The disclosure of Japanese Patent Application No. 2005-373742 filed on Dec. 27, 2005 including the specification, drawings and abstract is incorporated herein by reference in its entirety.
The disclosure relates to an embroidery data creation apparatus and an embroidery data creation program.
Conventionally, it has been difficult automatically creating embroidery data from a photographic image etc., whose color density and color continuously change two-dimensionally. To solve this problem, the present Applicant proposed an embroidery data creation method, disclosed in Japanese Patent Application Laid Open Publication No. 2001-259268.
According to a procedure of this method, information of a line segment having an angle is first created from an input image based on image data such as a photographic image. Next, thread color information is set to each of the line segments in accordance with color information of the input image. Subsequently, the line segments are connected to each other for each of the thread colors, and embroidery data is created.
In this procedure, if these line segments are not interconnected carefully, a lot of useless jump stitches will occur. Therefore, to avoid the occurrence of useless jump stitches, by this conventional embroidery data creation method, distances between endpoints of the line segments are calculated in the round robin manner so that the line segments whose endpoints are the nearest to each other may be interconnected one by one.
However, one batch of image data involves the generation of several thousands to several tens of thousands of line segments, which leads to the problem of a prolonged processing time required to calculate the distances in the round robin manner.
To solve these problems, the disclosure has been developed, and it is an object of the disclosure, to provide an embroidery data creation apparatus and an embroidery data creation program that can reduce the calculation time involved in interconnecting of line segments.
To achieve the object described above, according to a first aspect of the present disclosure, an embroidery data creation apparatus includes a line segment data creation device that creates, from an image, a plurality of line segment data pieces having an arbitrary angle component; an embroidery data creation device that creates embroidery data by connecting endpoint nodes of line segments to each other in such a manner that stitches are formed sequentially along a plurality of line segments specified by the plurality of line segment data pieces created by the line segment data creation device; a search device that preferentially searches a vicinity of a specific line segment when searching for such a line segment that is to be connected next to the specific line segment; an inter-endpoint node distance calculation device that calculates a distance between an endpoint node of the line segment found as a result of a search by the search device and an endpoint node of the specific line segment; a search range setting device that sets a search range to be searched by the search device; a selection device that selects the line segments that are closer to the specific line segment based on a result of calculations by the inter-endpoint node distance calculation device; a search termination device that terminates the search by the search device when all of the line segments in the search range set by the search range setting device have been searched for; and a connection device that sequentially connects the line segments selected by the selection device to each other.
According to a second aspect of the present disclosure, a controller of the embroidery data creation apparatus creates, from an image, a plurality of line segment data pieces having an arbitrary angle component; creates embroidery data by connecting endpoint nodes of line segments to each other in such a manner that stitches are formed sequentially along a plurality of line segments specified by the created plurality of line segment data pieces; preferentially searches a vicinity of a specific line segment when searching for such a line segment that is to be connected next to the specific line segment; calculates a distance between an endpoint node of the line segment found as a result of a search and an endpoint node of the specific line segment; sets a search range in which the line segment that is to be connected next to the specific line segment is searched for; selects the line segments that are closer to the specific line segment based on a result of a calculation of the distance between the endpoint node of the line segment found as a result of the search and the endpoint node of the specific line segment; terminates the search when all of the line segments in the set search range have been searched for; and sequentially connects the selected line segments to each other.
According to a third aspect of the present disclosure, a storage medium storing a set of program instructions executable on a data processing device and usable for creating embroidery data, the set of program instructions includes a line segment data creation step of creating, from an image, a plurality of line segment data pieces having an arbitrary angle component; an embroidery data creation step of creating embroidery data by connecting endpoint nodes of line segments to each other in such a manner that stitches are formed sequentially along a plurality of line segments specified by the plurality of line segment data pieces created by the line segment data creation step; a search step of preferentially searching a vicinity of a specific line segment when searching for such a line segment that is to be connected next to the specific line segment; an inter-endpoint node distance calculation step of calculating a distance between an endpoint node of the line segment found as a result of a search by the search step and an endpoint node of the specific line segment; a search range setting step of setting a search range to be searched by the search step; a selection step of selecting the line segments that are closer to the specific line segment based on a result of calculations by the inter-endpoint node distance calculation step; a search termination step of terminating the search by the search step when all of the line segments in the search range set by the search range setting step have been searched for; and a connection step of sequentially connecting the line segments selected by the selection step to each other.
