vessels; and releasing the filter from the sheath proximate the implantation site to engage the filter structures against a vessel wall of the implantation site. Retrieval of the filter can be performed by forming an access to the implantation site via one of the femoral or jugular vessels; and retrieving the filter into a retrieval sheath. The retrieving can include retracting a portion of at least one hook from one of the filter structures to disengage the hook from the vessel wall.


In another embodiment, bio-active agents can be incorporated with the blood filter or filter delivery system, such as by way of a coating on parts of the filter delivery components (e.g., the pusher member 12c or the tip of the introducer sheath 16a), or dissolvable structures on, within or attached to the filter delivery components. Alternatively, bio-active agents can be delivered to the region of the filter at the time of the filter emplacement by means of the introducer, either before or after delivery of the filter. Bio-active agent can be included as part of the filter delivery system in order to treat or prevent other conditions (such as infection or inflammation) associated with the filter, or to treat other conditions unrelated to the filter itself. More specifically, bio-active agents may include, but are not limited to:


pharmaceutical agents, such as, for example, anti-proliferative/antimitotic agents including natural products such as vinca alkaloids (i.e. vinblastine, vincristine, and vinorelbine), paclitaxel, epidipodophyllotoxins (i.e. etoposide, teniposide), antibiotics (dactinomycin (actinomycin D) daunorubicin, doxorubicin and idarubicin), anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin) and mitomycin, enzymes (L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine);


antiplatelet agents such as G(GP) IIb/IIIa inhibitors and vitronectin receptor antagonists;


anti-proliferative/antimitotic alkylating agents such as nitrogen mustards (mechlorethamine, cyclophosphamide and analogs, melphalan, chlorambucil), ethylenimines and methylmelamines (hexamethylmelamine and thiotepa), alkyl sulfonates-busulfan, nirtosoureas (carmustine (BCNU) and analogs, streptozocin), and trazenes-dacarbazinine (DTIC);


anti-proliferative/antimitotic antimetabolites such as folic acid analogs (methotrexate), pyrimidine analogs (fluorouracil, floxuridine, and cytarabine), purine analogs and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine {cladribine});


platinum coordination complexes (cisplatin, carboplatin), procarbazine, hydroxyurea, mitotane, aminoglutethimide;


hormones (i.e. estrogen);


anti-coagulants (heparin, synthetic heparin salts and other inhibitors of thrombin);


fibrinolytic agents (such as tissue plasminogen activator, streptokinase and urokinase), aspirin, dipyridamole, ticlopidine, clopidogrel, abciximab;


antimigratory agents;


antisecretory agents (e.g., breveldin);


anti-inflammatory agents, such as adrenocortical steroids (cortisol, cortisone, fludrocortisone, prednisone, prednisolone, 6α-methylprednisolone, triamcinolone, betamethasone, and dexamethasone), non-steroidal agents (salicylic acid derivatives i.e. aspirin;


para-aminophenol derivatives i.e. acetominophen;


indole and indene acetic acids (indomethacin, sulindac, and etodalac), heteroaryl acetic acids (tolmetin, diclofenac, and ketorolac), arylpropionic acids (ibuprofen and derivatives), anthranilic acids (mefenamic acid, and meclofenamic acid), enolic acids (piroxicam, tenoxicam, phenylbutazone, and oxyphenthatrazone), nabumetone, gold compounds (auranofin, aurothioglucose, gold sodium thiomalate);


immunosuppressives: (cyclosporine, tacrolimus (FK-506), sirolimus (rapamycin), azathioprine, mycophenolate mofetil);


angiogenic agents, such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF);


angiotensin receptor blockers;


nitric oxide donors;


anti-sense oligionucleotides and combinations thereof;


cell cycle inhibitors, such as mTOR inhibitors, and growth factor receptor signal transduction kinase inhibitors;


retenoids;


cyclin/CDK inhibitors;


HMG co-enzyme reductase inhibitors (statins); and


protease inhibitors.


Suitable polymer coating materials include polycarboxylic acids, cellulosic polymers, including cellulose acetate and cellulose nitrate, gelatin, polyvinylpyrrolidone, cross-linked polyvinylpyrrolidone, polyanhydrides including maleic anhydride polymers, polyamides, polyvinyl alcohols, copolymers of vinyl monomers such as EVA, polyvinyl ethers, polyvinyl aromatics, polyethylene oxides, glycosaminoglycans, polysaccharides, polyesters including polyethylene terephthalate, polyacrylamides, polyethers, polyether sulfone, polycarbonate, polyalkylenes including polypropylene, polyethylene and high molecular weight polyethylene, halogenated polyalkylenes including polytetrafluoroethylene, polyurethanes, polyorthoesters, proteins, polypeptides, silicones, siloxane polymers, polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate valerate and blends and copolymers thereof, coatings from polymer dispersions such as polyurethane dispersions (for example, BAYHDROL® fibrin, collagen and derivatives thereof, polysaccharides such as celluloses, starches, dextrans, alginates and derivatives, hyaluronic acid, squalene emulsions. Polyacrylic acid, available as HYDROPLUS® (Boston Scientific Corporation, Natick, Mass.), and described in U.S. Pat. No. 5,091,205, the disclosure of which is hereby incorporated herein by reference in its entirety, is particularly desirable. Another material can also be a copolymer of polylactic acid and polycaprolactone.


While the present invention has been disclosed with reference to certain preferred embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, which is described, by way of example, in the appended numbered paragraphs below. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it have the full scope defined by the language of at least the following paragraphs, and equivalents thereof

Claims
  • 1. A blood filter and retrieval system comprising: a) a catheter sheath apparatus comprising a generally tubular member having a first end, intermediate section and a second end, the tubular member extending along a longitudinal axis, the first end having an inner surface exposed to the longitudinal axis, the inner surface surrounding a catheter lumen;b) a blood filter having a first diameter, the blood filter including a first filter structure comprising at least two elongated members, a second filter structure comprising at least two elongated members, one or more first links connected between elongated members of the first filter structure at a longitudinal middle section of the elongated members, portions of the one or more first links extending inwardly from the elongated members to a midpoint, and one or more second links connected between elongated members of the second filter structure at a longitudinal middle section of the elongated members, portions of the one or more second links extending inwardly from the elongated members to a midpoint, wherein each filter structure diverges from the longitudinal axis in opposite directions in a first expanded configuration of the filter structures having a first diameter;c) wherein each filter structure is collapsible into a reduced diameter shape in a second configuration having a second diameter that is smaller than the first diameter;d) a retrieval member contained in the catheter sheath in a first stored position and extendable from the catheter sheath to a second extended position that positions some or all of the retrieval member outside of the catheter sheath; ande) the retrieval member including a conically or frusto-conically shaped membrane and a grab device that is connectable to the filter structure at the link or links.
  • 2. The system of claim 1, further comprising one or more hubs that each connect to one or more links.
  • 3. The system of claim 1, wherein the grab device comprises a claw, the claw having a hook shape.
  • 4. The system of claim 1, wherein the grab device comprises a pair of claws, each having a hook shape.
  • 5. The system of claim 4, wherein each claw is configured to grab a different link.
  • 6. The system of claim 5, wherein the retrieval member is housed in a tubular member.
  • 7. The system of claim 1, wherein the grab device comprises a looped snare and the links comprise a hooked member.
  • 8. The system of claim 1, wherein the conically or frusto-conically shaped membrane is reinforced with a plurality of ribs or struts.
  • 9. The system of claim 1, further comprising an anchor on each elongated member.
  • 10. A blood filter system, comprising: a) a tubular member having a first end, intermediate end and a second end, the tubular member extending along a longitudinal axis, the first end having an inner surface exposed to the longitudinal axis, the inner surface surrounding a tubular member bore;b) a first filter structure comprising at least two elongated members;c) a second filter structure comprising at least two elongated members;d) one or more first links connected between elongated members of the first filter structure at a longitudinal middle section of the elongated members, portions of the one or more first links extending inwardly from the elongated members;e) one or more second links connected between elongated members of the second filter structure, at a longitudinal middle section of the elongated members portions of the one ore more second links extending inwardly from the elongated members;f) wherein each filter structure diverges from the longitudinal axis in opposite directions in a first expanded configuration of the filter structures having a first diameter, and each filter structure is collapsible into second collapsed configuration having a second diameter that is smaller than the first diameter;g) a retrieval member movably mounted in the tubular member between retracted and extended positions; andh) wherein in the extended position, the retrieval member is connectable to a filter structure by engaging a link at a position outside of the tubular member bore.
  • 11. The system of claim 10, wherein the retrieval member includes a grab device.
  • 12. The system of claim 11, wherein the grab device includes one or more hook shaped members.
  • 13. A method of retrieving a blood filter from the circulatory system of a patient comprising the steps of: a) providing a retrieval device and a retrieval sheath for retrieving a filter comprising a first filter structure comprising at least two elongated members, a second filter structure comprising at least two elongated members, one or more first links connected between elongated members of the first filter structure at a longitudinal middle section of the elongated members, portions of the one or more first links extending inwardly from the elongated members, and one or more second links connected between elongated members of the second filter structure at a longitudinal middle section of the elongated members, portions of the one or more second links extending inwardly from the elongated members;b) wherein in step “a” each filter structure diverges from the longitudinal middle section in opposite directions in a first expanded configuration of the filter structures having a first diameter, and each filter structure is collapsible into a reduced diameter shape in a second configuration having a second diameter that is smaller than the first diameter;c) whereinthe filter structures are engaged against a vessel wall of an implantation site; andd) retrieving the filter by forming an access to the implantation site via a selected vessel and retrieving the filter with the retrieval device into the retrieval sheath by connecting the retrieval device with one or more of the links.
  • 14. The method of claim 13, wherein the retrieval device includes a grab device that is connectable to one or more of the links.
  • 15. The method of claim 13, further comprising a hub that connects with one or more of the links and in step “d” the retrieval device connects with the hub.
  • 16. The method of claim 13, wherein each elongated member has an anchor and the retrieval device includes a cone or frusto-cone shaped portion that engages and collapses the elongated members to remove the anchors from the vessel wall.
  • 17. The method of claim 16, wherein the anchor has a hook shape.
  • 18. The method of claim 14, wherein the grab device includes one or more hook shaped members.
  • 19. The method of claim 14, wherein the grab device comprises a pair of claws, each having a hook shape.
  • 20. The method of claim 14, wherein the grab device includes first and second interlocking portions, the first interlocking portion on the filter, the second interlocking portion on the grab device.
PRIORITY DATA AND INCORPORATION BY REFERENCE

This application is a continuation of U.S. patent application Ser. No. 15/144,709, filed 2 May 2016 (issued as U.S. Pat. No. 10,299,906 on 28 May 2019), which is a continuation of U.S. patent application Ser. No. 12/303,545, filed 29 Jun. 2009 (issued as U.S. Pat. No. 9,326,842 on 3 May 2016), which is a U.S. National Stage Entry of PCT/US07/70311, filed 4 Jun. 2007, which claims benefit of priority to U.S. Provisional Patent Application No. 60/811,034, filed Jun. 5, 2006, all which are incorporated by reference in their entirety.

