1. Technical Field
This invention relates generally to thermal/acoustic shields, and more particularly to wrappable multilayered, thermal/acoustic shields.
2. Related Art
Vehicles and other equipment that operate via an internal combustion engine contain various components that generate relatively high temperatures and vibration, ultimately radiating heat and producing noise. If left unchecked, the heat and noise from the components can have adverse affects on surrounding components and be otherwise unpleasant. For example, typical automotive vehicles have an exhaust system including exhaust pipes and catalytic converters which can reach 1200° Fahrenheit (° F.) or more. As such, it is generally desirable to place a thermal barrier, often referred to simply as a heat shield, adjacent the exhaust pipes and/or catalytic converter to prevent heat from radiating and impinging adjacent components and from entering a passenger compartment of the vehicle. In addition, heat shields are often used within an engine compartment of the vehicle to prevent radiant heat from having adverse affects on surrounding components, electrical lines, and hoses, for example, wherein elevated temperatures are becoming more commonplace due modern engine packages creating cramped environments.
Although heat shields are well known and generally considered necessary, they typically comprise one layer of heavy, rigid material, which are becoming less effective in blocking the increased temperatures and can be difficult to form, generally requiring expensive machinery, or two or more layers of material attached to one another through the use of adhesives and/or fasteners which tend to be relatively thick, inflexible and expensive. In addition, the heat shields are commonly exposed to a corrosive environment, which commonly results in there becoming damaged and/or loosened, thereby resulting in vibration and undesirable noise. Further, the heat shields are typically spaced from the source of heat, and thus, occupy valuable space that could otherwise be occupied by an adjacent component.
A heat shield has outer and inner layers of hand wrappable metal material with embossed patterns of undulating peaks and valleys. An intermediate layer of insulation material is sandwiched between the outer and inner layers. The embossed patterns of undulating peaks and valleys of the outer and inner layers are offset from one another.
Another aspect of the invention includes a method of constructing a wrappable heat shield. The method includes providing first and second layers of metal material and a layer of insulation material. Then, sandwiching the layer of insulation material between the first and second layers. Further, embossing a pattern of peaks and valleys in the first and second layers of material with the peaks in the first layer being embossed in offset relation to the peaks in the second layer.
Accordingly, given the content of a heat shield constructed in accordance with the invention, the heat shield is lightweight, durable, effective in preventing heat from radiating outwardly therefrom, easy to install, and among other things, is economical in manufacture and in installation and exhibits a long and useful life.
These and other features and advantages of the present invention will become more readily appreciated when considered in connection with the following detailed description of presently preferred embodiments and best mode, appended claims and accompanying drawings, in which:
Referring in more detail to the drawings,
The intermediate layer 16 is fabricated from a non-woven insulation material, preferably capable of absorbing heat in the ranges of 1200° F. or more. Some exemplary materials, by way of example and without limitation, include polyester (PE), polyethylene terephthalate (PET), silica, basalt, glass fiber material or other ceramic fibrous materials. As best shown in
The outer layer 14 is formed from a relatively thin, light weight metal, such as aluminum or stainless steel, that can be hand formed or wrapped without the need of expensive forming machinery. The thickness of the outer layer 14 is preferably between about 0.006-0.020 inches. The outer layer 14 has opposite outer and inner faces 32, 34, wherein the inner face 32 is attached to one of the opposite faces of the intermediate layer 16, represented here as the face 28. The outer layer 14 is embossed with an embossing apparatus, such as illustrated in
The inner layer 18 is formed from a relatively thin, light weight metal, such as aluminum or stainless steel, that can be hand formed or wrapped in combination with the outer layer 14 without the need of forming machinery. The thickness of the inner layer 18 is preferably between about 0.001-0.002 inches. Accordingly, the inner layer 18 is thinner than the outer layer 14, and is generally provided as a “foil” layer. The inner layer 18 has opposite outer and inner faces 36, 38, wherein the outer face 36 is attached to one of the opposite faces of the intermediate layer 16, represented here as the face 30. The inner layer 18 is embossed with an embossing apparatus, such as illustrated in
In one embodiment, the outer layer 14 and inner layer 18 are laminated to the intermediate layer 16 to form a substantially flat lamination of the outer layer 14, the intermediate layer 16 and the inner layer 18. The lamination process can be performed by applying any suitable adhesive to the outer layer inner face 34, the inner layer outer face 36, and/or to the intermediate layer faces 28, 30. After laminating the layers to one another, the bonded layers are embossed such that the peaks 20 of the outer layer 14 and the peaks 24 of the inner layer 18 are configured in an offset relation from one another. In the embodiment illustrated, the peaks 20 of the outer layer 14 are aligned across the intermediate layer 16 opposite the valleys 26 of the inner layer 18. Thereafter, the desired size and shape of the heat shield can be cut, if necessary, from the laminated, embossed sheet assembly.
In
In accordance with another aspect of the invention, a method of constructing a heat shield 10, 110 as described above is provided. The method comprises providing a first and second layers of metal material 14, 18, 114, 118 and a layer of insulation material 16, 116. Further, sandwiching and laminating the layer of insulation material 16, 116 between the first and second layers 14, 18, 114, 118 in bonded relation thereto, such as via a suitable adhesive layer. Then, embossing a pattern of peaks and valleys in the first and second layers of material with the peaks in the first layer 14, 114 being embossed in offset relation to the peaks in the second layer 18, 118. Then, if desired for the intended application, a step of forming a plurality of openings 40 in the inner layer 118 can be included. During the forming of the openings 40, a concurrent step of penetrating the insulation material 116 with tangs 42 of the inner layer metal material can be performed. Then, the heat shield 10, 110 can be sized by cutting a predetermined shape from the bonded, embossed layers. Finally, to assemble the heat shield 10, 110 in application, the method can further include hand wrapping the heat shield 10, 110 about the desired component.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/972,363, filed Jan. 10, 2008, which claims the benefit of U.S. Provisional Application Ser. No. 60/884,551, filed Jan. 11, 2007, both of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60884551 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11972363 | Jan 2008 | US |
Child | 12540612 | US |