Exemplary embodiments of the disclosure will be described below in detail with reference to the accompanying drawings in which:
The following will describe an embroidery data creation apparatus related to the disclosure with reference to drawings. First, an embroidery data creation apparatus of the disclosure is used to create and edit embroidery data which is supplied to an embroidering machine 3 shown in
Further, on a side surface of a pillar 36 of the embroidering machine 3, a memory card slot 37 is formed. When a memory card MC in which embroidery data is stored is inserted into the memory card slot 37, the embroidery data is thereby supplied from the outside. The embroidery data contains information indicating color codes, embroidering positions and sizes, and stitch data indicating stitches used in expression by use of embroidery. Based on this embroidery data, the controller in the embroidering machine automatically embroiders a design.
Next, a configuration of the embroidery data creation apparatus is described with reference to the drawings.
As shown in
Further, as shown in
The CPU 11 performs a variety of kinds of operations and processing in accordance with an embroidery data creation program related to the disclosure stored in the ROM 12, which is a read-only memory device. It should be noted that in the case of a computer dedicated to operations, the program is stored in the ROM, whereas in the case of a general-purpose computer (personal computer etc.), the program stored in a hard disk etc. is read into the RAM before it is executed.
The RAM 13, which is a random access memory, can store image data read from the image scanner apparatus 25 or an external memory apparatus, such as a hard disk (not shown), a CD-ROM, or a CD-R.
Next, a procedure to create embroidery data based on a photographic image by using the embroidery data creation apparatus 1 configured as described above is now described below with reference to
As shown in
Next, the process uses a known process to calculate angle characteristics and an intensity of the angle characteristics for each of the pixel data pieces constituting the input image data (S2). Next, based on the angle characteristics and the intensity of the angle characteristics at each of the pixels obtained at S2, line segment data pieces are created and allocated (S3). A line segment specified by this line segment data eventually provides a stitch of embroidery data.
At S3, first the process creates the line segment data having an angle component and a length component, which are combined with a color component to thereby make up the eventually-created line segment data. As the angle component, the angle characteristics calculated for each of the pixels at S2 are set as they are. As the length component, a preset fixed value or a value entered by an operator is set. Specifically, such line segment data is created so that line segments having thus set angle components and length component may be arranged around a target pixel.
In this case, line segment data is created for each of the pixels that make up an image, so that if an embroidery is sewn in accordance with embroidery data created on the basis of this line segment data, the number of needles becomes extremely large or the same place is sewn repeatedly, thus damaging the sewing quality. Further, line segment data is created in the same way for a pixel that has a small intensity of the angle characteristics, which leads to a fear that characteristics of the image as a whole may not effectively be reflected in the created embroidery data.
To solve this problem, the pixels of the image are sequentially scanned from left to right and from top to bottom, to calculate an intensity of angle characteristics, based on which intensity the line segment data pieces are created and allocated.
Next, the color component of each of the line segment data pieces is determined (S4). First, after the number of colors of embroidery threads used is input, by inputting thread color information and color codes of the embroidery threads used for each of this input number of colors, a thread-versus-color correlation table is created. Further, in this case also, the order in which the color threads are sewn is set simultaneously. This order of sewing the color threads may be preset or entered by the operator on an entry screen. Subsequently, the process determines the color component of each of the created line segment data pieces.