US Referenced Citations (635)
Number Name Date Kind
893055 Conner Jul 1908 A
2212334 Wallerich Aug 1940 A
2767703 Nieburgs Oct 1956 A
3334629 Cohn Aug 1967 A
3472230 Fogarty Oct 1969 A
3540431 Mobin-Uddin Nov 1970 A
3579798 Henderson May 1971 A
3620212 Fannon, Jr. et al. Nov 1971 A
3657744 Ersek Apr 1972 A
3875928 Angelchik Apr 1975 A
3885562 Lampkin May 1975 A
3952747 Kimmell, Jr. Apr 1976 A
4000739 Stevens Jan 1977 A
4041931 Elliott et al. Aug 1977 A
4198960 Utsugi Apr 1980 A
4256132 Gunter Mar 1981 A
4282876 Flynn Aug 1981 A
4283447 Flynn Aug 1981 A
4317446 Ambrosio et al. Mar 1982 A
4334536 Pfleger Jun 1982 A
4343048 Ross et al. Aug 1982 A
4411655 Schreck Oct 1983 A
4419095 Nebergall et al. Dec 1983 A
4425908 Simon Jan 1984 A
4494531 Gianturco Jan 1985 A
4562596 Kornberg Jan 1986 A
4572186 Gould et al. Feb 1986 A
4586501 Claracq May 1986 A
4588399 Nebergall et al. May 1986 A
4590938 Segura et al. May 1986 A
4611594 Grayhack et al. Sep 1986 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4643184 Mobin-Uddin Feb 1987 A
4655219 Petruzzi Apr 1987 A
4655771 Wallsten Apr 1987 A
4657024 Coneys Apr 1987 A
4665906 Jervis May 1987 A
4680573 Ciordinik et al. Jul 1987 A
4688553 Metals Aug 1987 A
4710192 Liotta et al. Dec 1987 A
4722344 Cambron et al. Feb 1988 A
4727873 Mobin-Uddin Mar 1988 A
4735616 Eibl et al. Apr 1988 A
4781177 Lebigot Nov 1988 A
4793348 Palmaz Dec 1988 A
4798591 Okada Jan 1989 A
4817600 Herms et al. Apr 1989 A
4832055 Palestrant May 1989 A
4838879 Tanabe et al. Jun 1989 A
4857062 Russell Aug 1989 A
4863442 DeMello et al. Sep 1989 A
4873978 Ginsburg Oct 1989 A
4886506 Lovgren et al. Dec 1989 A
4888506 Umehara et al. Dec 1989 A
4898591 Jang et al. Feb 1990 A
4915695 Koobs Apr 1990 A
4922905 Strecker May 1990 A
4943297 Saveliev et al. Jul 1990 A
4950227 Savin et al. Aug 1990 A
4957501 Lahille et al. Sep 1990 A
4969891 Gewertz Nov 1990 A
4990151 Wallsten Feb 1991 A
4990156 Lefebvre Feb 1991 A
5045072 Castillo et al. Sep 1991 A
5059205 El-Nounou et al. Oct 1991 A
5067957 Jervis Nov 1991 A
5074867 Wilk Dec 1991 A
5098440 Hillstead Mar 1992 A
5108418 Lefebvre Apr 1992 A
5114408 Fleischhaker et al. May 1992 A
5120308 Hess Jun 1992 A
5133733 Rasmussen et al. Jul 1992 A
5147378 Markham Sep 1992 A
5147379 Sabbaghian et al. Sep 1992 A
5152777 Goldberg et al. Oct 1992 A
5171232 Castillo et al. Dec 1992 A
5188616 Nadal Feb 1993 A
5190546 Jervis Mar 1993 A
5203776 Durfee Apr 1993 A
5219358 Bendel et al. Jun 1993 A
5234416 Macaulay et al. Aug 1993 A
5234458 Metais Aug 1993 A
5242462 El-Nounou et al. Sep 1993 A
5292331 Boneau Mar 1994 A
5300086 Gory et al. Apr 1994 A
5304156 Sylvanowicz et al. Apr 1994 A
5324304 Rasmussen Jun 1994 A
5329942 Gunther et al. Jul 1994 A
5344427 Cottenceau et al. Sep 1994 A
5350398 Pavcnik et al. Sep 1994 A
5358493 Schweich, Jr. et al. Oct 1994 A
5370657 Irie Dec 1994 A
5375612 Cottenceau et al. Dec 1994 A
5383887 Nadal Jan 1995 A
5397310 Chu et al. Mar 1995 A
5397355 Marin et al. Mar 1995 A
5413586 Dibie et al. May 1995 A
5421832 Lefebvre Jun 1995 A
5423851 Samuels Jun 1995 A
5443497 Venbrux Aug 1995 A
5464408 Duc Nov 1995 A
5485667 Kleshinski Jan 1996 A
5514154 Lau et al. May 1996 A
5531788 Dibie et al. Jul 1996 A
5545151 O'Connor et al. Aug 1996 A
5545210 Hess et al. Aug 1996 A
5549576 Patterson et al. Aug 1996 A
5549626 Miller et al. Aug 1996 A
5554181 Das Sep 1996 A
5558652 Henke Sep 1996 A
5562698 Parker Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5591197 Orth et al. Jan 1997 A
5593417 Rhodes Jan 1997 A
5593434 Williams Jan 1997 A
5597378 Jervis Jan 1997 A
5601568 Chevillon et al. Feb 1997 A
5601595 Smith Feb 1997 A
5603721 Lau et al. Feb 1997 A
5624508 Flomenblit et al. Apr 1997 A
5626605 Irie et al. May 1997 A
5630822 Hermann et al. May 1997 A
5634942 Chevillon et al. Jun 1997 A
5641364 Golberg et al. Jun 1997 A
5649906 Gory et al. Jul 1997 A
5669879 Duer Sep 1997 A
5669933 Simon et al. Sep 1997 A
5672153 Lax et al. Sep 1997 A
5672158 Okada et al. Sep 1997 A
5674278 Boneau Oct 1997 A
5681347 Cathcart et al. Oct 1997 A
5683411 Kavteladze Nov 1997 A
5695518 Laerum Dec 1997 A
5695519 Summers et al. Dec 1997 A
5702370 Sylvanowicz et al. Dec 1997 A
5704910 Humes Jan 1998 A
5704926 Sutton Jan 1998 A
5704928 Morita et al. Jan 1998 A
5707376 Kavteladze et al. Jan 1998 A
5709704 Nott et al. Jan 1998 A
5720762 Bass Feb 1998 A
5720764 Naderlinger Feb 1998 A
5720776 Chuter et al. Feb 1998 A
5725550 Nadal Mar 1998 A
5746767 Smith May 1998 A
5755790 Chevillon et al. May 1998 A
5759192 Saunders Jun 1998 A
5769816 Barbut et al. Jun 1998 A
5775790 Ohtake Jul 1998 A
5776162 Kleshinski Jul 1998 A
5776181 Lee et al. Jul 1998 A
5780807 Saunders Jul 1998 A
5800457 Gelbfish Sep 1998 A
5800515 Nadal et al. Sep 1998 A
5800526 Anderson et al. Sep 1998 A
5830222 Makower Nov 1998 A
5836968 Simon et al. Nov 1998 A
5836969 Kim et al. Nov 1998 A
5843164 Frantzen et al. Dec 1998 A
5843167 Dwyer et al. Dec 1998 A
5853420 Chevillon et al. Dec 1998 A
5879382 Boneau Mar 1999 A
5891190 Boneau Apr 1999 A
5893867 Bagaoisan et al. Apr 1999 A
5893869 Barnhart et al. Apr 1999 A
5896869 Maniscalco et al. Apr 1999 A
5897497 Fernandez Apr 1999 A
5911704 Humes Jun 1999 A
5919224 Thompson et al. Jul 1999 A
5928261 Ruiz Jul 1999 A
5935162 Dang Aug 1999 A
5938683 Lefebvre Aug 1999 A
5944728 Bates Aug 1999 A
5951585 Cathcart et al. Sep 1999 A
5954741 Fox Sep 1999 A
5961546 Robinson et al. Oct 1999 A
5968052 Sullivan, III et al. Oct 1999 A
5968071 Chevillon et al. Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5976172 Homsma et al. Nov 1999 A
5984947 Smith Nov 1999 A
5989266 Foster Nov 1999 A
6001118 Daniel et al. Dec 1999 A
6004347 McNamara et al. Dec 1999 A
6007558 Ravenscroft et al. Dec 1999 A
6013093 Nott et al. Jan 2000 A
6036723 Anidjar et al. Mar 2000 A
6051015 Maahs Apr 2000 A
6059814 Ladd May 2000 A
6059825 Hobbs et al. May 2000 A
6066158 Engelson et al. May 2000 A
6068638 Makower May 2000 A
6068645 Tu May 2000 A
6071292 Makower et al. Jun 2000 A
6071307 Rhee et al. Jun 2000 A
6077297 Robinson et al. Jun 2000 A
6077880 Castillo et al. Jun 2000 A
6080178 Meglin Jun 2000 A
6099534 Bates et al. Aug 2000 A
6099549 Bosma et al. Aug 2000 A
6102932 Kurz Aug 2000 A
6113608 Monroe et al. Sep 2000 A
6126645 Thompson Oct 2000 A
6126673 Kim et al. Oct 2000 A
6131266 Saunders Oct 2000 A
6132388 Fleming et al. Oct 2000 A
6146404 Kim et al. Nov 2000 A
6156055 Ravenscroft Dec 2000 A
6159225 Makower Dec 2000 A
6162357 Pakki et al. Dec 2000 A
6165179 Cathcart et al. Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6171297 Pedersen et al. Jan 2001 B1
6190353 Makower et al. Feb 2001 B1
6193739 Chevillon et al. Feb 2001 B1
6193748 Thompson et al. Feb 2001 B1
6206888 Bicek et al. Mar 2001 B1
6214025 Thistle et al. Apr 2001 B1
6217600 DiMatteo Apr 2001 B1
6228052 Pohndorf May 2001 B1
6231581 Shank et al. May 2001 B1
6231587 Makower May 2001 B1
6231588 Zadno-Azizi May 2001 B1
6231589 Wessman et al. May 2001 B1
6235045 Barbut et al. May 2001 B1
6241738 Dereume Jun 2001 B1
6241746 Bosma et al. Jun 2001 B1
6245012 Kleshinski Jun 2001 B1
6245099 Edwin et al. Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254609 Vrba et al. Jul 2001 B1
6254633 Pinchuk et al. Jul 2001 B1
6258026 Ravenscroft et al. Jul 2001 B1
6258101 Blake, III Jul 2001 B1
6264664 Avellanet Jul 2001 B1
6264671 Stack et al. Jul 2001 B1
6267776 O'Connell Jul 2001 B1
6267777 Bosma et al. Jul 2001 B1
6273900 Nott et al. Aug 2001 B1
6273901 Whitcher et al. Aug 2001 B1
6282222 Wieser et al. Aug 2001 B1
6280451 Fidelman Sep 2001 B1
6280459 Zupancich Sep 2001 B1
6283983 Makower et al. Sep 2001 B1
6287317 Makower et al. Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6287335 Drasler et al. Sep 2001 B1
6290710 Cryer et al. Sep 2001 B1
6302875 Makower et al. Oct 2001 B1
6302891 Nadal Oct 2001 B1
6306163 Fitz Oct 2001 B1
6322541 West et al. Nov 2001 B2
6325790 Trotta Dec 2001 B1
6328755 Bushek et al. Dec 2001 B1
6331183 Suon Dec 2001 B1
6336934 Gilson et al. Jan 2002 B1
6342062 Suon et al. Jan 2002 B1
6342063 DeVries et al. Jan 2002 B1
6344053 Boneau Feb 2002 B1
6355056 Pinheiro Mar 2002 B1
6361546 Khosravi Mar 2002 B1
6383193 Cathcart et al. May 2002 B1
6383195 Richard May 2002 B1
6383206 Gillick et al. May 2002 B1
6391045 Kim et al. May 2002 B1
6402771 Palmer et al. Jun 2002 B1
6416530 DeVries et al. Jul 2002 B2
6425909 Dieck et al. Jul 2002 B1
6428559 Johnson Aug 2002 B1
6432127 Kim et al. Aug 2002 B1
6436120 Meglin Aug 2002 B1
6436121 Blom Aug 2002 B1
6440077 Jung et al. Aug 2002 B1
6442413 Silver Aug 2002 B1
6443971 Boylan et al. Sep 2002 B1
6443972 Bosma et al. Sep 2002 B1
6447530 Ostrovsky Sep 2002 B1
6458145 Ravenscroft et al. Oct 2002 B1
6468290 Weldon et al. Oct 2002 B1
6482222 Bruckheimer et al. Nov 2002 B1
6485500 Kokish et al. Nov 2002 B1
6485501 Green Nov 2002 B1
6485502 Michael et al. Nov 2002 B2
6488662 Sirimanne Dec 2002 B2
6497709 Heath Dec 2002 B1
6506205 Goldberg et al. Jan 2003 B2
6511492 Rosenbluth et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511503 Burkett et al. Jan 2003 B1
6517559 O'Connell Feb 2003 B1
6517573 Pollock Feb 2003 B1
6527962 Nadal Mar 2003 B1
6537294 Boyle et al. Mar 2003 B1
6537295 Petersen Mar 2003 B2
6537296 Levinson et al. Mar 2003 B2
6540722 Boyle et al. Apr 2003 B1
6540767 Walak et al. Apr 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544280 Daniel et al. Apr 2003 B1
6551303 Van Tassel et al. Apr 2003 B1
6551340 Konya et al. Apr 2003 B1
6551342 Shen et al. Apr 2003 B1
6558404 Tsukernik May 2003 B2
6558405 McInnes May 2003 B1
6558406 Okada May 2003 B2
6563080 Shapovalov May 2003 B2
6569183 Kim et al. May 2003 B1
6569184 Huter May 2003 B2
6572605 Humes Jun 2003 B1
6575997 Palmer et al. Jun 2003 B1
6579314 Lombardi et al. Jun 2003 B1
6582447 Patel et al. Jun 2003 B1
6589266 Whitcher et al. Jul 2003 B2
6592607 Palmer et al. Jul 2003 B1
6592616 Stack et al. Jul 2003 B1
6596011 Johnson Jul 2003 B2
6602226 Smith et al. Aug 2003 B1
6602273 Marshall Aug 2003 B2
6607553 Healy et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616680 Thielen Sep 2003 B1
6616681 Hanson et al. Sep 2003 B2
6620183 DiMatteo Sep 2003 B2
6623450 Dutta Sep 2003 B1
6623506 McGuckin, Jr. et al. Sep 2003 B2
6629993 Voinov Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6640077 Suzuki et al. Oct 2003 B2
6641590 Palmer et al. Nov 2003 B1
6645152 Jung et al. Nov 2003 B1
6645224 Gilson et al. Nov 2003 B2
6652555 VanTassel et al. Nov 2003 B1
6652556 VanTassel et al. Nov 2003 B1
6652558 Patel et al. Nov 2003 B2
6652692 Pedersen et al. Nov 2003 B2
6656203 Roth et al. Dec 2003 B2
6660021 Palmer et al. Dec 2003 B1
6660031 Tran et al. Dec 2003 B2
6663650 Sepetka et al. Dec 2003 B2
6679902 Boyle et al. Jan 2004 B1
6679903 Kurz Jan 2004 B2
6682540 Sancoff et al. Jan 2004 B1
6685722 Rosenbluth et al. Feb 2004 B1
6685738 Chouinard et al. Feb 2004 B2
6689150 VanTassel et al. Feb 2004 B1
6695813 Boyle et al. Feb 2004 B1
6696667 Flanagan Feb 2004 B1
6702834 Boylan et al. Mar 2004 B1
6702843 Brown et al. Mar 2004 B1
6706054 Wessman et al. Mar 2004 B2
6712834 Yassour et al. Mar 2004 B2
6716208 Humes Apr 2004 B2
6719717 Johnson et al. Apr 2004 B1
6719772 Trask et al. Apr 2004 B2
6726621 Suon et al. Apr 2004 B2
6730108 Van Tassel et al. May 2004 B2
6736842 Healy et al. May 2004 B2
6752819 Brady et al. Jun 2004 B1
6755846 Yadav Jun 2004 B1
6761732 Burkett et al. Jul 2004 B2
6773448 Kusleika et al. Aug 2004 B2
6776770 Trerotola Aug 2004 B1
6776774 Tansey, Jr. et al. Aug 2004 B2
6783538 McGuckin, Jr. et al. Aug 2004 B2
6792979 Konya et al. Sep 2004 B2
6793665 McGuckin, Jr. et al. Sep 2004 B2
6818006 Douk et al. Nov 2004 B2
6837898 Boyle et al. Jan 2005 B2
6840950 Stanford et al. Jan 2005 B2
6843798 Kusleika et al. Jan 2005 B2
6849061 Wagner Feb 2005 B2
6852076 Nikolic et al. Feb 2005 B2
6872217 Walak et al. Mar 2005 B2
6881218 Beyer et al. Apr 2005 B2
6884259 Tran et al. Apr 2005 B2
6887256 Gilson et al. May 2005 B2
6972025 WasDyke Dec 2005 B2
6989021 Bosma et al. Jan 2006 B2
6991641 Diaz et al. Jan 2006 B2
6991642 Petersen Jan 2006 B2
7001424 Patel et al. Feb 2006 B2
7011094 Rapacki et al. Mar 2006 B2
7033376 Tsukernik Apr 2006 B2
7041117 Suon et al. May 2006 B2
7052511 Weldon et al. May 2006 B2
7056286 Ravenscroft et al. Jun 2006 B2
7147649 Thomas Dec 2006 B2
7163550 Boismier Jan 2007 B2
7179275 McGuckin, Jr. et al. Feb 2007 B2
7232462 Schaeffer Jun 2007 B2
7261731 Patel et al. Aug 2007 B2
7279000 Cartier et al. Oct 2007 B2
7303571 Makower et al. Dec 2007 B2
7314477 Ravenscroft et al. Jan 2008 B1
7323003 Lowe Jan 2008 B2
7331992 Randall et al. Feb 2008 B2
7338512 McGuckin, Jr. et al. Mar 2008 B2
7534251 WasDyke May 2009 B2
7544202 Cartier et al. Jun 2009 B2
7572289 Sisken et al. Aug 2009 B2
7582100 Johnson et al. Sep 2009 B2
7625390 Hendriksen et al. Dec 2009 B2
7699867 Hendriksen et al. Apr 2010 B2
7704266 Thinnes, Jr. et al. Apr 2010 B2
7704267 Tessmer Apr 2010 B2
7722635 Beyer et al. May 2010 B2
7722638 Deyette, Jr. et al. May 2010 B2
7736383 Bressler et al. Jun 2010 B2
7736384 Bressler et al. Jun 2010 B2
7749244 Brucheimer et al. Jul 2010 B2
7749246 McGuckin, Jr. et al. Jul 2010 B2
7766932 Melzer et al. Aug 2010 B2
7794472 Eidenschink et al. Sep 2010 B2
7799049 Ostrovsky et al. Sep 2010 B2
7887580 Randall et al. Feb 2011 B2
7967838 Chanduszko et al. Jun 2011 B2
7972353 Hendriksen et al. Jul 2011 B2
7993362 Lowe et al. Aug 2011 B2
8029529 Chanduszko Oct 2011 B1
8062327 Chanduszko et al. Nov 2011 B2
8075606 Dorn et al. Dec 2011 B2
8133251 Ravenscroft et al. Mar 2012 B2
8241350 Randall et al. Aug 2012 B2
8333785 Chanduszko et al. Dec 2012 B2
8372109 Tessmer Feb 2013 B2
8430903 Chanduszko et al. Apr 2013 B2
20010000799 Wessman et al. May 2001 A1
20010001317 Duerig et al. May 2001 A1
20010016770 Allen et al. Aug 2001 A1
20010020175 Yassour et al. Sep 2001 A1
20010023358 Tsukernik Sep 2001 A1
20010027339 Boatman et al. Oct 2001 A1
20010039431 DeVries et al. Nov 2001 A1
20020002401 McGuckin, Jr. et al. Jan 2002 A1
20020004060 Heublein et al. Jan 2002 A1
20020010350 Tatsumi et al. Jan 2002 A1
20020022853 Swanson et al. Feb 2002 A1
20020032461 Marshall Mar 2002 A1
20020038097 Corvi et al. Mar 2002 A1
20020042626 Hanson et al. Apr 2002 A1
20020045918 Suon Apr 2002 A1
20020052626 Gilson et al. May 2002 A1
20020055767 Forde et al. May 2002 A1
20020072764 Sepetka et al. Jun 2002 A1
20020116024 Goldberg et al. Aug 2002 A1
20020123720 Kusleika et al. Sep 2002 A1
20020138097 Ostrovsky et al. Sep 2002 A1
20020193825 McGuckin, Jr. et al. Dec 2002 A1
20020193826 McGuckin, Jr. et al. Dec 2002 A1
20020193827 McGuckin, Jr. et al. Dec 2002 A1
20020193828 Griffin et al. Dec 2002 A1
20030004540 Linder et al. Jan 2003 A1
20030004541 Linder et al. Jan 2003 A1
20030004946 VanDenAvond et al. Jan 2003 A1
20030028241 Stinson Feb 2003 A1
20030055812 Williams et al. Mar 2003 A1
20030071285 Tsukernik Apr 2003 A1
20030093106 Brady et al. May 2003 A1
20030093110 Vale May 2003 A1
20030097145 Goldberg et al. May 2003 A1
20030109824 Anderson et al. Jun 2003 A1
20030109897 Walak et al. Jun 2003 A1
20030114735 Silver et al. Jun 2003 A1
20030114880 Hansen et al. Jun 2003 A1
20030130680 Russell Jul 2003 A1
20030139765 Patel et al. Jul 2003 A1
20030153945 Patel et al. Aug 2003 A1
20030158595 Randall et al. Aug 2003 A1
20030163159 Patel et al. Aug 2003 A1
20030171771 Anderson et al. Sep 2003 A1
20030176888 O'Connell Sep 2003 A1
20030176912 Chuter et al. Sep 2003 A1
20030191516 Weldon et al. Oct 2003 A1
20030195554 Shen et al. Oct 2003 A1
20030195556 Stack et al. Oct 2003 A1
20030199918 Patel et al. Oct 2003 A1
20030208227 Thomas Nov 2003 A1
20030208229 Kletschka Nov 2003 A1
20030208253 Beyer et al. Nov 2003 A1
20030220683 Minasian et al. Nov 2003 A1
20040006364 Ladd Jan 2004 A1
20040006369 DiMatteo Jan 2004 A1
20040059373 Shapiro et al. Mar 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040073252 Goldberg et al. Apr 2004 A1
20040082966 WasDyke Apr 2004 A1
20040087999 Bosma et al. May 2004 A1
20040088000 Muller May 2004 A1
20040088001 Bosma et al. May 2004 A1
20040088002 Boyle et al. May 2004 A1
20040093015 Ogle May 2004 A1
20040093064 Bosma May 2004 A1
20040116959 McGuckin, Jr. et al. Jun 2004 A1
20040138693 Eskuri et al. Jul 2004 A1
20040153110 Kurz et al. Aug 2004 A1
20040153118 Clubb et al. Aug 2004 A1
20040153119 Kusleika et al. Aug 2004 A1
20040158267 Sancoff et al. Aug 2004 A1
20040158273 Weaver et al. Aug 2004 A1
20040158274 WasDyke Aug 2004 A1
20040167568 Boyle et al. Aug 2004 A1
20040172042 Suon et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186510 Weaver Sep 2004 A1
20040186512 Bruckheimer et al. Sep 2004 A1
20040193209 Pavcnik et al. Sep 2004 A1
20040199240 Dorn Oct 2004 A1
20040199270 Wang et al. Oct 2004 A1
20040220610 Kreidler et al. Nov 2004 A1
20040220611 Ogle Nov 2004 A1
20040230220 Osborne Nov 2004 A1
20040243173 Inoue Dec 2004 A1
20050004596 McGuckin, Jr. et al. Jan 2005 A1
20050015111 McGuckin, Jr. et al. Jan 2005 A1
20050019370 Humes Jan 2005 A1
20050021075 Bonnette et al. Jan 2005 A1
20050021076 Mazzocchi et al. Jan 2005 A1
20050021152 Ogle et al. Jan 2005 A1
20050027314 WasDyke Feb 2005 A1
20050027345 Horan et al. Feb 2005 A1
20050049609 Gunderson et al. Mar 2005 A1
20050055045 DeVries et al. Mar 2005 A1
20050055046 McGuckin, Jr. et al. Mar 2005 A1
20050059990 Ayala et al. Mar 2005 A1
20050059993 Ramzipoor et al. Mar 2005 A1
20050065591 Moberg et al. Mar 2005 A1
20050070794 Deal et al. Mar 2005 A1
20050070821 Deal et al. Mar 2005 A1
20050080447 McGuckin, Jr. et al. Apr 2005 A1
20050080449 Mulder Apr 2005 A1
20050085847 Galdonik et al. Apr 2005 A1
20050090858 Pavlovic Apr 2005 A1
20050101982 Ravenscroft et al. May 2005 A1
20050107822 WasDyke May 2005 A1
20050115111 Yamashita et al. Jun 2005 A1
20050131451 Kleshinski et al. Jun 2005 A1
20050131452 Walak et al. Jun 2005 A1
20050159771 Petersen Jul 2005 A1
20050165441 McGuckin, Jr. et al. Jul 2005 A1
20050165442 Thinnes, Jr. et al. Jul 2005 A1
20050171473 Gerdts et al. Aug 2005 A1
20050182439 Lowe Aug 2005 A1
20050222604 Schaeffer Oct 2005 A1
20050234503 Ravenscroft et al. Oct 2005 A1
20050251199 Osborne et al. Nov 2005 A1
20050267512 Osborne et al. Dec 2005 A1
20050267513 Osborne et al. Dec 2005 A1
20050267514 Osborne et al. Dec 2005 A1
20050267515 Oliva et al. Dec 2005 A1
20050288703 Beyer et al. Dec 2005 A1
20050288704 Cartier et al. Dec 2005 A1
20060004402 Voeller et al. Jan 2006 A1
20060015137 WasDyke et al. Jan 2006 A1
20060016299 Chen Jan 2006 A1
20060030875 Tessmer Feb 2006 A1
20060036279 Eidenschink et al. Feb 2006 A1
20060041271 Bosma et al. Feb 2006 A1
20060047300 Eidenschink Mar 2006 A1
20060047341 Trieu Mar 2006 A1
20060069405 Schaeffer et al. Mar 2006 A1
20060069406 Hendriksen et al. Mar 2006 A1
20060079928 Cartier et al. Apr 2006 A1
20060079930 McGuckin et al. Apr 2006 A1
20060095068 WasDyke et al. May 2006 A1
20060106417 Tessmer et al. May 2006 A1
20060155320 Bressler et al. Jul 2006 A1
20060157889 Chen Jul 2006 A1
20060203769 Saholt et al. Sep 2006 A1
20060206138 Eidenschink Sep 2006 A1
20060259067 Welch et al. Nov 2006 A1
20060259068 Eidenschink Nov 2006 A1
20070005095 Osborne et al. Jan 2007 A1
20070005104 Kusleika et al. Jan 2007 A1
20070005105 Kusleika et al. Jan 2007 A1
20070039432 Cutler Feb 2007 A1
20070043419 Nikolchev et al. Feb 2007 A1
20070060944 Boldenow et al. Mar 2007 A1
20070088381 McGuckin et al. Apr 2007 A1
20070100372 Schaeffer May 2007 A1
20070112373 Carr et al. May 2007 A1
20070167974 Cully et al. Jul 2007 A1
20070173885 Cartier et al. Jul 2007 A1
20070185524 Diaz et al. Aug 2007 A1
20070191878 Segner et al. Aug 2007 A1
20070191880 Cartier et al. Aug 2007 A1
20070198050 Ravenscroft et al. Aug 2007 A1
20070213685 Bressler et al. Sep 2007 A1
20070219530 Schaeffer Sep 2007 A1
20070250106 Kim Oct 2007 A1
20080014078 Suciu et al. Jan 2008 A1
20080033479 Silver Feb 2008 A1
20080039891 McGuckin et al. Feb 2008 A1
20080091230 Lowe Apr 2008 A1
20080097518 Thinnes et al. Apr 2008 A1
20080103582 Randall et al. May 2008 A1
20080119867 Delaney May 2008 A1
20080183206 Batiste Jul 2008 A1
20080221609 McGuckin et al. Sep 2008 A1
20080221656 Hartley et al. Sep 2008 A1
20080255605 Weidman Oct 2008 A1
20080262506 Griffin et al. Oct 2008 A1
20080275486 Dwyer et al. Nov 2008 A1
20080275488 Fleming Nov 2008 A1
20080281149 Sinai Nov 2008 A1
20080294189 Moll et al. Nov 2008 A1
20080300621 Hopkins et al. Dec 2008 A1
20090005803 Batiste Jan 2009 A1
20090043332 Sullivan et al. Feb 2009 A1
20090069840 Hallisey Mar 2009 A1
20090105747 Chanduszko et al. Apr 2009 A1
20090131970 Chanduszko et al. May 2009 A1
20090163926 Sos Jun 2009 A1
20090192543 WasDyke Jul 2009 A1
20090198270 McGuckin, Jr. et al. Aug 2009 A1
20090264915 WasDyke Oct 2009 A1
20090299403 Chanduszko et al. Dec 2009 A1
20090299404 Chanduszko et al. Dec 2009 A1
20090318951 Kashkarov et al. Dec 2009 A1
20100030253 Harris et al. Feb 2010 A1
20100049239 McGuckin, Jr. et al. Feb 2010 A1
20100063535 Bressler et al. Mar 2010 A1
20100076545 Kleshinski et al. Mar 2010 A1
20100160956 Hendriksen et al. Jun 2010 A1
20100174310 Tessmer Jul 2010 A1
20100222772 Kleshinski et al. Sep 2010 A1
20100256669 Harris et al. Oct 2010 A1
20100312269 McGuckin, Jr. et al. Dec 2010 A1
20100318115 Chanduszko et al. Dec 2010 A1
20110118823 Randall et al. May 2011 A1
20110257677 Carr, Jr. et al. Oct 2011 A1
20120065663 Chanduszko et al. Mar 2012 A1
20120184985 Ravenscroft et al. Jul 2012 A1
20130006295 Chanduszko et al. Jan 2013 A1
20130085523 Tessmer Apr 2013 A1
20130096607 Chanduszko et al. Apr 2013 A1
Foreign Referenced Citations (58)
Number Date Country
2173118 Apr 1995 CA
2648325 Apr 2000 CA
3633527 Apr 1988 DE
0145166 Jun 1985 EP
0188927 Jul 1986 EP
0712614 May 1996 EP
1042996 Oct 2000 EP
1092401 Apr 2001 EP
1336393 Aug 2003 EP
1475110 Nov 2004 EP
2567405 Jan 1986 FR
2718950 Oct 1995 FR
2781143 Jan 2000 FR
2791551 Oct 2000 FR
2002525183 Aug 2002 JP
2003521970 Jul 2003 JP
2005503199 Feb 2005 JP
4851522 Jan 2012 JP
9509567 Apr 1995 WO
9534339 Dec 1995 WO
9612448 May 1996 WO
9617634 Jun 1996 WO
9729794 Aug 1997 WO
9802203 Jan 1998 WO
9823322 Jun 1998 WO
9925252 May 1999 WO
0012011 Mar 2000 WO
0018467 Apr 2000 WO
0056390 Sep 2000 WO
0076422 Dec 2000 WO
0117457 Mar 2001 WO
0204060 Jan 2002 WO
02055125 Jul 2002 WO
02102436 Dec 2002 WO
03003927 Jan 2003 WO
03004074 Jan 2003 WO
03073961 Sep 2003 WO
2004012587 Feb 2004 WO
2004049973 Jun 2004 WO
2004098459 Nov 2004 WO
2004098460 Nov 2004 WO
2005009214 Feb 2005 WO
2005072645 Aug 2005 WO
2005102212 Nov 2005 WO
2005102437 Nov 2005 WO
2005102439 Nov 2005 WO
2006036457 Apr 2006 WO
2006055174 May 2006 WO
2006124405 Nov 2006 WO
2007021340 Feb 2007 WO
2007079410 Jul 2007 WO
2007100619 Sep 2007 WO
2007106378 Sep 2007 WO
2007143602 Dec 2007 WO
2008051294 May 2008 WO
2008076970 Jun 2008 WO
2008077067 Jun 2008 WO
2008109131 Sep 2008 WO
Non-Patent Literature Citations (628)
Entry
Kearon, C. et al., “Management of Anticoagulation Before and After Elective Surgery”, The New England Journal of Medicine, May 22, 1997, vol. 336, No. 21, pp. 1506-1511.
Kellum, J. M., “Gastric Banding” Annals of Surgery, Jan. 2003, vol. 237, No. 1, pp. 17-18.
Kelly, J. et al., “Anticoagulation or Inferior Vena Cava Filter Placement for Patients With Primary Intracerebral Hemorrhage Developing Venous Thromboembolism?”, Stroke, 2003, 34:2999-3005.
Kercher, K. et al., “Overview of Current Inferior Vena Cava Filters”, The American Surgeon, Aug. 2003, vol. 69, pp. 643-648.
Kerlan, R.K., Jr. et al., “Residual Thrombus Within a Retrievable IVC Filter”, Journal of Vascular and Interventional Radiology, 16:555-557.
Kerr, A. et al., “Bidirectional Vena Cava Filter Placement”, Journal of Vascular Surgery, Oct. 1995, vol. 22, No. 4.
Khansarinia, S. et al., Prophylactic Greenfield Filter Placement in Selected High-Risk Trauma Patients, Journal of Vascular Surgery, 1995, 22:231-236.
Kim et al., “Insertion of the Simon Nitinol Caval Filter: Value of the Antecubital Vein Approach” AJR 157:521-522 (Sep. 1991).
Kim et al., “Perforation of the Inferior Vena Cava with Aortic and Vetebral Penetration by a Suprarenal Greenfield Filter” Radiology 172:721-723 (1989).
Kim et al., “The Simon Nitinol Filter: Evaluation by MR and Ultrasound” Angiology 43:541-548 (Jul. 1992).
Kim et al., “Vena Cava Filter Placement Via the External Jugular Vein” AJR 155:898-899 (Oct. 1990).
Kim, D. et al., “Insertion of the Simon Nitinol Caval Filter: Value of the Antecubital Vein Approach”, American Journal of Roentgenology, Sep. 1991, 157:521-522.
Kim, J. et al., “Preliminary Report on the Safety of Heparin for Deep Venous Thrombosis Prophylaxis After Severe Head Injury”, The Journal of Trauma: Injury, Infection, and Critical Care, Jul. 2002, vol. 53, No. 1, pp. 38-43.
Kim, V. et al., “Epidemiology of Venous Thromboembolic Disease”, Emergency Medicine Clinics of North America, Nov. 2001, vol. 19, No. 4, pp. 839-859.
Kimmerly, W. S. et al., “Graduate Surgical Trainee Attitudes Toward Postoperative Thromboprophylaxis”, Southern Medical Journal, Aug. 1999, vol. 92, No. 9, pp. 790-794.
King, J.N. et al., “Vena Cava Filters”, The Western Journal of Medicine, Mar. 1992, vol. 156, No. 3, pp. 295-296.
Kinney, T. B. et al., “Regarding “Limb Asymmetry in Titanium Greenfield Filters: Clinically Significant?””, Journal of Vascular Surgery, Jun. 1998, vol. 27, No. 6.
Kinney, T.B. et al., “Does Cervical Spinal Cord Injury Induce a Higher Incidence of Complications After Prophylactic Greenfield Inferior Vena Cava Filter Usage?”, Journal of Vascular and Interventional Radiology, 1996, 7:907-915.
Kinney, T.B. et al., “Fatal Paradoxic Embolism Occurring During IVC Filter Insertion in a Patient With Chronic Pulmonary Thromboembolic Disease”, Journal of Vascular and Interventional Radiology, 2001, 12:770-772.
Kinney, T.B., “Translumbar High Inferior Vena Cava Access Placement in Patients With Thrombosed Inferior Vena Cava Filters”, Journal of Vascular and Interventional Radiology, 2003, 14:1563-1567.
Kinney, T.B., “Update on Inferior Vena Cava Filters”, Journal of Vascular and Interventional Radiology, 2003, 14:425-440.
Kistner, R. L., Definitive Diagnosis and Definitive Treatment in Chronic Venous Disease: A Concept Whose Time Has Dome:, Journal of Vascular Surgery, Nov. 1996, vol. 24, No. 5, pp. 703-710.
Knudson, M. M. et al., “Prevention of Venous Thromboembolism in Trauma Patients”, The Journal of Trauma, Sep. 1994, vol. 37, No. 3, pp. 480-487.
Knudson, M. M. et al., “Thromboembolism After Trauma-An Analysis of 1602 Episodes From the American College of Surgeons National Trauma Data Bank” Annals of Surgery, Sep. 2004, vol. 240, No. 3, pp. 490-498.
Knudson, M. M. et al., “Venous Thromboembolism After Trauma”, Current Opinion in Critical Care, 2004, 10:539-548.
Knudson, M. M. et al., Thromboembolism Following Multiple Trauma, The Journal of Trauma, Jan. 1992, vol. 32, No. 1 pp. 2-11.
Koga, F. et al., “Deep Vein Thrombosis During Chemotherapy in a Patient With Advanced Testicular Cancer Successful Percutaneous Thrombectomy Under Temporary Placement of Retrievable Inferior Vena Cava Filter”, International Journal of Uroloty, 2001, 8:90-93.
Konya, A. et al., “New Embolization Coil Containing a Nitinol Wire Core: Preliminary in Vitro and in Vivo Experiences”, Journal of Vascular and Interventional Radiology, 2001, 12:869-877.
Kozak, T.K.W. et al., “Massive Pulmonary Thromboembolism After Manipulation of an Unstable Pelvic Fracture: A Case Report and Review of the Literature”, The Journal of Trauma: Injury, Infection, and Critical Care, 1995, vol. 38, pp. 366-367.
Kraimps, J. et al., “Optical Central Trapping (OPCETRA) Vena Caval Filter: Results of Experimental Studies”, Journal of Vascular and Interventional Radiolory, 1992, 3:697-701.
Kreutzer J.et al., “Healing Response to the Clamshell Device for Closure of Intracardiac Defects in Humans”, Catheterization and Cardiovascular Interventions, 2001, vol. 54.
Kronemyer, B., Temporary Filter Traps Pulmonary Emboly, Orthopedics Today, p. 34.
Kudsk, K. A. et al., “Silent Deep Vein Thrombosis in Immobilized Multiple Trauma Patients”, The American Journal of Surgery, Dec. 1989, vol. 158, pp. 515-519.
Kupferschmid, J.P. et al., “Case Report: Small-Bowel Obstruction From an Extruded Greenfield Filter Strut: An Unusual Late Complication”, Journal of Vascular Surgery, Jul. 1992, vol. 16, No. 1, pp. 113-115.
Kurgan, A. et al., “Case Reports: Penetration of the Wall of an Abdominal Aortic Aneurysm by a Greenfield Filter Prong: A Late Complication”, Journal of Vascular Surgery, Aug. 1993, vol. 18, No. 2, pp. 303-306.
Kuszyk, B. et al., “Subcutaneously Tethered Temporary Filter: Pathologic Effects in Swine”, Journal of Vascular and Interventional Radiology, Nov.-Dec. 1995, Vo. 6, No. 6, pp. 895-902.
Kyrle, P. A. et al., Deep Vein Thrombosis, The Lancet, Mar. 26-Apr. 1, 2005, 365(9465):1163-1174.
Langan III, E. M. et al., “Prophylactic Inferior Vena Cava Filters in Trauma Patients at High Risk: Follow-Up Examination and Risk/Benefit Assessment”, Journal of Vascular Surgery, 1999, 30:484-490.
Leach, T. A. et al., “Surgical Prophylaxis for Pulmonary Embolism”, The American Surgeon, Apr. 1994, vol. 60, No. 4, pp. 292-295.
Leask, R.L. et al., “Hemodynamic Effects of Clot Entrapment in the TrapEase Inferior Vena Cava Filter”, Journal of Vascular and Interventional Radiology, 2004, 15:485-490.
Leask, R.L. et al., “In Vitro Hemodynamic Evaluation of a Simon Nitinol Vena Cava Filter: Possible Explanation of IVC Occlusion”, Journal of Vascular and Interventional Radiology, 2001, 12:613-618.
Lemmon, G.W. et al., “Incomplete Caval Protection Following Suprarenal Caval Filter Placement”, Angiology the Journal of Vascular Diseases, Feb. 2000, vol. 51, No. 2, pp. 155-159.
Leoni, C. J. et al., “Classifying Complications of Interventional Procedures: A Survey of Practicing Radiologists”, Journal of Vascular and Interventional Radiology, 2001, 12:55-59.
Letai, A., “Cancer, Coagulation, and Anticoagulation”, The Oncologist, 1999, 4:443-449.
Lewis-Carey, M. B. et al., “Temporary IVC Filtration Before Patent Foramen Ovale Closure in a Patient With Paradoxic Embolism”, Journal of Vascular and Interventional Radiology, 2002, 13:1275-1278.
Lidagoster, M. I. et al., Superior Vena Cava Occlusion After Filter Insertion, Journal of Vascular Surgery, Jul. 1994, vol. 20, No. 1.
Lin, J. et al., “Factors Associated With Recurrent Venous Thromboembolism in Patients With Malignant Disease”, Journal of Vascular Surgery, 2003, 37:976-983.
Lin, M. et al., “Successful Retrieval of Infected Gunther Tulip IVC Filter”, Journal of Vascular and Interventional Radiology, 2000, 11:1341-1343.
Lin, P. H. et al., “The Regained Referral Ground and Clinical Practice of Vena Cava Filter Placement in Vascular Surgery”, The American Surgeon, Oct. 2002, vol. 68, No. 10, pp. 865-870.
Linsenmaier U. et al, “Indications, Management, and Complications of Temporary Inferior Vena Cava Filters”, Cardiovascular and Interventional Radiology, 1998, 21:464-469.
U.S. Appl. No. 12/095,700, filed Jun. 17, 2010 Final Office Action dated Sep. 28, 2012.
U.S. Appl. No. 12/095,700, filed Jun. 17, 2010 Non-Final Office Action dated Jun. 11, 2012.
U.S. Appl. No. 12/095,991, filed Jul. 31, 2008 Advisory Action dated Sep. 20, 2012.
U.S. Appl. No. 12/095,991, filed Jul. 31, 2008 Final Office Action dated May 4, 2012.
U.S. Appl. No. 12/095,991, filed Jul. 31, 2008 Non-Final Office Action dated Nov. 14, 2011.
U.S. Appl. No. 12/095,991, filed Jul. 31, 2008 Notice of Abandonment dated Nov. 23, 2012.
U.S. Appl. No. 12/096,783, filed Aug. 20, 2009 Non-Final Office Action dated Apr. 25, 2013.
U.S. Appl. No. 12/299,300, filed Feb. 24, 2009 Non-Final Office Action dated Apr. 30, 2012.
U.S. Appl. No. 12/299,300, filed Feb. 24, 2009 Notice of Allowance dated Aug. 17, 2012.
U.S. Appl. No. 12/299,304, filed Jun. 16, 2009 Non-Final Office Action dated Jun. 21, 2012.
U.S. Appl. No. 12/336,454, filed Dec. 12, 2008 Non-Final Office Action dated Jan. 24, 2011.
U.S. Appl. No. 12/727,116, filed Mar. 18, 2010 Non-Final Office Action dated Jul. 18, 2012.
U.S. Appl. No. 12/846,680, filed Jul. 29, 2010 Advisory Action dated Feb. 8, 2013.
U.S. Appl. No. 12/846,680, filed Jul. 29, 2010 Final Office Action dated Nov. 30, 2012.
U.S. Appl. No. 12/846,680, filed Jul. 29, 2010 Non-Final Office Action dated May 7, 2012.
U.S. Appl. No. 12/846,680, filed Jul. 29, 2010 Notice of Allowance dated Aug. 28, 2013.
U.S. Appl. No. 13/009,727, filed Jan. 19, 2011 Notice of Allowance dated Apr. 27, 2012.
U.S. Appl. No. 13/170,054, filed Jun. 27, 2011 Final Office Action dated Apr. 3, 2013.
U.S. Appl. No. 13/170,054, filed Jun. 27, 2011 Non-Final Office Action dated Jul. 2, 2012.
U.S. Appl. No. 13/170,054, filed Jun. 27, 2011 Notice of Allowance dated Jul. 15, 2013.
U.S. Appl. No. 13/300,469, filed Nov. 18, 2011 Non-Final Office Action dated Sep. 20, 2012.
U.S. Appl. No. 13/300,469, filed Nov. 18, 2011 Notice of Allowance dated Jan. 10, 2013.
U.S. Appl. No. 13/688,031, filed Nov. 28, 2012 Final Office Action dated Jul. 9, 2013.
U.S. Appl. No. 13/688,031, filed Nov. 28, 2012 Non-Final Office Action dated Mar. 14, 2013.
Uflacker, R., “Interventional Therapy for Pulmonary Embolism”, Journal of Vascular Interventional Radiology, Feb. 2001, 12:147-164.
Urena, R. et al., “Bird's Nest Filter Migration to the Right Atrium”, American Journal of Roentgenology, Oct. 2004, 183:1037-1039.
Valji, K., “Evolving Strategies for Thrombolytic Therapy of Peripheral Vascular Occlusion”, Journal of Vascular and Interventional Radiology, 2000, 11:411-420.
Van Ha, Thuong G. et al., “Removal of Gunther Tulip Vena Cava Filter Through Femoral Vein Approach”, Journal of Vascular and Interventional Radiology, 2005, 16:391-394.
Van Natta, Timothy L. et al., “Elective Bedside Surgery in Critically Injured Patients is Safe and Cost-Effective”, American Surgery, May 1998, 227(5):618-626.
Vedantham, S. et al., “Endovascular Recanalization of the Thrombosed Filter-Bearing Inferior Vena Cava”, Journal of Vascular and Interventional Radiology, 2003, 14:893-903.
Vedantham, S. et al., “Lower Extremity Venous Thrombolysis With Adjunctive Mechanical Thrombectomy”, Journal of Vascular and Interventional Radiology, 2002, 13:1001-1008.
Vedantham, S. et al., “Pharmacomechanical Thrombolysis and Eady Stent Placement for Iliofemoral Deep Vein Thrombosis”, Journal of Vascular and Interventional Radiology, 2004, 15:565-574.
Velmahos, G. C. et al., “Inability of an Aggressive Policy of Thromboprophylaxis to Prevent Deep Venous Thrombosis (DVT) in Critically Injured Patients: Are Current Methods of DVT Prophylaxis Insufficient?”, Journal of the American College of Surgeons, 1998, 187:529-533.