Next, the process creates embroidery data based on a group of the line segment data pieces having the angle component, the length component, and the color component that are created for each of the plurality of pixels that constitute the image as described above (S5), and ends the main processing. Details of the embroidery data creation processing are described later with reference to
Next, the embroidery data creation processing is described with reference to
First, to determine the order of line segment data to be searched, the process creates a search ranking table 100 such as shown in
Next, in accordance with the rankings given in the created search ranking table 100, the blocks are sorted to determine the order in which they are to be searched (S52). By this search order determination processing, priorities among the block having a same ranking are also determined, and the order in which these blocks are searched is clarified. For example, such inter-block searching order is determined as indicated by an arrow in
Next, a target image is divided into the shape of a matrix to create square blocks (S53). In the present embodiment, it is divided into blocks 210 each of which has a side length equal to the line segment length (iDPS) (see
Next, line segment data 220 is allocated to the created blocks (S54). For example, a line segment arrangement region 200 in which the line segment data 220 created from the image is allocated is covered by the divided blocks in the shape of the matrix, to give such a layout as shown in
Next, to determine the order in which the line segments are to be connected to each other, the first line segment to provide a base point is determined, to specify a starting point of this first line segment (S56). It should be noted that there is no superiority in determining the first line segment, so that an arbitrary one of the line segments can be specified as the first line segment.
Next, the process moves a target point to an endpoint of a current line segment (the first line segment in this first processing) (S57). In accordance with the order determined at S52, the process performs line segment search processing to search for the line segments for each of the blocks (S58). Details of the line segment search processing are described later with reference to
The process then determines whether a sum of the line segments searched for so far has reached the total number of line segments m (S59), and as far as the sum is smaller than the total number m (YES at S59), the process returns to step S57 to repeat the processing. If the sum of the line segment searched for so far has reached the total number (NO at S59), it means that the connection order of all of the line segments has been determined, they have been connected, and embroidery data have been created, so that the process returns to the main processing.
Next, the line segment search processing which is performed in the embroidery data creation processing is described with reference to
It should be noted that as shown in
Next, the process searches the current block 211 for line segments (S72). Then, the process determines whether any line segments have been found as a result of the search (S73). If no line segments have been found (NO at S73), the process determines whether all of the blocks have been searched for line segments (S74), and if the line segment search processing for line segments has been completed on all of the blocks (YES at S74), the process returns to the embroidery data creation processing.
If not all of the blocks have undergone the line segment search processing (NO at S74), the process moves to the next block to undergo the line segment search processing, in accordance with the search order determined in the embroidery data creation processing (S75). Then, the process returns to S72. For example, in
If any line segments have been found in the bock currently being searched (YES at S73), the process calculates a distance d0 between the current point P and a point P0 of one such of the line segments in this block that is closest to the current point P (S76). For example, as shown in
Next, the process determines whether a search range has been crossed over (S77). In the present embodiment, a search range is set by using the distance dc calculated at S71 between the point P and the center of a starting block (block 211 in the
It should be noted that the search range may be set not only by the method of the present embodiment that uses calculation results obtained by the inter-endpoint node distance calculation step but also by, for example, a method for determining a line segment, if found at S73, to be connected next and for terminating the line segment search processing to return to the embroidery data creation processing. Further, such a method may be employed as to set a range within a predetermined distance from the point P0 calculated at S76 as a search range and decide at S77 whether an endpoint node of a line segment found has gone out of this predetermined distance.
If the search range has been crossed over (YES at S77), the process outputs the most recently obtained point P0 (that is, a point determined to be closest to the current point P at S76) as a starting point of a line segment, and returns to the embroidery data creation processing.
If the search range is not crossed over (NO at S77), any other blocks may have a line segment closer than the currently found one, so that the process searches the next block for any line segments in accordance with the search order (S78). Then, the process determines whether line segments have been found as a result of the search (S79). If no line segments have been found (NO at S79), the process determines whether all of the blocks have been searched for line segments (S83). If the line segment search processing has been completed on all of the blocks (YES at S83), the process returns to the embroidery data creation processing. If not all of the blocks have undergone the line segment search processing (NO at S83), the process returns to S77 to repeat the processing.