Velmahos, G. C. et al., “Prevention of Venous Thromboembolism After Injury: An Evidence-Based Report-Part 1 Analysis of Risk Factors and Evaluation of the Role of Vena Caval Filters”, The Journal of Trauma: Injury, Infection, and Critical Care, Jul. 2000, 49:132-139.
Velmahos, G. C. et al., “Prevention of Venous Thromboembolism After Injury: An Evidence-Based Report-Part II Analysis of Risk Factors and Evaluation of the Role of Vena Caval Filters”, The Journal of Trauma: Injury, Infection, and Critical Care, Jul. 2000, 49:140-144.
Velmahos, G. C. et al., “Spiral Computed Tomography for the Diagnosis of Pulmonary Embolism in Critically Ill Surgical Patients”, Archives of Surgery, May 2001, 136(5):505-511.
Venbrux, Anthony C., “Protection Against Pulmonary Embolism: Permanent and Temporary Caval Filters” Department of Radiology-CVDL, The Johns Hopkins Medical Institutions, Baltimore MD, 7 pages.
Vesely, T. M. et al., “Preliminary Investigation of the Irie Inferior Vena Caval Filter”, Journal of Vascular and Interventional Radiology, 1996, 7:529-535.
Vorwerk, D. et al., “Use of a Temporary Caval Filter to Assist Percutaneous Iliocaval Thrombectomy: Experimental Results”, Journal of Vascular and Interventional Radiology, Sep.-Oct. 1995, 6(5):737-740.
Vos, Louwerens D. et al., “The Gunther Temporary Inferior Vena Cava Filter for Short-Term Protection Against Pulmonary Embolism”, Cardiovascular and Interventional Radiology, 1997, 20:91-97.
Vrachliotis, T. G. et al., “Percutaneous Management of Extensive Clot Trapped in a Temporary Vena Cava Filter”, Journal of Endovascular Therapy, 2003, 10:1001-1005.
Wakefield, T. W., Treatment Options for Venous Thrombosis, Journal of Vascular Surgery, Mar. 2000, 31(3):613-620.
Wallace, M. J. et al., “Inferior Vena Caval Stent Filter”, AJR, Dec. 1986, 147:1247-1250.
Wallace, M. J., “Transatrial Stent Placement for Treatment of Inferior Vena Cava Obstruction Secondary to Extension of Intracardiac Tumor Thrombus From Hepatocellular Carcinoma”, Journal of Vascular Interventional Radiology, 2003, 14:1339-1343.
Wang, W. Y. et al., “Use of a Nitinol Gooseneck Snare to Open an Incompletely Expanded Over-the-Wire Stainless Steel Greenfield Filter”, American Journal of Roentgenology, Feb. 1999, 172:499-500.
Watanabe, N. et al., “Images in Cardiology: Large Thrombus Entrapped in a Patent Foramen Ovale of the Atrial Septum, Which Apparently “Disappeared” Without Embolic Events”, Heart, Nov. 2002, 88(5):474.
Watanabe, S. et al., “Superior Vena Caval Placement of a Temporary Filter: A Case Report”, Vascular Surgery, Jan./Feb. 2001, vol. 35, Issue 1.
Watanabe, Shun-ichi et al., “Clinical Experience With Temporary Vena Cava Filters”, Vascular Surgery, vol. 35, No. 4, 2001, pp. 285-291.
Weeks, S. M. et al., “Primary Gianturco Stent Placement for Inferior Vena Cava Abnormalities Following Liver Transplantation”, Journal of Vascular and Interventional Radiology, Feb. 2000, 11:177-187.
Welch, H. J. et al., “Duplex Assessment of Venous Reflux and Chronic Venous Insufficiency: The Significance of Deep Venous Reflux”, Journal of Vascular Surgery, 1996, 24:755-762.
Rousseau, Herve et al., “The 6-F Nitinol TrapEase Inferior Vena Cava Filter: Results of a Prospective Multicenter Trial”, J Vase Interv Radioi, 2001,12:299-304.
Rubin, B. G. et al., “Care of Patients With Deep Venous Thrombosis in an Academic Medical Center: Limitations and Lessons”, Journal of Vascular Surgery, 1994, 20:698-704.
Ruiz, A. J. et al., “Heparin, Deep Venous Thrombosis, and Trauma Patients”, The American Journal of Surgery, Aug. 1991, 162:159-162.
Ryskamp, R. P. et al., “Utilization of Venous Thromboembolism Prophylaxis in a Medical-Surgical ICU”, Chest, Jan. 1998, 113(1): 162-164.
S. Raghavan et al., “Migration of Inferior Vena Cava Filter Into Renal Hilum”, Nephron, Jun. 2002; 91,2; Health & Medical Complete; pp. 333-335.
Salamipour et al., “Percutaneous Transfemoral Retrieval of a Partially Deployed Simon-Nitinol Filter Misplaced into the Ascending Lumbar Vein” JVIR 7:917-919 (1996).
Salamipour, H. et al., “Percutaneous Transfemoral Retrieval of a Partially Deployed Simon-Nitinol Filter Misplaced Into the Ascending Lumbar Vein”, Journal of Vascular and Interventional Radiology, 1996, 7:917-919.
Sapala, J. A. et al., “Fatal Pulmonary Embolism After Bariatric Operations for Morbid Obesity: A 24-Year Retrospective Analysis”, Obesity Surgery, 2003, 13:819-825.
Sarasin, F. P. et al., “Management and Prevention of Thromboemboli in Patients With Cancer-Related Hypercoagulable”, Journal of General Internal Medicine, Sep. 1993, 8:476-485.
Savader, Scott J., Venous Interventional Radiology with Clinical Perspectives, Chapter 28: Inferior Vena Cava Filters, pp. 367-399, Apr. 2000.
Savin, M. A. et al., “Greenfield Filter Fixation in Large Vena Cavae”, Journal of Vascular and Interventional Radiology, 1998, 9:75-80.
Savin, Michael A. et al., “Placement of Vena Cava Filters: Factors Affecting Technical Success and Immediate Complications”, AJR, Sep. 2002, Vo 179, pp. 597-602.
Schanzer, H. et al., “Guidewire Entrapment During Deployment of the Over-the-Guidewire Stainless Steel Greenfield Filter: A Device Design-Related Complication”, Journal of Vascular Surgery, 2000, 31:607-610.
Schleich, J.-M. et al., “Long-Term Follow-up of Percutaneous Vena Cava Filters: A Prospective Study in 100 Consecutive Patients”, Eur J Vase Endovasc Surg, 2001, vol. 21, pp. 450-457.
Schultz, D. J. et al., “Incidence of Asymptomatic Pulmonary Embolism in Moderately to Severely Injured Trauma Patients”, Journal of Trauma: Injury, Infection, and Critical Care, 2004, 56:727-733.
Sequeira et al., “A Safe Technique for Introduction of the Kimray-Greenfield Filter” Radiology 133:799-800 (Dec. 1979).
Shackford, S. R. et al., “Venous Thromboembolism in Patients With Major Trauma”, The American Journal of Surgery, Apr. 1990, vol. 1 59, pp. 365-369.
Shaer, J. et al., “An Unusual Cause of Low Back Pain?: A Case Report”, SPINE, Jun. 15, 1998, 23(12): 1349-1350.
Shahmanesh, Maryam et al., “Inferior Vena Cava Filters for HIV Infected Patients With Pulmonary Embolism and Contraindications to Anticoagulation”, Sex Transm Inf, 2000, 76:395-397.
Sharafuddin, M. J. et al., “Endovascular Management of Venous Thrombotic and Occlusive Diseases of the Lower Extremities”, Journal of Vascular and Interventional Radiology, Apr. 2003, 14:405-423.
Sharpe, R. P. et al., “Incidence and Natural History of Below-Knee Deep Venous Thrombosis in High-Risk Trauma Patients”, The Journal of Trauma: Injury, Infection, and Critical Care, Dec. 2002, 53:1048-1052.
Sheikh, M. A. et al., “Images in Vascular Medicine”, Vascular Medicine 2001, 6:63-64.
Sheikh, M. A. et al., “Isolated Internal Jugular Vein Thrombosis: Risk Factors and Natural History”, Vascular Medicine, 2002, 7:177-179.
Shellock, F. G. et al., “MR Procedures: Biologic Effects, Safety, and Patient Care”, Radiology, 2004, 232:635-652.
Siddique, R. M. et al., “Thirty-Day Case-Fatality Rates for Pulmonary Embolism in the Elderly”, Archives of Internal Medicine, Nov. 11, 1996, 156:2343-2347.
Siegel and Robertson, “Percutaneous Tranfemoral Retrieval of a Free-Floating Titanium Greenfield Filter with an Amplatz Goose Neck Snare” JVIR 4:565-568 (1993).
Simon et al., “Transvenous Devices for the Management of Pulmonary Embolism”, Cardiovascular and Interventional Radiology, 3:308-313, 1980, pp. 112-120.
Simon Nitinol Filter SNF/SL Filter Sets, C. R. Bard, Inc. PK5014851 Rev. Sep. 1, 2002.
Simon Nitinol Filter, Nitinol Medical Technologies, Inc., p. 290.
Simon, M. et al., “Comparative Evaluation of Clinically Available Inferior Vena Cava Filters With an in Vitro Physiologic Simulation of the Vena Cava”, Radiology, 1993, 189:769-774.
Simon, M. et al., “Paddle-Wheel CT Display of Pulmonary Arteries and Other Lung Structures: A New Imaging Approach”, American Journal of Roentgenology, Jul. 2001, pp. 195-198.
Simon, M., “Vena Cava Filters: Prevalent Misconceptions”, Journal of Vascular and Interventional Radiology, 1999, 10:1021-1024.
Simon, Morris et al., “Simon Nitinol Inferior Vena Cava Filter: Initial Clinical Experience”, Radiology, vol. 172, No. 1, DO 99-103, Jul. 1989.
Simon,M. et al., “A Vena Cava Filter Using Thermal Shape Memory Alloy”, Radiology, Oct. 1977, 125:89-94.
Sing, R. F. et al., “Bedside Carbon Dioxide (CO2) Preinsertion Cavagram for Inferior Vena Cava Filter Placement Case Report”, Journal of Trauma, Dec. 1999, 47(6):1140-1142.
Sing, R. F. et al., “Bedside Carbon Dioxide Cavagrams for Inferior Vena Cava Filters: Preliminary Results”, Journal of Vascular Surgery, 2000, 32:144-147.
Sing, R. F. et al., “Bedside Insertion of Inferior Vena Cava Filters in the Intensive Care Unit”, Journal of American College of Surgeons, May 2001, 192(5):570-575.
Sing, R. F. et al., “Bedside Insertion of Inferior Vena Cava Filters in the Intensive Care Unit”, Journal of Trauma, Dec. 1999, 47(6):1104-1109.
Sing, R. F. et al., “Bedside Insertion of the Inferior Vena Cava Filter in the Intensive Care Unit”, The American Surgeon, Aug. 2003, 69:660-662.
Sing, R. F. et al., “Guidewire Incidents With Inferior Vena Cava Filters”, JAOA, Apr. 2001, 101(4):231-233.
Sing, R. F. et al., “Preliminary Results of Bedside Inferior Vena Cava Filter Placement”, Chest, Jul. 1998, 114(1):315.
Sing, R. F. et al., “Regarding Bedside Vena Cava Filter Placement Guided With Intravascular Ultrasound”, Journal of Vascular Surgery, May 2002, vol. 25, No. 5.
Sing, Ronald F., “Safety and Accuracy of Bedside Carbon Dioxide Cavography for Insertion of Inferior Vena Cava Filters in the Intensive Care Unit”, American College of Surgeons, Feb. 2, 2001, vol. 192, pp. 168-171.
Smith, T. P. et al., “Acute Pulmonary Thromboembolism-Comparison of the Diagnostic Capabilities of Convention Film Screen and Digital Angiography”, Chest, 2002, 122:968-972.
Smith, T. P., “Pulmonary embolism: What's Wrong With This Diagnosis”, American Journal of Roentgenology, Jun. 2000, 174:1489-1498.
Spain, D. A. et al., “Venous Thromboembolism in the High-Risk Trauma Patient: Do Risks Justify Aggressive Screening and Prophylaxis?”, The Journal of Trauma: Injury, Infection, and Critical Care, 1997, vol. 42, No. 3, pp. 463-469.
Spence, Liam D. et al., “Acute Upper Extremity Deep Venous Thrombosis, Safety and Effectiveness of Superior Vena Caval Filters”, Radiology, Jan. 1999, vol. 210, DO 53-58.
Stavropoulos, S. W. et al., “In Vitro Study of Guide Wire Entrapment in Currently Available Inferior Vena Cava Filters”, Journal of Vascular and Interventional Radiology, 2003, 14:905-910.
Stecker, M. S. et al., “Evaluation of a Spiral Nitinol Temporary Inferior Vena Caval Filter”, Academic Radiology, 2001, 8:484-493.
Stein, P. D. et al., “Deep Venous Thrombosis in a General Hospital”, Chest, 2002, 122:960-962.
Peterson, D. A. et al., “Computed Tomographic Venography is Specific But Not Sensitive for Diagnosis of Acute Lower-Extremity Deep Venous Thrombosis in Patients With Suspected Pulmonary Embolus”, Journal of Vascular Surgery, 2001, 34:798-804.
Podnos, Y. D. et al., “Complications After Laparoscopic Gastric Bypass”, Archives of Surgery, Sep. 2003, 138:957-961.
Poletti, P.A. et al., “Long-Term Results of the Simon Nitinol Inferior Vena Cava Filter”, Eur. Radiol., 1998, vol. 8, pp. 289-294.
Ponchon, M. et al., “Temporary Vena Caval Filtration Preliminary Clinical Experience With Removable Vena Caval Filters”, Acta Clinica Belgica, 1999, vol. 54, pp. 223-228.
Porcellini, Massimo et al., “Intracardiac Migration of Nitinol TrapEase.TM. Vena Cava Filter and Paradoxical Embolism”, European Journal of Cardio-Thoracic Surgery, vol. 22, 2002, pp. 460-461.
Porter, J. M. et al., “Reporting Standards in Venous Disease: An Update”, Journal of Vascular Surgery, 1995, 21:635-645.
Poster: Clinical Science: Pulmonary Disease or Dysfunctional/Mechanical Ventilation/Weaning (Adult), Critical Care Medicine, vol. 32, No. 12 (Suppl.), pp. A111-A120, 2004.
Prince et al., “Local Intravascular Effects of the Nitinol Wire Blood Clot Filter” Investigative Radiology 23:294-390 (Apr. 1988).
Prince, M. R. et al., “The Diameter of the Inferior Vena Cava and Its Implications for the Use of Vena Caval Filters”, Radiology, 1983, 149:687-689.
Proctor, M. C. et al., “Assessment of Apparent Vena Caval Penetration by the Greenfield Filter”, Journal of Endovascualr Surgery, 1998, 5:251-258.
Proctor, M. C., “Indications for Filter Placement”, Seminars in Vascular Surgery, Sep. 2000, vol. 13, No. 3, pp. 194-198.
Putnam et al., “Placement of Bilateral Simon Nitinol Filters for an Inferior Vena Cava Duplication through a Single Groin Access” JVIR 10:431-433 (1999).
Putterman, Daniel et al., “Aortic Pseudoaneurysm After Penetration by a Simon Nitinol Inferior Vena Cava Filter”, J Vasc Interv Radiol, 2005, 16:535-538.
Qanadli, S. D. et al., “Pulmonary Embolism Detection: Prospective Evaluation of Dual-Section Helical CT Versus Selective Pulmonary Arteriography in 157 Patients”, Radiology, 2000, 217:447-455.
Qian et al., “In Vitro and In Vivo Experimental Evaluation of a New Vena Caval Filter” JVIR 5:513-518 (1994).
Quality Improvement Guidelines for Percutaneous Inferior Vena Cava Filter Placement for the Prevention of Pulmonary Embolism (European Standards adopted and Modified by CIRSE in Cooperation With SCVIR Standards of Practice Committee), http:www.cirse.org/vena.sub.—cava.sub.—filter.sub.—crise.htm, retrieved May 17, 2002, 11 pages.
Questions and Answers: Vena Caval filters and anticoagulants, JAMA; Oct. 20, 1993; 270, 15; pp. 1867-1868.
Quirke, T. E. et al., “Inferior Vena Caval Filter Use in U.S. Trauma Centers a Practitioner Survey”, The Journal of Trauma: Injury, Infection, and Critical Care, 1997, vol. 43, No. 2, pp. 333-337.
Rabkin, D. J. et al., “Nitinol Properties Affecting Uses in Interventional Radiology”, Journal of Vascular and Interventional Radiology, 2000, 11:343-350.
Radke, P. W. et al., “Thrombosis in Behcet's Disease: Report of a Case Followed by a Systematic Review Using the Methodology of Evidence-Based Medicine”, Journal of Thrombosis and Thrombolysis, Apr. 2001, 11 (2):137-141.
Rajan, Dheeraj K. et al., “Retrieval of the Bard Recovery Filter from the Superior Vena Cava,” JVIR, Letters to the Editor, vol. 15, No. 10, Oct. 2004, pp. 1169-1171.
Raju, N. L. et al., “Case 37: Juxtacaval Fat Collection-Mimic of Lipoma in the Subdiaphragmatic Inferior Vena Cava”, Radiology, 2001, 220:471-474.
Rascona, D. A. et al., “Pulmonary Embolism-Treatment vs Nontreatment”, Chest, Jun. 1999, vol. 115, No. 6, p. 1755.
Ray Jr., C. E. et al., “Complications of Inferior Vena Cava Filters”, Abdominal Imaging, 1996, 21:368-374.
Razavi, M. K. et al., “Chronically Occluded Inferior Venae Cavae: Endovascular Treatment”, Radiology, 2000, 214:133-138.
RD Heparin Arthroplasty Group, “RD Heparin Compared With Warfarin for Prevention of Venous Thromboembolic Disease Following Total Hip or Knee Arthroplasty”, The Journal of Bone and Joint Surgery, Incorporation, Aug. 1994, vol. 76-A, No. 8, pp. 1174-1185.
Reddy, K. et al., “Insertion of an Inferior Venocaval Filter in a Pregnant Woman at Risk for Pulmonary Embolism—A Challenging Management”, Departments of Obstetrics and Gynaecology and Radiology, Wexham Park Hospital, Slough, UK, 2003, p. 198.
Reed, Ricahrd A., “The Use of Inferior Vena Cava Filters in Pediatric Patients for Pulmonary Embolus Prophylaxis”, Cardiovascular and Interventional Radiology, 1996,19:401-405.
Reekers, J. A. et al., “Evaluation of the Retrievability of the OptEase IVC Filter in an Animal Model”, Journal of Vascular and Interventional Radiology, 2004, 15:261-267.
Reekers, Jim A., “Re Current Practice of Temporary Vena Cava Filter Insertion: A Multicenter Registry”, Journal of Vascular Interventional Radiology, Nov.-Dec. 2000, pp. 1363-1364.
Ricco, Jean Baptiste et al., “Percutaneous Transvenous Caval Interruption with the LGM Filter”, Ann Vase Surg, 1988,3:242-247.
Ricotta, J. J., “Regarding Recurrent Thromboembolism in Patients With Vena Caval Filters”, Journal of Vascular Surgery, 2001, vol. 33, p. 657.
Riedel, M., “Acute Pulmonary Embolism 2: Treatment”, Heart, Mar. 2001, 85(3):351-360.
Robinson, Jeffrey D. et al., “In Vitro Evaluation of Caval Filters”, Cardiovascular and Interventionalradiology, 1988, 11 :346-351.
Robrer, M. J. et al., “Extended Indications for Placement of an Inferior Vena Cava Filter”, Journal of Vascular Surgery, Jul. 1990, vol. 12, No. 1.
Rodrigues, H. L. et al., “Update of the Management of Venous Thromboembolism [16]”, Rev Port Cardiol, 2002, 21(2):183-199.
Rodriguez, J. L. et al., “Early Placement of Prophylactic Vena Caval Filters in Injured Patients at High Risk for Pulmonary Embolism”, The Journal of Trauma, Injury, Infection, and Critical Care, 1996, vol. 40, No. 5, pp. 797-804.
Roehm Jr., John O. F. et al., “The Bird's Nest Inferior Vena Cava Filter: Progress Report”, Radiology, Sep. 1988,168:745-749.
Roehm Jr., John O. F.,“The Bird's Nest Filter: A New Percutaneous Transcatheter Inferior Vena Cava Filter”, Journal of Vascular Surgery, Oct. 1984, vol. 1, No. 3.
Rogers, F. B. et al., “Five-Year Follow-Up of Prophylactic Vena Cava Filters in High-Risk Trauma Patients”, Archives of Surgery, Apr. 1998, 133:406-411.
Rogers, F. B. et al., “Immediate Pulmonary Embolism After Trauma: Case Report”, Journal of Trauma: Injury, Infection, and Critical Care, vol. 48, No. 1, pp. 146-148.
Rogers, F. B. et al., “Practice Management Guidelines for the Prevention of Venous Thromboembolism in Trauma Patients: The EAST Practice Management Guidelines Work Group”, The Journal of Trauma: Injury, Infection, and Critical Care, Jul. 2002, 53:142-164.
Rogers, F. B. et al., “Prophylactic Vena Cava Filter Insertion in Selected High-Risk Orthopaedic Trauma Patients”, Journal of Orthopaedic Trauma, 1997, 11(4):267-272.
Rogers, F. B. et al., “Prophylactic Vena Cava Filter Insertion in Severely Injured Trauma Patients: Indications and Preliminary Results”, The Journal of Trauma, Oct. 1993, 35(4):637-642.
Rogers, F. B. et al., “Routine Prophylactic Vena Cava Filter Insertion in Severely Injured Trauma Patients Decreases the Incidence of Pulmonary Embolism”, Journal of the American College of Surgeons, Jun. 1995 180(6):641-647.
Rogers, F. B., “Venous Thromboembolism in Trauma Patients: A Review”, Surgery, Jul. 2001, vol. 130, No. 1, pp. 1-12.
Rohrer, M. J. et al., “Extended Indications for Placement of an Inferior Vena Cava Filter”, Journal of Vascular Surgery, Jul. 1989, vol. 10 No. 1, pp. 44-50.
Rose, S. C. et al., “Placement of Inferior Vena Caval Filters in the Intensive Care Unit”, Journal of Vascular and Interventional Radiology, 1997, 8:61-64.
Rose, S. C. et al., “Regarding “Bedside Vena Cava Filter Placement Guided With Intravascular Ultrasound””, Journal of Vascular Surgery, Apr. 2002, vol. 35, No. 4.
Rossi, G. et al., “Open to Critique: An Unusual Complication of Vena Cava Filter Placement”, Journal of Vascular Surgery, Nov. 1996, vol. 24, No. 5.
Dabbagh, A. et al., “Late Complication of a Greenfield Filter Associating Caudal Migration and Perforation of the Abdominal Aorta by a Ruptured Strut”, Journal of Vascular Surgery, Aug. 1995, vol. 22, No. 2, pp. 182-187.
Dake, M.D. et al., “Thrombolytic Therapy in Venous Occlusive Disease”, Journal of Vascular and Interventional Radiology, 1995, 6:73S-77S.
Dalman, R. et al., “Cerebrovascular Accident After Greenfield Filter Placement for Paradoxical Embolism”, Journal of Vascular Surgery, Mar. 1989, vol. 9, No. 3, pp. 452-454.
Danetz, J. S. et al., “Selective Venography Versus Nonselective Venography Before Vena Cava Filter Placement Evidence for More, Not Less”, Journal of Vascular Surgery, Nov. 2003, Vo. 38, No. 5, pp. 928-934.
Danikas, Dimitrios et al., “Use of a Fogarty Catheter to Open an Incompletely Expanded Vena Tech-LGM Vena Cava Filter”, Angiology, Apr. 2001, vol. 52, No. 4, pp. 283-286.
Darcy, M.D. et al., “Short-Term Prophylaxis of Pulmonary Embolism by Using a Retrievable Vena Cava Filter”, American Journal of Roentgenology, 1986, 147:836-838.
Dardik, Alan et al., “Vena Cava Filter Ensnarement and Delayed Migration: An Unusual Series of Cases”, Journal of Vascular Surgery, Nov. 1997, vol. 26, No. 5.
David, W. et al., “Pulmonary Embolus After Vena Cava Filter Placement”, The American Surgeon, Apr. 1999, vol. 65, pp. 341-346.
Davidson, B.L., “DVT Treatment in 2000: State of the Art”, Orthopedics, Jun. 2000, 23(6):pp. S651-S654.
Davison, Brian D. et al., “TrapEase Inferior Vena Cava Filter Placed Via the Basilic Arm Vein: A New Antecubital Access”, J Vase Interv Radioi, Jan. 2002, 13:107-109.
De Godoy, Jose Maria Pereira et al., “In-Vitro Evaluation of a New Inferior Vena Cava Filter-The Stent-Filter”, Vascular and Endovascular Surgery, Nov. 3, 2004, vol. 38, pp. 225-228.
De Gregorio, M.A. “Inferior Vena Cava Filter Update”, Arch Bronconeumol, 2004, vol. 40, No. 5, pp. 193-195.
De Gregorio, M.A. et al., “Animal Experience in the Gunther Tulip Retrievable Inferior Vena Cava Filter”, Cardiovascular and Interventional Radiology, Nov. 2001, 24:413-417.
De Gregorio, M.A. et al., “Mechanical and Enzymatic Thrombolysis for Massive Pulmonary Embolism”, Journal of Vascular and Interventional Radiology, 2002, 13:163-169.
De Gregorio, Miguel Angel et al., “Retrievability of Uncoated Versus Paclitaxel-Coated Gunther-Tulip IVC Filters in an Animal Model”, J Vase Interv Radioi, Jul. 2004, 15:719-726.
De Gregorio, Miguel Angel et al., “The Gunther Tulip Retrievable Filter: Prolonged Temporary Filtration by Repositioning Within the Inferior Vena Cava”, J Vase Interv Radioi, Oct. 2003, 14:1259-1265.
Debing, E. et al., “Popliteal Venous Aneurysm With Pulmonary Embolism”, Journal of Cardiovascular Surgery, Oct. 1998, vol. 39, No. 5, pp. 569-572.
Decousus, H. et al., “A Clinical Trial of Vena Caval Filters in the Prevention of Pulmonary Embolism in Patients With Proximal Deep-Vein Thrombosis”, The New England Journal of Medicine, Feb. 12, 1998, vol. 338, No. 7, pp. 409-415.
DeMaria, E.J. et al., “Results of 281 Consecutive Total Laparoscopic Roux-en-Y Gastric Bypasses to Treat Morbid Dbesity”, Annals of Surgery, 2002, vol. 235, No. 5 pp. 640-647.
Dennis, J.W. et al., “Efficacy of Deep Venous Thrombosis Prophylaxis in Trauma Patients and Identification of High-Risk Groups”, The Journal of Trauma, 1993, vol. 35, No. 1, pp. 132-137.
Denny, D.F. Jr., “Errant Percutaneous Greenfield Filter Placement Into the Retroperitoneum” Journal of Vascular Surgery Jun. 1991, vol. 13, No. 6.
Dewald, C.L. et al., Vena Cavography With C02 Versus With Iodinated Contrast Material for Inferior Vena Cava Filter Placement: A Prospective Evaluation, Radiology, 2000, 216:752-757.
Dibie, A. et al., “In Vivo Evaluation of a Retrievable Vena Cava Filter-The Dibie-Musset Filter: Experimental Results”, Cardiovascular and Interventional Radiology, 1998, 21:151-157.
Dick, A. et al., “Declotting of Embolized Temporary Vena Cava Filter by Ultrasound and the Angiojet: Comparative Experimental In Vitro Studies”, Investigative Radiology, Feb. 1998, vol. 33(2), pp. 91-97.
Doherty, C., “Special Problems of Massive Obesity”, Primary Care Physician's Resource Center, file://D:\Special%20Problems%20of%20Massive%20Obesity.htm, retrieved Jul. 26, 2005.
Dotter et al., “Transluminal Expandable Nitinol Coil Stent Grafting: Preliminary Report” Radiology 147:259-260 (Apr. 1983).
Duperier, T. et al., “Acute Complications Associated With Greenfield Filter Insertion i High-Risk Trauma Patients”, The Journal of Trauma: Injury, Infection, and Critical Care, Mar. 2003, vol. 54, No. 3, pp. 545-549.
Ebaugh, James L. et al., “Bedside Vena Cava Filter Placement Guided With Intravascular Ultrasound”, Journal of Vascular Surgery, Jul. 2001,34:21-26.
Edlow, J.A., “Emergency Department Management of Pulmonary Embolism”, Emergency Medicine Clinics of North America, Nov. 2001, vol. 19, No. 4, pp. 995-1011.
Egermayer, P., “Follow-Up for Death or Recurrence Is Not a Reliable Way of Assessing the Accuracy of Diagnostic Tests for Thromboembolic Disease”, Chest 1997, 111:1410-1413.
Ekim, N. et al., “Pulmonary Thromboembolism With Massive Vaginal Bleeding Due to Thrombolytic Therapy”, Respirology, 2003, 8:246-248.
Engmann, E. et al., “Clinical Experience With the Antecubital Simon Nitinol IVC Filter”, Journal of Vascular and Interventional Radiology, 1998, 9:774-778.
EP 99951426 European Search Report dated Mar. 18, 2003.
Epstein et al., “Experience with the Amplatz Retrievable Vena Cava Filter” Radiology 175:105-110 (1989).
Fava, M. et al., “Massive Pulmonary Embolism: Percutaneous Mechanical Thrombectomy During Cardiopulmonary Resuscitation”, Journal of Vascular and Intervention Radiology, 2005, 16:119-123.
Fava, M. et al., “Massive Pulmonary Embolism: Treatment With the Hydrolyser Thrombectomy Catheter”, Journal of Vascular and Intervention Radiology, 2000, 11:1159-1164.
Feezor, R.J. et al., “Duodenal Perforation With an Inferior Vena Cava Filter: An Unusual Cause of Abdominal Pain”, Journal of Vascular Surgery, 2002, pp. 1-3.
Fernandez, A.Z. Jr. et al., “Multivariate Analysis of Risk Factors for Death Following Gastric Bypass for Treatment of Morbid Obesity”, Annals of Surgery, May 2004, vol. 239, No. 5, pp. 698-703.
Ferral, H., “Regarding “Lessons Learned From a 6-Year Clinical Experience With Superior Vena Cava Greenfield Filters””, Journal of Vascular Surgery, Apr. 2001, vol. 33, No. 4.
Ferraro, F. et al., “Thromboembolism in Pregnancy: A New Temporary Caval Filter”, Miverva Anestesiologica, 2001, vol. 67, No. 5, pp. 381-385.
Ferris, E.J. et al., “Percutaneous Inferior Vena Caval Filters: Follow-Up of Seven Designs in 320 Patients”, Radiology 1993, 188:851-856.
Fink, S. et al., “Pulmonary Embolism and Malpractice Claims”, Southern Medical Journal, Dec. 1998, vol. 91, No. 12, pp. 1149-1152.
Fobbe, Franz et al., “Gunther Vena Caval Filter: Results of Long-Term Follow-Up”, AJR, Nov. 1988, 151:1031-1034.
Foley, M. et al., “Pulmonary Embolism After Hip or Knee Replacement: Postoperative Changes on Pulmonary Scintigrams in Asymptomatic Patients”, Radiology, 1989, 172:481-485.
Fraser, J.D. et al., “Deep Venous Thrombosis: Recent Advances and Optimal Investigation With US”, Radiology, 1999, 211:9-24.
Frezza, E.E. et al., “Entrapment of a Swan Ganz Catheter in an IVC Filter Requiring Caval Exploration”, Journal of Cardiovascular Surgery, 1999, 40:905-908.
Friedell, M.L. et al., “Case Report: Migration of a Greenfield Filter to the Pulmonary Artery: Case Report”, Journal of Vascular Surgery, Jun. 1986, vol. 3, No. 6, pp. 929-931.
Friedland, M. et al., “Vena Cava Duplex Imaging Before Caval Interruption”, Journal of Vascular Surgery, Oct. 1995, vol. 24, No. 4, pp. 608-613.
Gabelmann, A. et al., “Percutaneous Retrieval of Lost of Misplaced Intravascular Objects”, American Journal of Radiology, Jun. 2001, 176:1509-1513.
Galus, Maria et al., “Indications for inferior vena cava filters,” Internal Medicine, Aug. 11, 1997; 157, 15; Health and Medical Complete, pp. 1770-1771.
Gamblin, T.C. et al., “A Prospective Evaluation of a Bedside Technique for Placement of Inferior Vena Cava Filters Accuracy and Limitations of Intravascular Ultrasound”, The American Surgeon, May 2003, vol. 69, pp. 382-386.
Garcia, N.D., “Is Bilateral Ultrasound Scanning of the Legs Necessary for Patients With Unilateral Symptoms of Deep Vein Thrombosis”, Journal of Vascular Surgery, 2001, 34:792-797.
Gayer, G. et al., “Congenital Anomalies of the Inferior Vena Cava Revealed on CT in Patients With Deep Vein Thrombosis”, American Journal of Roentgenology, Mar. 2003, vol. 180, pp. 729-732.
Geerts, W.H., “A Prospective Study of Venous Thromboembolism After Major Trauma”, Dec. 15, 1994, vol. 331, No. 24, pp. 1601-1606.
Gelbfish, G. A. et al., “Intracardiac and Intrapulmonary Greenfield Filters: A Long-Term Follow-Up”, Journal of Vascular Surgery, Nov. 1991, Vo. 14, No. 5, pp. 614-617.
Gelfand, E.V. et al., “Venous Thromboembolism Guidebook, Fourth Edition”, Critical Pathways in Cardiology, Dec. 2003, vol. 2, No. 4, pp. 247-265.
Georgopoulos, S.E. et al., “Paradoxical Embolism”, Journal of Cardiovascular Surgery, 2001, 42:675-677.
Ginsberg, M.S. et al., “Clinical Usefulness of Imaging Performed After CT Angiography That Was Negative for Pulmonary Embolus in a High-Risk Oncologic Population”, American Journal of Roentgenology, Nov. 2002, 179:1205-1208.
Girard, P. et al., Medical Literature and Vena Cava Filters, Chest, 2002, 122:963-967.
Girard, T. D. et al., “Prophylactic Vena Cava Filters for Trauma Patients: A Systematic Review of the Literature”, Thrombosis Research, 2003, 112:261-267.
Goldberg, M.E., “Entrapment of an Exchange Wire by an Inferior Vena Caval Filter: A Technique for Removal”, Anesth Analg., Apr. 2003, 96:4, 1235-1236.
Goldhaber, S.Z. et al., “Acute Pulmonary Embolism: Part II Risk Stratification, Treatment, and Prevention”, Circulation, 2003, 108:2834-2838.
Goldhaber, S.Z., “A Free-Floating Approach to Filters”, Archives of Internal Medicine, Feb. 10, 1997, vol. 157, No. 3, pp. 264-265.
Goldhaber, S.Z., “Venous Thromboembolism in the Intensive Care Unit: The Last Frontier for Pro . . . ”, Chest, Jan. 1998, 113(1 ):5-7.
Goldman, H.B. et al., “Ureteral Injury Secondary to an Inferior Vena Caval Filter”, The Journal of Urology, Nov. 1996, vol. 156, No. 5, p. 1763.
Golueke, P.J. et al., “Interruption of the Vena Cava by Means of the Greenfield Filter: Expanding the Indications”, Surgery, Jan. 1988, vol. 103, No. 1, pp. 111-117.
Gonze, M.D. et al., “Orally Administered Heparin for Preventing Deep Venous Thrombosis”, American Journal of Surgery, Aug. 1998, vol. 176, pp. 176-178.
Goodman, L.R. et al., “Subsequent Pulmonary Embolism: Risk After a Negative Helical CT Pulmonary Angiogram-Prospective Comparison With Scintigraphy”, Radiology, 2000, 215:535-542.
Gosin, J. S., “Efficacy of Prophylactic Vena Cava Filters in High-Risk Trauma Patients”, Annals of Vascular Surgery, 1997, 11:100-105.
Gottlieb, R.H., “Randomized Prospective Study Comparing Routine Versus Selective Use of Sonography of the Complete Calf in Patients With Suspected Deep Venous Thrombosis”, American Journal of Roentgenology, Jan. 2003, 180:241-245.
Grandas, O.H. et al., “Deep Venous Thrombosis in the Pediatric Trauma Population: An Unusual Event: Report of Three Cases”, The American Surgeon, Mar. 2000, vol. 66, pp. 273-276.
Grassi, C.L. et al., “Quality Improvement Guidelines for Percutaneous Permanent Inferior Vena Cava Filter Placement for the Prevention of Pulmonary Embolism”, Journal of Vascular and Interventional Radiology, Sep. 2003, 14:S271-S275.
Grassi, C.L. et al., “Vena Caval Occlusion After Simon Nitinol Filter Placement: Identification With MR Imaging in Patients With Malignancy”, Journal of Vascular and Interventional Radiology, 1992, 3(3):535-539.
Greene, F.L. et al., Letters to the Editor, The Journal of Trauma: Injury, Infection, and Critical Care, May 2005, vol. 5 8, No. 5, pp. 1091-1092.
Greenfield, L. J. et al., “Clinical Experience With the Kim-Ray Greenfield.cndot. Vena Caval Filter”, Ann Surg, Jun. 1977, vol. 185, No. 6, pp. 692-698.
Greenfield, L. J. et al., “Experimental Embolic Capture by Asymmetric Greenfield Filters”, Journal of Vascular Surgery, Sep. 1992, vol. 16, No. 3, pp. 436-444.
Greenfield, L.J. et al., “Filter Complications and Their Management”, Seminars in Vascular Surgery, vol. 13, No. 3, Sep. 2000, pp. 213-216.
Greenfield, L.J. et al., “Free-Floating Thrombus and Pulmonary Embolism/Reply”, Archives of Internal Medicine, Dec. 8-Dec. 22, 1997, pp. 2661-2662.
Greenfield, L.J. et al., “Limb Asymmetry in Titanium Greenfield Filters: Clinically Significant?”, Journal of Vascular Surgery, 1997, 26:770-775.
Greenfield, L.J. et al., “Prophylactic Vena Caval Filters in Trauma: The Rest of the Story”, Journal of Vascular Surgery, 2000, 32:490-497.
Greenfield, L.J. et al., “Recommended Reporting Standards for Vena Caval Filter Placement and Patient Follow-Up”, Journal of Vascular and Interventional Radiology, 1999, 10:1013-1019.
Greenfield, L.J. et al., “Results of a Multicenter Study of the Modified Hook-Titanium Greenfield Filter” Journal of Vascular Surgery 14:253-257 (Sep. 1991).
Greenfield, L.J. et al., “The Percutaneous Greenfield Filter: Outcomes and Practice Patterns”, Journal of Vascular Surgery, 2000, 32:888-893.
Greenfield, L.J. et al., “Twenty-Year Clinical Experience With the Greenfield Filter”, Cardiovascular Surgery, Apr. 1995, vol. 3, No. 2, pp. 199-205.
Greenfield, L.J., “Cost vs Value in Vena Caval Filters”, Chest, Jul. 1998, vol. 114, No. 1, pp. 9-10.
Greenfield, L.J., “Current Indications for and Results of Greenfield Filter Placement”, Journal Vascular Surgery, May 1984, vol. 1, No. 3, pp. 502-504.
Greenfield, L.J., “Does Cervical Spinal Cord Injury Induce Higher Incidence of Complications After Prophylactic Greenfield Filter Usage?”, Journal of Vascular and Interventional Radiology, Jul.-Aug. 1997, pp. 719-720.
Greenfield, L.J., “Recurrent Thromboembolism in Patients With Vena Cava Filters”, Journal of Vascular Surgery, 2001, 33:510-514.
Greenfield, L.J., “Staging of Fixation and Retrievability of Greenfield Filters”, Journal of Vascular Surgery, Nov. 1994, vol. 20, No. 5, pp. 744-750.
Greenfield, Lazar J. et al., “Extended Evaluation of the Titanium Greenfield Vena Caval Filter”, Journal of Vascular Surgery, Nov. 1994, vol. 20, No. 3, pp. 458-465.
Greenfield, Lazar J. et al., “A New Intracaval Filter Permitting Continued Flow and Resolution of Emboli”, Surgery, Apr. 1973, vol. 73, No. 4, pp. 599-606.
Greenfield, Lazar J. et al., “Suprarenal Filter Placement”, Journal of Vascular Surgery, Sep. 1998, 28:432-438.
Greenfield, Lazar J. et al., “Vena Caval Filter Use in Patients With Sepsis”, Archives of Surgery, Nov. 2003, vol. 138, No. 11, Health & Medical Complete, pp. 1245-1248.
Gunther, Rolf W. et al., “Vena Caval Filter to Prevent Pulmonary Embolism: Experimental Study”, Radiology, AUQust 1985,156:315-320.
Haage, Patrick et al., “Prototype Percutaneous Thrombolytic Device: Preclinical Testing in Subacute Inferior Vena Caval Thrombosis in a Pig Model”, Radiology, Jul. 2001,220:135-141.
Hagspiel, K.D. et al., “Inferior Vena Cava Filters: An Update”, Applied Radiology, Nov. 1998, pp. 20-34.
Hagspiel, K.L. et al., “Difficult Retrieval of a Recovery IVC Filter”, Journal of Vascular and Interventional Radiology (Letters to the Editor), Jun. 2004, vol. 15, No. 6, pp. 645-650.
Hainaux, B. et al., “Intragastric Band Erosion After Laparoscopic Adjustable Gastric Banding for Morbid Obesity: Imaging Characteristics of an Underreported Complication”, American Journal of Roentgenology, Jan. 2005, 184:109-112.
Hak, D.J., “Prevention of Venous Thromboembolism in Trauma and Long Bone Fractures”, Current Opinion in Pulmonary Medicine, 2001, 7:338-343.
Hammer, Frank D. et al., “In Vitro Evaluation of Vena Cava Filters”, Journal of Vascular and Interventionai Radiology, Nov.-Dec. 1994, 5:869-876.
Wellons, E. D. et al., “Bedside Intravascular Ultrasound-Guided Vena Cava Filter Placement”, Journal of Vascular Surgery, 2003, 38:455-458.
Wells, J. L. et al., “Diagnosing Pulmonary Embolism: A Medical Masquerader”, Clinician Reviews, 2001, 11 (2):66-79.
Westling, A. et al., “Incidence of Deep Venous Thrombosis in Patients Undergoing Obesity Surgery”, World Journal of Surgery, 2002, 26:470-473.
White, R. H. et al., “A Population-Based Study of the Effectiveness of Inferior Vena Cava Filter Use Among Patients With Venous Thromboembolism”, Archives of Internal Medicine, Jul. 10, 2000, 160(13):2033-2041.
Whitehill, T. A., “Current Vena Cava Filter Devices and Results”, Seminars in Vascular Surgery, Sep. 2000, 13(3):204-212.
Wholey, M. et al., “Technique for Retrieval of a Guidewire Lodged in a Vena Cava Filter”, Vascular and Endovascular Surgery, 2002, 36(5):385-387.
Wiles, C. E., Letters to Editor, Journal of Trauma, Aug. 1999, 47(2):438.
Wilson, J. T. et al., “Prophylactic Vena Cava Filter Insertion in Patients With Traumatic Spinal Cord Injury: Preliminary Results”, Neurosurgery, 1994, 35:234-239.
Winchell, R. J. et al., “Risk Factors Associated With Pulmonary Embolism Despite Routine Prophylaxis: Implications for Improved Protection”, The Journal of Trauma, 1994, 37(4):600-606.
Wittenberg, G. et al., “Long-Term Results of Vena Cava Filters: Experiences With the LGM and the Titanium Greenfield Devices”, Cardiovascular and Interventional Radiology, 1998, 21:225-229.
Wittich, G. R. et al., “Anchoring a Migrating Inferior Vena Cava Stent With Use of a T-Fastener”, Journal of Vascular and Interventional Radiology, 2001, 12:994-996.
Wojcik, R. et al., “Long-Term Follow-Up of Trauma Patients With a Vena Caval Filter”, The Journal of Trauma: Injury, Infection, and Critical Care, Nov. 2000, 49(5):839-843.
Woodward, E. B. et al., “Delayed Retroperitoneal Arterial Hemorrhage After Inferior Vena Cava (IVC) Filter Insertion Case Report and Literature Review of Caval Perforations by IVC Filters”, Annals of Vascular Surgery, 2002, 16:193-196.
Xian, Z. Y. et al., “Multiple Emboli and Filter Function: An In Vitro Comparison of Three Vena Cava Filters”, Journal of Vascular and Interventional Radiology, 1995, 6:887-893.
Xu, X. Y. et al., “Flow Studies in Canine Artery Bifurcations Using a Numerical Simulation Method”, Journal of Biochemical Engineering, Nov. 1992, 114:504-511.
Yagi, A. et al., “Pulmonary Thromboembolism Evaluating the Indication and Effect of a Vena Caval Filter With Indium-111-Platelet Scintigraphy”, Circulation Journal, Jun. 2004, 68:599-601.
Yonezawa, K. et al., “Effectiveness of an Inferior Vena Cava Filter as a Preventive Measure Against Pulmonary Thromboembolism After Abdominal Surgery”, Surgery Today, 1999, 29:821-824.
Yucel, E. Kent, “Pulmonary MR Angiography: Is It Ready Now?”, Radiology, 1999, 210:301-303.
Zamora, C. A. et al., “Prophylactic Stenting of the Inferior Vena Cava Before Transcatheter Embolization of Renal Cell Carcinomas: An Alternative to Filter Placement”, Journal of Endovascular Therapy, 2004, 11:84-88.
Zanchetta, M. et al., “A New Permanent and Retrievable Vena Cava Filter: Its Removal After Five Months”, Italian Heart Journal, Sep. 2001, 2(9):715-716.
Zeni, P. T. et al., “Use of Rheolytic Thrombectomy in Treatment of Acute Massive Pulmonary Embolism”, Journal of Vascular and Interventional Radiology, 2003, 14:1511-1515.
Zinzindohoue, F. et al., “Laparoscopic Gastric Banding: A Minimally Invasive Surgical Treatment for Morbid Obesity-Prospective Study of 500 Consecutive Patients”, Annals of Surgery, 2003, 237(1):1-9.
Zwaan et al., “Clinical Experience with Temporary Vena Cava Filters” JVIR 9:594-601 (1998).
Kasirajan, K. et al., “Percutaneous AngioJet Thrombectomy in the Management of Extensive Deep Venous Thrombosis”, Journal of Vascular and Interventional Radiology, 2001, 12:179-185.
O'Brien, P. E. et al., “Laparoscopic Adjustable Gastric Banding in the Treatment of Morbid Obesity”, Archives of Surgery, Apr. 2003, 138(4):376-382.
U.S. Appl. No. 11/150,661, filed Jun. 10, 2005 Non-Final Office Action dated Nov. 5, 2009.
Wojtowycz, M. M. et al., “The Bird's Nest Inferior Vena Caval Filter: Review of a Single-Center Experience”, Journal of Vascular and Interventional Radiology, 1997, 8:171-179.
Yavuz, Kivilcim et al., “Retrievable of a Malpositioned Vena Cava Filter With Embolic Protection With Use of a Second Filter”, Journal of Vascular Interventional Radiology, 2005, 16:531-534.
Neuerburg et al., “New Retrievable Percutaneous Vena Cava Filter: Experimental In Vitro and In Vivo Evaluation” Cardiovasc. Intervent. Radiol. 16:224-229 (1993).
Neuerburg, J.M. et al., “Percutaneous Retrieval of the Tulip Vena Cava Filter: Feasibility, Short-and long-Term Changes—An Experimental Study in Dogs”, Cardiovascular and Interventional Radiology, 2001, 24:418-423.
Neuerburg, Jorg et al., “Developments in Inferior Vena Cava Filters: A European Viewpoint”, Seminars in Interventiona Radiology, vol. 11, No. 4, Dec. 1994, pp. 349-357.
Nguyen, N. T. et al., “A Comparison Study of Laparoscopic Versus Open Gastric Bypass for Morbid Obesity”, Journal of the American College of Surgeons, Aug. 2000, vol. 191, No. 2, pp. 149-155.
Nguyen, N. T. et al., “Comparison of Pulmonary Function and Postoperative Pain After Laparoscopic Versus Open Gastric Bypass: A Randomized Trial”, Journal of Americal College of Surgeons, 2001, 192:469-477.
Norwood, S. H. et al., “A Potentially Expanded Role for Enoxaparin in Preventing Venous Thromboembolism in High Risk Blunt Trauma Patients”, Journal of the American College of Surgeons, 2001, 192:161-167.
Nunn, C. R. et al., “Cost-Effective Method for Bedside Insertion of Vena Caval Filters in Trauma Patients,” The Journal of Trauma, Nov. 1997, vol. 43, No. 5, pp. 752-758.
Nutting, Charles et al., “Use of a TrapEase Device as a Temporary Caval Filter”, Journal of Vascular Interventional Radiology, Aug. 2001, 12:991-993.
Offner, P. J. et al., “The Role of Temporary Inferior Vena Cava Filters in Critically III Surgical Patients”, Archives of Surgery, Jun. 2003, vol. 138, pp. 591-595.
Olearchyk, A. S., “Insertion of the Inferior Vena Cava Filter Followed by Iliofemoral Venous Thrombectomy for Ischemic Venous Thrombosis”, Journal of Vascular Surgery, Apr. 1987, vol. 5, No. 4, pp. 645-647.
Olin, J. W., “Pulmonary Embolism”, Reviews in Cardiovascular Medicine, 2002, 3(2):S68-S75.
O'Malley, K. F. et al., “Prevention of Pulmonary Embolism After Pelvic Fracture: Rational Use of Inferior Vena Caval Filters”, (Cooper Hospital/University Medical Center), Jan. 1996, vol. 40.
Oppat, W. F. et al., “Intravascular Ultrasound-Guided Vena Cava Filter Placement”, Journal of Endovascular Surgery, 1999, 6:285-287.
Ornstein, D. L. et al., “Cancer, Thrombosis, and Anticoagulants”, Current Opinion in Pulmonary Medicine, 2000, 6:301-308.
Ortega, M. et al., “Efficacy of Anticoagulation Post-Inferior Vena Caval Filter Placement”, American Surgeon, May 1998, vol. 64, Issue 5, pp. 419-423.
Ortiz-Saracho, J. et al., “An Unusual Cause of Pulmonary Artery Thrombosis”, Chest, 1998, 114:309-310.
O'Sullivan, G. J. et al., “Endovascular Management of Iliac Vein Compression (May-Thurner) Syndrome”, Journal of Vascular and Interventional Radiology, 2000, 11:823-836.
Owings, J. T. et al., “Timing of the Occurrence of Pulmonary Embolism in Trauma Patients”, Archives of Surgery, Aug. 1997, 132(8):862-867.
Padberg, F. T. et al., “Hemodynamic and Clinical Improvement After Superficial Vein Ablation in Primary Combined Venous Insufficiency With Ulceration”, Journal of Vascular Surgery, 1996, 24:711-718.
Pais, S. O. et al., “Percutaneous Insertion of the Greenfield Inferior Vena Cava Filter: Experience With Ninety-Six Patients”, Journal of Vascular Surgery, Oct. 1988, vol. 8. No 4.
Palastrant et al., “Comparative In Vitro Evaluation of the Nitinol Inferior Vena Cava Filter” Radiology 145:351-355 (Nov. 1982).
Palestrant, Aubrey M. et al., “Comparative In Vitro Evaluation of the Nitinollnferior Vena Cava Filter”, Radiology, Nov. 1982, 145:351-355.
Participants in the Vena Caval Filter Consensus Conference, “Recommended Reporting Standards for Vena Caval Filter Placement and Patient Follow-Up”, Journal of Vascular and Interventional Radiology, 2003, 14:S427-S432.
Participants in the Vena Caval Filter Consensus Conference, “Recommended Reporting Standards for Vena Caval Filter Placement and Patient Follow-Up”, Journal of Vascular Surgery, 1999, 30:573-579.
Partsch, H. et al., “Frequency of Pulmonary Embolism in Patients Who Have Iliofemoral Deep Vein Thrombosis and Are Treated With Once- or Twice-Daily Low-Molecular Weight Heparin”, Journal of Vascular Surgery, 1996, 24:774-782.
Passman, M. A. et al., “Pulmonary Embolism is Associated With the Combination of Isolated Calf Vein Thrombosis anti Respiratory Symptoms”, Journal of Vascular Surgery, 1997, 25:39-45.
Patterson, R. B. et al., “Case Reports: Repositioning of Partially Dislodged Greenfield Filters From the Right Atrium by Use of a Tip Deflection Wire”, Journal of Vascular Surgery, Jul. 1990, vol. 12, No. 1, pp. 70-72.
Patton, J. H. Jr., et al., “Prophylactic Greenfield Filters: Acute Complications and Long-Term Follow-Up”, The Journal of Trauma: Injury, Infection, and Critical Care, 1996, vol. 41, No. 2, pp. 231-237.
Pavcnik, Dusan et al., “Retrievable IVC Square Stent Filter: Experimental Study”, Cardiovascular Interventional Radiology, 1999,22:239-245.
PCT/US03/05385 filed Feb. 20, 2003 International Search Report dated Jun. 17, 2003.
PCT/US07/09215 filed Apr. 16, 2007 International Preliminary Report on Patentability dated Sep. 23, 2008.
PCT/US07/09215 filed Apr. 16, 2007 International Search Report dated Sep. 23, 2008.
PCT/US1999/020883 filed Sep. 23, 1999 Search Report dated Jan. 20, 2000.
PCT/US2006/017889 filed May 9, 2006 International Preliminary Report on Patentability dated Jul. 14, 2009.
PCT/US2006/017889 filed May 9, 2006 International Search Report dated Jul. 1, 2009.
PCT/US2006/017889 filed May 9, 2006 Written Opinion dated Jul. 1, 2009.
PCT/US2006/017890 filed May 9, 2006 Preliminary Report on Patentability dated Feb. 12, 2008.
PCT/US2006/017890 filed May 9, 2006 Search Report dated Nov. 2, 2006.
PCT/US2006/017890 filed May 9, 2006 Written Opinion dated Nov. 2, 2006.
PCT/US2006/044826 filed Nov. 17, 2006 International Preliminary Report on Patentability and Written Opinion dated Apr. 10, 2008.
PCT/US2006/044826 filed Nov. 17, 2006 International Search Report dated Apr. 10, 2008.
PCT/US2006/045738 filed Nov. 11, 2006 Search Report dated Oct. 9, 2007.
PCT/US2006/045738 filed Nov. 11, 2006 Written Opinion dated Oct. 9, 2007.
PCT/US2007/009186 filed Apr. 16, 2007 International Preliminary Report on Patentability and Written Opinion dated Nov. 4, 2008 and Sep. 29, 2008.
PCT/US2007/009186 filed Apr. 16, 2007 International Search Report dated Sep. 29, 2008.
PCT/US2010/043787 filed Jul. 29, 2010 Search Report dated Dec. 3, 2010.
PCT/US2010/043787 filed Jul. 29, 2010 Written Opinion dated Dec. 3, 2010.
Peck, K. E. et al., “Postlaparoscopic Traumatic Inferior Vena Caval Thrombosis”, Heart & Lung, Jul./Aug. 1998, vol. 27, No. 4, pp. 279-281.
Pelage, J. et al., “Re: Leiomyoma Recurrence After Uterine Artery Embolization”, Journal of Vascular and Interventional Radiology, Jul. 2004, vol. 15, No. 7, pp. 773-776.
Peskin, Gerald R. (ed.), Papers of the Western Surgical Association, “Directed Parathyroidectomy—Feasibility and Performance in 100 Consecutive Patients With Primary Hyperparathyroidism”, Archives of Surgery, Jun. 2003, vol. 138, p. 581.
Lipman, J.C., “Removal of Vena Caval Filter at 224 Days”, Southern Medical Journal, May 2005, vol. 98, No. 5, pp. 556-558.
Loehr, S.P. et al., “Retrieval of Entrapped Guide Wire in an IVC Filter Facilitated With Use of a Myocardial Biopsy Forceps and Snare Device”, Journal of Vascular and Interventional Radiology (Letter to Editor), Sep. 2001, vol. 12, No. 9, pp. 1116-1118.
Lopez-Beret, P. et al., “Systematic Study of Occult Pulmonary Thromboembolism in Patients With Deep Venous Thrombosis”, Journal of Vascular Surgery, 2001, 33:515-521.
Lorch, H. et al., “Current Practice of Temporary Vena Cava Filter Insertion: A Multicenter Registry”, Journal of Vascular and Interventional Radiology, 2001, 11:83-88.
Lorch, H. et al., “In Vitro Studies of Temporary Vena Cava Filters”, Cardiovascular and Interventional Radiology, 1998, 21:146-150.
Lorch, H. et al., “Temporary Vena Cava Filters and Ultrahigh Streptokinase Thrombolysis Therapy: A Clinical Study”, Cardiovascular Interventional Radiology, 2000, 23:273-278.
Lujan, J. A. et al., “Laparoscopic Versus Open Gastric Bypass in the Treatment of Morbid Obesity”, Annals of Surgery, Apr. 2004, vol. 239, No. 4, pp. 433-437.
Lund, G. et al., “A New Vena Caval Filter for Percutaneous Placement and Retrieval Experimental Study”, Radiology, 1984, 152:369-372.
Lund, G. et al., “Retrievable Vena Caval Filter Percutaneously Introduced”, Radiology, 1985, vol. 155, p. 831.
Luo, X. Y. et al., “Non-Newtonian Flow Patterns Associated With an Arterial Stenosis”, Journal of Biomechanical Engineering, Nov. 1992, 114:512-514.
MacDonald, K. G. Jr., “Overview of the Epidemiology of Obesity and the Early History of Procedures to Remedy Morbid Obesity”, Archives of Surgery, Apr. 2003, 138(4):357-360.
Machado, L.G. et al., “Medical Applications of Shape Memory Alloys”, Brazilian Journal of Medical and Biological Research, 2003, 36:683-691.
Magnant, J.G. et al., “Current Use of Inferior Vena Cava Filters”, Journal of Vascular Surgery, Nov. 1992, vol. 16, No. 5, pp. 701-706.
Malden et al., “Transvenous Retreival of Misplaced Stainless Steel Greenfield Filters” JVIR 3:703-708 (1992).
Manke, C. et al., “MR Imaging-Guided Stent Placement in Iliac Arterial Stenoses: A Feasibility Study”, Radioilogy, 2001, 219:527-534.
Marston, W.A. et al., “Re: Comparison of the AngioJet Rheolytic Catheter to Surgical Thrombectomy for the Treatment of Thrombosed Hemodialysis Grafts”, Journal of Vascular and Interventional Radiology (Letters to the Editor), Sep. 2000, vol. 11, No. 8, pp. 1095-1099.
Matteson, B. et al., “Role of Venous Duplex Scanning in Patients With Suspected Pulmonary Embolism”, The Journal of Vascular Surgery, 1996, 24:768-773.
Matthews, B. D. et al., “Inferior Vena Cava Filter Placement: Preinsertion Inferior Vena Cava Imaging”, The American Surgeon, Aug. 2003, vol. 69, No. 8, pp. 649-653.
Mattos, M.A. et al., “Prevalence and Distribution of Calf Vein Thrombosis in Patients With Symptomatic Deep Venous Thrombosis: A Color-Flow Duplex Study”, Journal of Vascular Surgery, 1996, 24:738-744.
Maxwell, R.A. et al., “Routine Prophylactic Vena Cava Filtration is Not Indicated After Acute Spinal Cord Injury”, The Journal of Trauma: Injury, Infection, and Critical Care, 2002, 52:902-906.
McCowan, T.C. et al., “Complications of the Nitinol Vena Caval Filter”, Journal of Vascular and Interventional Radiology, 1992, 3:401-408.
McMurtry, A.L. et al., “Increased Use of Prophylactic Vena Cava Filters in Trauma Patients Failed to Decrease Overall ncidence of Pulmonary Embolism”, Journal of the American College of Surgeons, 1999, 189:314-320.
Meissner, M.H. et al., Venous Thromoembolism in Trauma: A Local Manifestation of Systemic Hypercoagulability?, The Journal of Trauma: Injury, Infection, and Critical Care, Feb. 2003, vol. 54, No. 2, pp. 224-231.
Melinek, J. et al., “Autopsy Findings Following Gastric Bypass Surgery for Morbid Obesity”, Arch Path Lab Med, 2002 126:1091-1095.
Mihara, H. et al., “Use of Temporary Vena Cava Filters After Catheter-Directed Fragmentation and Thrombolysis in Patients With Acute Pulmonary Thromboembolism”, Japanese Circulartion Journal, Jun. 1998, vol. 62, pp. 462-464.
Miller, A. C., “British Thoracic Society Guidelines for the Management of Suspected Acute Pulmonary Embolism”, THORAX, Jun. 2003, 58(6): 470-483.
Miller, Karl E., “Indications for Vena Cava Filters for Recurrent DVT”, American Family Physician, Feb. 1, 2003, vol. 67, No. 3, p. 593.
Millward, S., “Temporary IVC Filtration Before Patent Foramen Ovale Closure in a Patient With Paradoxic Embolism”, Letter to the Editor, p. 937.
Millward, S.F. et a l., “Preliminary Clinical Experience with the Gunther Temporary Inferior Vena Cava Filter”, Journal of Vascular and Interventional Radiology, 1994, 5:863-868.
Millward, S.F. et al., “Gunther Tulip Filter Preliminary Clinical Experience With Retrieval”, Journal of Vascular and Interventional Radiology, 2000, 11:75-82.
Millward, S.F. et al., “Gunther Tulip Retrievable Vena Cava Filter: Results From the Registry of the Canadian Interventional Radiology Association”, Journal of Vascular and Interventional Radiology, 2001, 12:1053-1058.
Millward, S.F. et al., “LGM (Vena Tech), Vena Caval Filter: Clinical Experience in 64 Patients”, Journal of Vascular and Interventional Radiology, Nov. 1991, 2:429-433.
Millward, S.F. et al., “LGM (Vena Tech), Vena Caval Filter: Experience at a Single Institution”, Journal of Vascular and Interventional Radiology, Mar.-Apr. 1994, 5:351-356.
Millward, S.F. et al., “Reporting Standards for Inferior Venal Caval Filter Placement and Patient Follow-Up Supplement for Temporary and Retrievable/Optional Filters”, Journal of Vascular and Interventional Radiology, Apr. 2005, 16:441-443.
Millward, S.F., “Gunther Tulip Retrievable Filter Why, When and How?”, JACR, Jun. 2001, vol. 52, No. 3, pp. 188-192.
Millward, S.F., “Temporary and Retrievable Inferior Vena Cava Filters Current Status”, Journal of Vascular and Interventional Radiology, May-Jun. 1998, vol. 9, No. 3, pp. 381-387.
Mobin-Uddin, K. et al., “Evolution of a New Device for the Prevention of Pulmonary Embolism”, The American Journal of Surgery, vol. 168, Oct. 1994, pp. 330-334.
Mohan, C.R. et al., “Comparative Efficacy and Complications of Vena Caval Filters”, Journal of Vascular Surgery, 1995, 21:235-236.
Montessuit, M. et al., “Screening for Patent Foramen Ovale and Prevention of Paradoxical Embolus”, Ann FASC Surg, 1997, 11:168-172.
Montgomery, K.D. et al., The Detection and Management of Proximal Deep Venous Thrombosis in Patients With Acute Acetabular Fractures: A Follow-up Report:, Journal of Orthopedic Trauma, Jul. 1997, 1(5):330-336.
Mortele, K. J. et al., “The Swedish Laparoscopic Adjustable Gastric Banding for Morbid Obesity: Radiologic Findings in 218 Patients”, American Journal of Roentgenology, 2001, 177:77-84.
Munir, M.A. et al., “An In Situ Technique to Retrieve an Entrapped J-Tip Guidewire From an Inferior Vena Cava Filter”, Anesth Analo, 2002, 95:308-309.
Murakami, M. et al., “Deep Venous Thrombosis Prophylaxis in Trauma: Improved Compliance With a Novel Miniaturized Pneumatic Compression Device”, Journal of Vascular Surgery, 2003, 38:923-927.
Nakagawa, N. et al., “A Retrievable Nitinol Vena Cava Filter: Experimental and Initial Clinical Results”, Journal of Vascular and Interventional Radiology, 1994, 5:507-512.
Nakajima, Osamu et al., “Massive Deep Vein Thrombosis After Cesarean Section Treated With a Temporary Inferior Vena Cava Filter: A Case Report”, J Cardioi 2000; 36(5): pp. 337-342.
Napolitano, L. M. et al., “Asymptomatic Deep Venous Thrombosis in the Trauma Patient: Is an Aggressive Screening Protocol Justified?”, The Journal of Trauma: Injury, Infection, and Critical Care, 1997, vol. 39, No. 4, pp. 651-659.
Nazario, R. et al., “Treatment of Venous Thromboembolism”, Cardiology in Review, 2002, 10(4):249-259.
Neeman, Z. et al., “Metastatic Involvement of a Retrieved Inferior Vena Cava Filter”, (Clinical Center) and National Cancer Institute, National Institutes of Health, Bethesda, MD), p. 1585.
Neili, A. M. et al., “Retrievable Inferior Vena Caval Filter for Thromboembolic Disease in Pregnancy”, British Journal of Obstetrics and Gynaecology, Dec. 1997, vol. 104, pp. 1416-1418.
Neri, E. et al., “Protected Iliofemoral Venous Thrombectomy in a Pregnant Woman With Pulmonary Embolism and Ischemic Venous Thrombosis”, Texas Heart Institute Journal, 2002, vol. 29, No. 2, pp. 130-132.
Stein, P. D., “Opinions Regarding the Diagnosis and Management of Venous Thromboembolic Disease”, Chest, Feb. 1998, vol. 113, No. 2, pp. 499-504.
Still, J. et al., “Experience With the Insertion of Vena Caval Filters in Acutely Burned Patients”, The American Surgeon, Mar. 2000, vol. 66, No. 3, pp. 277-279.
Stoneham G. W. et al., “Temporary Inferior Vena Cava Filters: In Vitro Comparison With Permanent IVC Filters”, Journal of Vascular and Interventional Radiology, Sep.-Oct. 1995, vol. 6, pp. 731-736.
Stosslein, F. et al., “A Rare Complication With an Antheor Vena Cava Filter”, Cardiovascular and Interventional Radiology, 1998, 21:165-167.
Stover, M. D. et al., “Prospective Comparison of Contrast-Enhanced Computed Tomography Versus Magnetic Resonance Venography in the Detection of Occult Deep Pelvic Vein Thrombosis in Patients With Pelvic and Acetabular Fractures”, Journal of Orthopaedic Trauma, 2002, 16(9):613-621.
Streib, E. W. et al., “Complications of Vascular Access Procedures in Patients With Vena Cava Filters”, The Journal of Trauma: Injury Infection, and Critical Care, Sep. 2000, vol. 49, No. 3, pp. 553-558.
Streiff, Michael B., “Vena Caval Filters: A Comprehensive Review”, Blood, Jun. 15, 2000, vol. 95, No. 12, pp. 3669-3677.
Sue, L. P. et al., “Iliofemoral Venous Injuries: An Indication for Prophylactic Caval Filter Placement”, The Journal of Trauma: Injury, Infection, and Critical Care, 1995, vol. 39, No. 4, pp. 693-695.
Sugemnan, H. J. et al., “Risks and Benefits of Gastric Bypass in Morbidity Obese Patients With Severe Venous Stasis Disease”, Annals of Surgery, 2001, vol. 234, No. 1, pp. 41-46.
Sultan, S. et al., “Operative and Endovascular Management of Extracranial Vertebral Artery Aneurysm in Ehlers-Danlos Syndrome: A Clinical Dilemma”, Vascular and Endovascular Surgery, 2002, 36(5):389-392.
Taheri, S. A. et al., “Case Report: A Complication of The Greenfield Filter: Fracture and Distal Migration of Two Struts—A Case Report”, Journal of Vascular Surgery, Jul. 1992, vol. 16, No. 1, pp. 96-99.
Tai, N. R. M. et al., “Modem Management of Pulmonary Embolism”, British Journal of Surgery, 1999, 86:853-868.
Tardy, B. et al., “Older People Included in a Venous Thrombo-Embolism Clinical Trial: A Patients' Viewpoint”, Age and Ageing, 2003, 32:149-153.
Tay, Kiang-Hiong et ai, “Repeated Gunther Tulip Inferior Vena Cava Filter Repositioning to Prolong Implantation Time”, J Vase Interv Radioi, May 2002, 13:509-512.
Taylor, Frank C. et al., “Vena Tech Vena Cava Filter: Experience and Early Follow-up”, Journal of Vascular Interventional Radiology, Nov. 1991, 2:435-440.
Teitelbaum, G. P. et al., Low-Artifact Intravascular Devices: MR Imaging Evaluation, Radiology, Sep. 1988, 168:713-719.
Terhaar, Olaf Alfons et al., “Extended Interval for Retrieval of Gunther Tulip Filters”, J Vascinterv Radioi, Nov. 2004,15:1257-1262.
The Simon Nitinol Filter, Instructions for Use, Nitnol Medical Technologies, Inc.
Thery, C. et al., “Use of a New Removable Vena Cava Filter in Order to Prevent Pulmonary Embolism in Patients Submitted to Thrombolysis”, European Heart Journal, 1990, vol. 11,334-341.
Thomas, J. H. et al., “Vena Caval Occlusion After Bird's Nest Filter Placement”, American Journal of Surgery, Dec. 1998, vol. 176, pp. 598-600.
Thomas, L. A. et al., “Use of Greenfield Filters in Pregnant Women at Risk for Pulmonary Embolism”, Southern Medical Journal, Feb. 1997, vol. 90, Issue 2.
Tillie-Leblond, I. et al., “Risk of Pulmonary Embolism After a Negative Spiral CT Angiogram in Patients With Pulmonary Disease: 1-Year Clinical Follow-Up Study”, Radiology, 2002, 223:461-467.
Tola, J. C. et al., “Bedside Placement of Inferior Vena Cava Filters in the Intensive Care Unit”, The American Surgeon, Sep. 1999, vol. 65, No. 9, pp. 833-838.
Tovey, C. et al., “Diagnosis, Investigation, and Management of Deep Vein Thrombosis”, British Medical Journal, May 31, 2003, vol. 326, i7400, p1180(5), 9 pages.
Trerotola, S. O. et al., “Mechanical Thrombolysis of Venous Thrombosis in an Animal Model With Use of Temporary Caval Filtration”, Journal of Vascular and Interventional Radiology, Sep. 2001, 12:1075-1085.
Trerotola, S. O. et al., “Preclinical in Vivo Testing of the Arrow-Trerotola Percutaneous Thrombolytic Device for Venous Thrombosis”, Journal of Vascular and Interventional Radiology, 2001, 12:95-103.
Trujillo-Santos,J. et al., “Bed Rest or Ambulation in the Initial Treatment of Patients With Acute Deep Vein Thrombosis or Pulmonary Embolism”, Chest, 2005, 127:1631-1636.
Tuna, I. C. et al., “Massive Pulmonary Embolus”, Texas Heart Institute Journal, 2002, vol. 29, No. 2, pp. 144-145.
U.S. Appl. No. 09/640,865, filed Aug. 18, 2000 Advisory Action dated Apr. 19, 2007.
U.S. Appl. No. 09/640,865, filed Aug. 18, 2000 Advisory Action dated Mar. 23, 2006.
U.S. Appl. No. 09/640,865, filed Aug. 18, 2000 Final Office Action dated Jan. 16, 2007.
U.S. Appl. No. 09/640,865, filed Aug. 18, 2000 Final Office Action dated Nov. 30, 2005.
U.S. Appl. No. 09/640,865, filed Aug. 18, 2000 Non-Final Office Action dated Apr. 7, 2005.
U.S. Appl. No. 09/640,865, filed Aug. 18, 2000 Non-Final Office Action dated Aug. 8, 2006.
U.S. Appl. No. 09/640,865, filed Aug. 18, 2000 Non-Final Office Action dated Jun. 5, 2003.
U.S. Appl. No. 10/079,155, filed Feb. 20, 2002 Final Office Action dated Jan. 20, 2006.
U.S. Appl. No. 10/079,155, filed Feb. 20, 2002 Non-Final Office Action dated Jul. 13, 2004.
U.S. Appl. No. 10/079,155, filed Feb. 20, 2002 Non-Final Office Action dated Mar. 7, 2007.
U.S. Appl. No. 10/079,155, filed Feb. 20, 2002 Non-Final Office Action dated Nov. 20, 2006.
U.S. Appl. No. 10/079,155, filed Feb. 20, 2002 Non-Final Office Action dated Sep. 11, 2006.
U.S. Appl. No. 11/150,661, filed Jun. 10, 2005 Final Office Action dated May 27, 2010.
U.S. Appl. No. 11/150,661, filed Jun. 10, 2005 Non-Final Office Action dated Jul. 22, 2011.
U.S. Appl. No. 11/334,829, filed Jan. 19, 2006 Non-Final Office Action dated Aug. 18, 2008.
U.S. Appl. No. 11/429,975, filed May 9, 2006 Non-Final Office Action dated Oct. 7, 2010.
U.S. Appl. No. 11/429,975, filed May 9, 2006 Notice of Allowance dated Feb. 18, 2011.
U.S. Appl. No. 11/966,203, filed Dec. 28, 2007 Final Office Action dated Dec. 4, 2009.
U.S. Appl. No. 11/966,203, filed Dec. 28, 2007 Non-Final Office Action dated Aug. 17, 2009.
U.S. Appl. No. 11/997,832, filed Aug. 20, 2008 Non-Final Office Action dated Aug. 16, 2010.
U.S. Appl. No. 11/997,832, filed Aug. 20, 2008 Non-Final Office Action dated Feb. 23, 2011.
U.S. Appl. No. 12/093,814, filed Jun. 8, 2009 Non-Final Office Action dated Jul. 10, 2012.
“Staff Development Special, Get the Edge on Deep Vein Thrombosis”, Nursing Management, Jan. 2004, pp. 21-29.
AbuRahma, A.F. et al., “Endovascular Caval Interruption in Pregnant Patients With Deep Vein Thrombosis of the Lower Extremity”, Journal of Vascular Surgery, 2001, 33:375-378.
AbuRahma, A.F. et al., “Management of Deep Vein Thrombosis of the Lower Extremity in Pregnancy: A Challenging Dilemma”, The American Surgeon, Feb. 1999, vol. 65, No. 2, pp. 164-167A.
AbuRahma, F. et al., “Etiology of Peripheral Arterial Thromboembolism in Young Patients”, The American Journal of Surgery, vol. 176, Aug. 1998, pp. 158-161.
Adams, E. et al., “Retrievable Inferior Vena Cava Filter for Thrombolic Disease in Pregnancy”, British Journal of Obstetrics and Gynaecology, Sep. 1998, vol. 105, pp. 1039-1042.
Adye, B. A., “Case Report: Errant Percutaneous Greenfield Filter Placement Into the Retroperitoneum”, Journal of Vascular Surgery, Jul. 1990, vol. 12, No. 1.
Aheam, G.S. et al., “Massive Pulmonary Embolism During Pregnancy Successfully Treated With Recombinant Tissue Plasminogen Activator”, Archives of Interal Medicine, Jun. 10, 2002, 162(11):1221-1227.
Aklog, L. et al., “Acute Pulmonary Embolectomy”, Circulation, 2002, 105:1416-1419.
Alexander, J. J. et al., “Is the Increasing Use of Prophylactic Percutaneous IVC Filters Justified?”, The American Journal of Surgery, Aug. 1994, vol. 168, pp. 102-106.
Allen, T.L. et al., “Retrievable Vena Cava Filters in Trauma Patients for High-Risk Prophylaxis and Prevention of Pulmonary Embolism”, The American Journal of Surgery, 2005, 189:656-661.
American Gastroenterological Association Clinical Practice Committee, “Technical Review on Obesity,” Sep. 2002 123:883-932.
Anderson, J.T. et al., “Bedside Noninvasive Detection of Acute Pulmonary Embolism in Critically Ill Surgical Patients”, Archives of Surgery, Aug. 1999, 134(8):869-875.
Andrews, R. T. et al., “Entrapment of J-Tip Guidewires by Venatech and Stainless-Steel Greenfield Vena Cava Filters During Central Venous Catheter Placement: Percutaneous Management in Four Patients”, Correspondence to R.T. Andrews, M.D., The Dotter Interventional Institute, Oregon Heal Sciences University, Portland, OR, pp. 424-427.
Anthone, G.J. et al. The Duodenal Switch Operation for the Treatment of Morbid Obesity, Annals of Surgery, Oct. 2003, 238(4):618-628.
Arcasoy, S.M. et al., “Thrombolytic Therapy of Pulmonary Embolism”, Chest, 1999, 115:1695-1707.
Arcelus, J.I. et al., “The Management and Outcome of Acute Venous Thromboembolism: A Prospective Registry Including 4011 Patients”, Journal of Vascular Surgery, 2003, 38:916-922.
Arjomand, H. et al., “Right Ventricular Foreign Body: Percutaneous Transvenous Retrieval of a Greenfield Filter From the Right Ventricle”, Angiology, 2003, vol. 54, No. 1, pp. 109-113.
Arnold, D.M. et al., “Missed Opportunities for Prevention of Venous Thromboembolism”, Chest, 2001, 120:1964-1971.
Ascer, E. et al., “Superior Vena Caval Greenfield Filters: Indications, Techniques, and Results”, Journal of Vascular Surgery, Mar. 1996, vol. 23, No. 3.
Asch, M. R., “Initial Experience in Humans With a New Retrievable Inferior Vena Cava Filter”, Radiology, 2002, 225:835-844.
Ascher, E. et al., “Lessons Learned From a 6-Year Clinical Experience With Superior Vena Cava Greenfield Filters”, Journal of Vascular Surgery, Nov. 2000, 32:881-887.
Ashley, D.W. et al., “Accurate Deployment of Vena Cava Filters: Comparison of Intravascular Ultrasound and Contrast Venography”, The Journal of Trauma Injury, Infection, and Critical Care, Jun. 2001, vol. 50, No. 6, pp. 975-981.
Aswad, M. A. et al., “Early Duplex Scan Evaluation of Four Venal Interruption Devices”, Journal of Vascular Surgery, 1996, 24:809-818.
Athanasoulis, C.A. et al., “Inferior Venal Caval Filters: Review of a 26-Year Single-Center Clinical Experience”, Radiology, 2000, 216:54 66.
Authors' Abstract, “Abstracts of Current Literature”, Journal of Vascular and Interventional Radiology, Mar. 2000, vol. 11, No. 3, pp. 401-407.
Authors' Abstract, “Abstracts of Current Literature”, Journal of Vascular and Interventional Radiology, Oct. 2003, vol. 14, No. 10, pp. 1351-1357.
Authors' Abstract, “Abstracts of Current Literature,” Journal of Vascular and Interventional Radiology, Oct. 2002, 13(10):1062-1068.
Authors' Abstracts, “Abstracts of Current Literature”, Journal of Vascular and Interventional Radiology, Apr. 2002, vol. 13, No. 4, pp. 433-440.
Authors' Abstracts, “Abstracts of Current Literature”, Journal of Vascular and Interventional Radiology, Apr. 2004, pp. 408-415.
Avery, M. et al., “Reverse Engineering of Nitinol Vena Cava Filters”, Material Science 102 Semester Project, Nov. 21, 2000.
Baker, R. J., “Treatment Considerations for Inherited Thrombophilia and Pulmonary Embolus”, Archives of Surgery, Feb. 2001, 136,2:237.
Balshi, J. D. et al., “Original Articles Complications of Caval Interruption by Greenfield Filter in Quadriplegics”, Journal of Vascular Surgery, Apr. 1989, vol. 9, No. 4.
Barraco, R. D. et al., “Dislodgment of Inferior Vena Cava Filters During Central Line Placement: Case Report”, The Journal of Trauma, Injury, Infection and Critical Care, 2000, vol. 48, No. 1, pp. 140-142.
Barreras, J. R. et al., “Recurrent Pulmonary Embolism Despite the Use of a Greenfield Filter”, Clinical Nuclear, Dec. 2001, vol. 26, No. 12, pp. 1040-1041.
Barton, A. L. et al., “Caval Filter Placement for Pulmonary Embolism in a Patient With a Deep Vein Thrombosis and Primary Intracerebral Haemorrhage”, Age and Ageing, Mar. 2002, 31,2:144-146.
Bass, B.L., “What's New in General Surgery: Gastrointestinal Conditions”, The Journal of American College Surgeons, Dec. 2002, vol. 195, No. 6, pp. 835-854.
Becker, D. M. et al., “Inferior Vena Cava Filters”, Archives of Internal Medicine, Oct. 1992, vol. 152, pp. 1985-1994.
Bendick, P.J. et al., Serial Duplex Ultrasound Examination for Deep Vein Thrombosis in Patients With Suspected Pulmonary Embolism, Journal of Fascular Surgery, Nov. 1996, vol. 24, No. 5, pp. 732-737.
Benjamin, M. E. et al., Duplex Ultrasound Insertion of Inferior Vena Cava Filters in Multitrauma Patients:, American Journal of Surgery, Aug. 1999, vol. 178, pp. 92-97.
Bessoud, B. et al., Experience at a Single Institution With Endovascular Treatment of Mechanical Complications Caused by Implanted Central Venous Access Devices in Pediatric and Adult Patients, American Journal of Roentgenology, Feb. 2003, 180:527-532.
Bevoni, L., “Management of Adult Obesity”, Clinician Reviews, May 2003, 13(5):56-62.
Biertho, L. et al., “Laparoscopic Gastric Bypass Versus Laparoscopic Adjustable Gastric Banding: A Comparative Study of 1,200 Cases”, Journal of the American Colloge of Surgeons, Oct. 2003, vol. 197, No. 4, pp. 536-545.
Binkert, C. A. et al., “Inferior Vena Cava Filter Removal After 317-Day Implantation”, Journal of Vascular Radiology, Mar. 2005, 16:393-398.
Bjarnason, H. et al., “In Vitro Metal Fatigue Testing of Inferior Vena Cava Filters”, Investigative Radiology, 1994, vol. 29, No. 9, pp. 817-821.
Blachar A. et al., “Gastrointestinal Complications of Laparoscopic Roux-en-Y Gastric Bypass Surgery in Patients Who Are Morbidly Obese: Findings on Radiography and CT”, American Journal of Roentgenology, Dec. 2002, 179:1437-1442.
Blachar, A. et al., “Gastrointestinal Complications of Laparoscopic Roux-en-Y Gastric Bypass Surgery: Clinical and Imaging Findings”, Radiology, 2002, 223:625-632.
Blaszyk, H. et al., “Factor V Leiden and Morbid Obesity in Fatal Postoperative Pulmonary Embolism”, Archives of Surgery, Dec. 2000, 135(12):1410-1413.
Blebea J. et al., “Deep Venous Thrombosis After Percutaneous Insertion of Vena Caval Filters”, Journal of Vascular Surgery, Nov. 1999, 30:821:829.
Bochenek, K. M. et al., “Right Atrial Migration and Percutaneous Retrieval of a Gunther Tulip Inferior Vena Cava Filter”, Journal of Vascular Interventional Radiology, Sep. 2003, 14:1207-1209.
Bochicchio, G. V. et al., “Acute Caval Perforation by an Inferior Vena Cava Filter in a Multilrauma Patient: Hemostatic Control With a New Surgical Hemostat”, The Journal of Trauma Injury, Infection and Critical Care, 2001, 51:991-993.
Bovyn, G. et al., “The Tempofilter.RTM.: A Multicenter Study of a New Temporary Caval Filter Implantable for up to Six Weeks”, Annals of Vascular Surgery, 1997, 11:520-528.
Bracale, G. et al., “Spontaneous Rupture of The Iliac Vein”, The Journal of Cardiovascular Surgery, 1999, 40:871-875.
Brasel, K. J. et al., “Cost-Effective Prevention of Pulmonary Embolus in High-Risk Trauma Patients”, The Journal of Trauma: Injury, Infection, and Critical Care, Mar. 1997, vol. 42, No. 3, pp. 456-462.
Bravo, S. M. et al., “Percutaneous Venous Interventions”, Vascular Medicine, 1998, 3:61-66.
Bridges, G.G. et al., “Expedited Discharge in Trauma Patients Requiring Anticoagulation for Deep Venous Thrombosis Prophylaxis: The LEAP Program”, The Journal of Trauma: Injury, Infection and Critical Care, Feb. 2003, vol. 54, No. 2, pp. 232-235.
Brolin, R.E., “Laparoscopic Verses Open Gastric Bypass to Treat Morbid Obesity”, Annals of Surgery, Apr. 2004, vol. 239, No. 4, pp. 438-440.
Brountzos, E. N. et al., “A New Optional Vena Cava Filter: Retrieval at 12 Weeks in an Animal Model”, Journal of Vascular and Interventional Radiology, Jun. 2003, 14:763-772.
Brown, D. R. et al., “Gadolinium, Carbon Dioxide, and Iodinated Contrast Material for Planning Inferior Vena Cava Filter Placement: a Prospective Trial”, Journal of Vascular and Interventional Radiology, Aug. 2003, 14:1017-1022.
Browne, R. J. et al., “Guidewire Entrapment During Greenfield Filter Deployment”, Journal of Vascular Surgery, Jan. 1998, 27:174-176.
Bruckheimer, E. et al., “In Vitro Evaluation of a Retrievable Low-Profile Nitinol Vena Cava Filter”, Journal of Vascular and Interventional Radiology, Apr. 2003, 14:469-474.
Bucker, A. et al., “Real-Time MR Guidance for Inferior Vena Cava Filter Placement in an Animal Model”, Journal of Vascular and Interventional Radiology, Jun. 2001, 12:753-756.
Buerger, P.M. et al., “Risk of Pulmonary Emboli in Patients With Pelvic Fractures”, The American Surgeon, Aug. 1993, vol. 59, pp. 505-508.
Burbridge, B. E. et al., “Incorporation of the Gunther Temporary Inferior Vena Cava Filter Into the Caval Wall”, Journal of Vascular and Interventional Radiology, Mar.-Apr. 1996, 7:289-290.
C.R. Bard Simon Nitinol Filter: For Use in the Vena Cava: Instructions for Use (1995, 1997).
CA 2648325 filed Sep. 23, 1999 Office Action dated Apr. 26, 2011.
Cahn, M. D. et al., “Long Term Follow-up of Greenfield Inferior Vena Cava Filter Placement in Children”, Journal of Vascular Surgery, Nov. 2001, 34:820-825.
Cain Jr., J.E. et al., “The Morbidity of Heparin Therapy After Development of Pulmonary Embolus in Patients Undergoing Thoracolumbar or Lumbar Spinal Fusion”, SPINE, vol. 20, No. 14, 1995, pp. 1600-1603.
Campbell, J. J. et al., “Aortic Pseudoaneurysm From Aortic Penetration With a Bird's Nest Vena Cava Filter”, Journal of Vascular Surgery, Sep. 2003, 38:596-599..
Capella, J.F. et al., An Assessment of Vertical Banded Gastroplasty-Roux-en-Y Gastric Bypass for the Treatment of Morbid Obesity.
Carabasi III, R. A. et al., “Complications Encountered With the Use of the Greenfield Filter”, The American Journal of Surgery, Aug. 1987, Vo. 154, pp. 163-168.
Carlin, A. M. et al., “Prophylactic and Therapeutic Inferior Vena Cava Filters to Prevent Pulmonary Emboli in Trauma Patients”, Archives of Surgery, May 2002, vol. 137, p. 521.
Carman, Teresa L. et al., Outpatient treatment of deep venous thrombosis, Chest; Nov. 1999; 116, 5; Health & Medical Complete, pp. 1492-1493.
Carter, Y. et al., “Deep Venous Thrombosis and ABO Blood Group Are Unrelated in Trauma Patients”, The Journal of Trauma: Injury, Infection, and Critical Care, 2002, 52:112-116.
Castaneda, F. et al., “Catheter-Directed Thrombolysis in Deep Venous Thrombosis With Use of Reteplase: Immediate Results and Complications From a Pilot Study”, Journal of Vascular and Interventional Radiology, 2002, 13:577-580.
Ceelen, W. et al., “Surgical Treatment of Severe Obesity With a Low-Pressure Adjustable Gastric Band, Experimental Data and Clinical Results in 625 Patients”, Annals of Surgery, 2003, 237(1):10-16.
Chanduszko, A., “Determination of Nitinol Transition Temperatures Using a Dynamical Mechanical Analyzer”, The International Conference on Shape Memory and Superelastic Technology, 2000 Conference Proceedings, 2001, pp. 375-381.
Chaturvedi, R. R. et al., “Intraoperative Apical Ventricular Septal Defect Closure Using a Modified Rashkind Double Umbrella”, Heart, Oct. 1996, vol. 76, No. 4, pp. 367-369.
Chengelis, D.L. et al., “Progression of Superficial Venous Thrombosis to Deep Vein Thrombosis”, Journal of Vascular Surgery, 1996, 24:745-749.
Cherian, J. et al., “Recurrent Pulmonary Embolism Despite Inferior Vena Cava Filter Placement in Patients With the Antiphopholipid Syndrome”, Journal of Clinical Rheumatology, Feb. 2005, vol. 11, No. 1, pp. 56-58.
Cho, K. J. et al., “Evaluation of a New Percutaneous Stainless Steel Greenfield Filter”, Journal of Vascular and Interventional Radiology, Mar.-Apr. 1997, 8:181-187.
Choban, P.S. et al., “The Impact of Obesity on Surgical Outcomes: A Review, ”Journal of the American College of Surgeons, Dec. 1997, vol. 185, pp. 593-603.
Chung, J.W. et al., “Acute Iliofemoral Deep Vein Thrombosis: Evaluation of Underlying Anatomic Abnormalities by Spiral CT Venography”, Journal of Vascular and Interventional Radiology, 2004, 15:249-256.
Clarke, C.S. et al., “Puerperal Ovarian Vein Thrombosis With Extension Into the Inferior Vena Cava”, The American Surgeon, Feb. 1999, vol. 65, No. 2, pp. 147-150.
Conners III, M. S et al., “Duplex Scan-Directed Placement of Inferior Vena Cava Filters: A Five-year Institutional Experience”, Journal of Vascular Surgery, Feb. 2002, vol. 35, No. 2, pp. 286-291.
Consensus Conference, “Prevention of Venous Thrombosis and Pulmonary Embolism”, JAMA, Aug. 8, 1986, vol. 256, No. 6, p. 744-749.
Cook “Bird's Nest” Vena Cava Filter, Cook Incorporated, a Cook Group Company, Nov. 1982.
Cook, “GuntherTulip Vena Cava Mreye.TM. Filter” Sales Brochure (2001).
Cooper, S.G. et al., “Distal Retraction and Inversion of the Simon Nitinol Filter During Surgical Venous Procedures Report of Two Cases”, Journal of Vascular and Interventional Radiology, 1997, 8:433-435.
Cottam, D.R. et al., “Laparoscopic Era of Operations for Morbid Obesity”, Archives of Surgery, Apr. 2003, 138(4):367-375.
Couch, G. G. et al., “An In Vitro Comparison of The Hemodynamics of Two Inferior Vena Cava Filters”, Journal of Vascular Surgery, Mar. 2000, 31:539-549.
Couch, G. G. et al., “In Vitro Assessment of The Hemodynamic Effects of a Partial Occlusion in a Vena Cava Filter”, Journal of Vascular Surgery, Apr. 1997, vol. 25, No. 4, pp. 663-672.
Cragg et al., “Nonsurgical Placement of Arterial Endoprostheses: A New Technique Using Nitinol Wire” Radiology 147:261-263 (Apr. 1983).
Cragg, A. et al., “A New Percutaneous Vena Cava Filter”, American Journal of Roentgenology, Sep. 1983, 141:601-604.
Criado, Enrique, Letters to the Editor, Journal of the American College of Surgeons, Mar. 1996, vol. 182, pp. 279-280.
Critical Care Medicine, vol. 32, No. 12 (Suppl.), pp. A181-A188, 2004.
Crochet, D. et al., “Evaluation of the LGM Vena-Tech Intrarenal Vena Cava Filter in an Ovine Venous Thromboembolism Model”, Journal of Vascular Interventional Radiology, Jun. 2001, 12:739-745.
Crochet, D. P. et al., “Long-Term Follow-Up of Vena Tech-LGM Filter: Predictors and Frequency of Caval Occlusion”, Journal of Vascular Interventional Radiology, Feb. 1999, 10:137-142.
Crochet, D. P. et al., “Vena Tech-LGM Filter: Long-Term Results of a Prospective Study”, Radiology, 1993, 188:857-860.
Cvoro,V. et al., “Inferior Vena Caval Filters or Anticoagulation for Patients With Haemorrhagic Stroke Complicated by Venouse Thromboembolism?”, Age and Ageing, Mar. 2002, vol. 32, No. 2, Research Library, pp. 85-86.
Cynamon et al., “Percutaneous Removal of a Titanium Greenfield Filter” AJR 159:777-778 (Oct. 1992).
Hammond, F.M. et al., “Venous Thromboembolism in the Patient With Acute Traumatic Brain Injury: Screening, Diagnosis, Prophylaxis, and Treatment Issues”, Journal of Head Trauma Rehabilitation, Feb. 1998, vol. 13, No. 1, pp. 36-48.
Hansen, James, “Metals that Remember”, Science 81, vol. 2, No. 5, pp. 44-47, Jun. 1981.
Hardhammar, P.A. et al., “Reduction in Thrombotic Events With Heparin-Coated Palmaz-Schatz Stents in Normal Porcine Coronary Arteries”, Circulation, Feb. 1, 1996, vol. 93, No. 3, pp. 423-430.
Harold, K.L. et al., “Laparoscopic Approach to Open Gastric Bypass”, The American Journal of Surgery, 2002, 184:61-62.
Harries, S.R., “Long-Term Follow-Up of the Antheor Inferior Vena Cava Filter”, Clinical Radiology, 1998, 53:350-352.
Harris, E.J. Jr. et al., “Phlegmasia Complicating Prophylactic Percutaneous Inferior Vena Caval Interruption: A Word of Caution”, Journal of Vascular Surgery, 1995, vol. 22, No. 5, pp. 606-611.
Hastings, G.S. et al., “Repositioning the 12-F Over-the-Wire Greenfield Filter”, Journal of Vascular and Interventional Radiology, 2000, 11:1207-1210.
Hawkins, S.P. et al., “The Simon Nitinol Inferior Vena Cava Filter: Preliminary Experience in the UK”, Clinical Radiology, 1992, 46:378-380.
Headrick, J.R. et al., “The Role of Ultrasonography and Inferior Vena Cava Filter Placement in High-Risk Trauma Patients”, American Surgeon, Jan. 1997, vol. 63, Issue 1.
Helfet, D., Magnetic Resonance Venography to Evaluate Deep Venous Thrombosis in Patients With Pelvic and Acetabular Trauma,The Journal of Trauma: Injury, Infection, and Critical Care, Jul. 2001, p. 178.
Heng, J.T. et al., “Occlusion of Persistent Left Superior Vena Cava to Unroofed Coronary Sinus Using Vena Cava Filter and Coils”, Hears, Jun. 1997, vol. 77, No. 6, pp. 579-580.
Henkle, G. et al., “Patterns of Referral for Inferior Vena Caval Filtration: Delays and Their Impact”, American Journal of Roentgenology, Oct. 2004,183:1021-1024.
Hicks, M.E. et al., “Prospective Anatomic Study of the Inferior Vena Cava and Renal Veins: Comparison of Selective Renal Venography With Cavography and Relevance in Filter Placement”, Journal of Vascular and Interventional Radiology, 1995, 6:721-729.
Higa, K.D. et al., “Laparoscopic Roux-en-Y Gastric Bypass for Morbid Obesity”, Archives of Surgery, Sep. 2000, vol. 135, No. 9, pp. 1029-1034.
Hill, S.L. et al., “Deep Venous Thrombosis in the Trauma Patient”, The American Surgeon, Jun. 1994, vol. 60, pp. 405-408.
Hingorani, A. et al., “Upper Extremity Deep Venous Thrombosis and Its Impact on Morbidity and Mortality Rates in a Hospital-Based Population”, Journal of Vascular Surgery, Nov. 1997, 26:853-860.
Hirsch, D. R. et al., “Prevalence of Deep Venous Thrombosis Among Patients in Medical Intensive Care”, JAMA, Jul. 26, 1995, 274(4):335337.
Hirsch, S. B. et al., Case Reports: Accidental Placement of the Greenfield Filter in the Heart: Report of Two Cases et al., Journal of Vascular Surgery, Dec. 1987, vol. 6, No. 6.
Hoff, W. S. et al., “Early Experience With Retrievable Inferior Vena Cava Filters in High-Risk Trauma Patients”, Journal of the American College of Surgeons, Dec. 2004, vol. 199, No. 6, pp. 869-874.
Holtzman, R.B. et al., “Comparison of Carbon Dioxide and Iodinated Contrast for Cavography Prior to Inferior Vena Cava Filter Placement”, The American Journal of Surgery, 2003, 185:364-368.
Hosaka, J. et al., “Placement of a Spring Filter During Interventional Treatment of Deep Venous Thrombosis to Reduce the Risk of Pulmonary Embolism”, ACTA Radiologica, 1999, 40:545-551.
Hughes, G.C. et al., “The Use of a Temporary Vena Caval Interruption Device in High-Risk Trauma Patients Unable to Receive Standard Venous Thromboembolism Prophylaxis”, Investigative Radiology, Feb. 1999, vol. 46, No. 2, pp. 246-249.
Hunter, D.W. et al., “Retrieving the Amplatz Retrievable Vena Cava Filter”, Cardiovascular and Interventional Radiology, 1987, 10:32-36.
Hyers, T. M. et al., “Antithrombotic Therapy for Venous Thromboembolic Disease”, Chest, Jan. 2001, 119(1):176S-193S.
Ihnat, D. M. et al., “Treatment of Patients With Venous Thromboembolism and Malignant Disease: Should Vena Cava Filter Placement Be Routine?”, Journal of Vascular Surgery, Nov. 1998, vol. 28, No. 8, pp. 800-807.
Inge, T. H. et al., “Bariatric Surgery for Severely Overweight Adolescents: Concerns and Recommendations”, Pediatrics, Jul. 2004, vol. 114, No. 1, pp. 217-223.
Izutani, H. et al., “Migration of an Inferior Vena Cava Filter to the Right Ventricle and Literature Review”, Can J Cardiol, Feb. 2004, vol. 20, No. 2, pp. 233-235.
Jackson Slappy, A.L. et al., “Delayed Transcaval Renal Penetration of a Greenfield Filter Presenting as Symptomatic Hydronephrosis”, The Journal of Urology, Apr. 2002, vol. 167, pp. 1778-1779.
Jacobs, D. G. et al.,“The Role of Vena Caval Filters in the Management of Venous Thromboembolism” The American Surgeon, Aug. 2003, vol. 69, No. 8, pp. 635-642.
Jacobs, D. G. et al., Letters to the Editor, The Journal of Trauma, Dec. 1997, vol. 43, No. 6, pp. 988-989.
Jaeger, H.J. et al., “A Physiologic In Vitro Model of the Inferior Vena Cava With a Computer-Controlled Flow System for Testing of Inferior Vena Cava Filters”, Investigative Radiology, Sep. 1997, vol. 32, No. 9, pp. 511-522.
Jain, V. et al., “Preoperative Vena Caval Interruption for Venous Thrombosis Associated With Ovarian Malignancy”, Acta Obstetricia ET Gynecologica Scandinavica.
James Kevin V. et al., “Tricuspid Insufficiency After Intracardiac Migration of a Greenfield Filter: Case Report and Review of the Literature”, Journal of Vascular Surgery, Sep. 1996, vol. 24, No. 3, pp. 494-498.
Jarrett B.P. et al., Inferior Vena Cava Filters in Malignant Disease, Journal of Vascular Surgery, 2002, 36:704-707.
Joels, C. S. et al., “Complications of Inferior Vena Cava Filters”, The American Surgeon, Aug. 2003, vol. 69, No. 8, pp. 654-659.
Johnson, M.S., “Current Strategies for the Diagnosis of Pulmonary Embolus”, Journal of Vascular and Interventional Radiology, 2002, 13:13-23.
Johnson, S.P. et al., “Single Institution Prospective Evaluation of the Over-The-Wire Greenfield Vena Caval Filter”, Journal of Vascular and Interventional Radiology, 1998, 9:766-773.
Jones, A.L. et al., “Case Report: Use of an IVC Filter in the Management of IVC Thrombosis Occurring as a Complication of Acute Pancreatitis”, Clinical Radiology, 1998, 53:462-464.
Joshi, A. et al., “Filter-Related, Thrombotic Occlusion of the Inferior Vena Cava Treated With a Gianturco Stent”, Journal of Vascular and Interventional Radiology, 2003, 14:381-385.
JP 2008-543433 filed May 30, 2008 Office Action dated Jan. 11, 2012.
Kaplan, S. et al., “Surgical Management of Renal Cell Carcinoma With Inferior Vena Cava Tumor Thrombus”, The American Journal of Surgery, 2002, 183:292-299.
Karmy-Jones, R. et al., “Surgical Management of Cardiac Arrest Caused by Massive Pulmonary Embolism in Trauma Patients”, The Journal of Trauma: Injury, Infection, and Critical Care, 2000, vol. 48, No. 3, pp. 519-520.
Katsamouris, A.A. et al., “Inferior Vena Cava Filters: In Vitro Comparison of Clot Trapping and Flow Dynamics”, Radiology, 1988, 166:361-366.
Kaufman, J.A. et al., “Guide-Wire Entrapment by Inferior Vena Caval Filters: In Vitro Evaluation”, Radiology, 1996, 198:71-76.
Kaufman, J.A. et al., “Operator Errors During Percutaneous Placement of Vena Cava Filters”, American Journal of Roentgenology, Nov. 1995, 165:1281-1287.
Kaufman, John A., “Re: Metastatic Involvement of a Retrieved Inferior Vena Cava Filter”, Journal of Vascular and Interventional Radiology, Jul. 2004, vol. 15, No. 7, pp. 775-776.
Kaw, L.L., Jr. et al., “Use of Vena Cava Filters”, Techniques in Orthopaedics, 2004, 19(4):327-336.
Kazmers, A. et al., “Duplex Examination of the Inferior Vena Cava”, The American Surgeon, Oct. 2000, vol. 66, pp. 986-989.
Kazmers, A. et al., “Intraoperative Insertion of Greenfield Filters: Lessons Learned in a Personal Series of 152 Cases”, The American Surgeon, Oct. 2002, vol. 68, pp. 877-882.
Kazmers, A. et al., “Pulmonary Embolism in Veterans Affairs Medical Centers: Is Vena Cava Interruption Underutilized?”, The American Surgeon, Dec. 1999, vol. 65, No. 12, pp. 1171-1175.
Related Publications (1)
Number Date Country
20190231505 A1 Aug 2019 US
Provisional Applications (1)
Number Date Country
60811034 Jun 2006 US
Continuations (2)
Number Date Country
Parent 15144709 May 2016 US
Child 16379430 US
Parent 12303545 US
Child 15144709 US