If line segments have been found in the currently-searched block at S79 (YES at S79), the process calculates a distance d1 between the current point P and the point P1 that is closest to the point P among the line segments in that block (S80). Then, the process compares d1 and d0 obtained at S76 and determines whether d1 is smaller than d0, that is, whether an endpoint node of the line segment found most recently is closer to the current point P (S81).
If d1 is smaller than d0 (YES at S81), the process sets P1 as P0 and d1 as d0 in order to set the most recently found line segments as a candidate of the closest line segment (S82). Then, the process determines whether all of the blocks have been searched for line segments (S83). If the line segment search processing has been completed on all of the blocks (YES at S83), the process returns to the embroidery data creation processing. If not all of the blocks have undergone the line segment search processing (NO at S83), the process returns to S77 to repeat the processing.
If d1 is not smaller than d0 (NO at S81), the process determines whether all of the blocks have been searched for line segments (S83). If the line segment search processing has been completed on all of the blocks (YES at S83), the process returns to the embroidery data creation processing. If not all of the blocks have undergone the line segment search processing (NO at S83), the process returns to S77 to repeat the processing.
By the above-described line segment search processing, a line segment closest to the current point P in a search range is found and set as P0 and then output. By creating embroidery data by thus setting a search range by using the distance d0 between the current point P and the point P0 of a line segment found and repeating the line segment search processing to sequentially connect line segments to each other, it is possible to avoid wasteful operations in contrast to the case of the round robin method, thereby enhancing a processing speed.
As described above, when connecting endpoint nodes of line segments to each other in order to create embroidery data, an embroidery data creation apparatus of the present disclosure preferentially searches a vicinity of a specific line segment in a preset search range to select the closer line segments and interconnect them sequentially and, therefore, can reduce the processing time as compared with the case of calculating the distances for all of the line segments in the round robin manner and connecting them to each other.
Further, the embroidery data creation apparatus of the present disclosure sets a range acquired to a moment when a line segment is found first as a search range, and can thus determine line segment searching order in an even shorter time.
Further, the embroidery data creation apparatus of the present disclosure sets a range within a predetermined distance from a first line segment found as a search range, and can thus determine the line segment searching order in an even shorter time.
Further, the embroidery data creation apparatus and program of the present disclosure calculates a distance between endpoint nodes of a line segment found and sets a search range based on a result of this calculation, and can thus determine a more appropriate line segment connecting order.
Further, the embroidery data creation apparatus and program of the present disclosure divides a range in which line segments are arranged into blocks and presets an order in which these blocks are searched for. Then, the present apparatus searches each of the blocks in accordance with the searching order and sets a range of up to such a block as to have a predetermined search ranking, thereby enabling a reduction of processing time required to search for the line segments.
Further, the embroidery data creation apparatus and program of the present disclosure ranks blocks, in each of which line segments are arranged in such a manner that the closer blocks may be assigned higher search rankings. The search for the closer line segments is thus faster.
Further, the embroidery data creation apparatus and program of the present disclosure assumes that a line segment whose midpoint is present in a block belongs to this block and so has an effect that the closer line segments can be searched for more easily than when it is assumed that a line segment whose either endpoint node is present in a block belongs to this block.
Further, the embroidery data creation apparatus and program of the present disclosure provides square or rectangle blocks into which a region in which line segments are arranged is divided and so can reduce time required to search for the line segments.
Further, an embroidery data creation program of the present disclosure, when connecting endpoint nodes of line segments to each other to create embroidery data, preferentially searches a vicinity of a specific line segment within a search range set by a search range setting step so that the closer line segments may be selected and sequentially connected to each other, thereby enabling reduction of the processing time as compared with the case of calculating distances for all of the line segments in the round robin manner and interconnecting them.
Further, the embroidery data creation program of the present disclosure sets a range in which a line segment is found first as a search range by a search step, and can thus determine line segment searching order in an even shorter time.
Further, the embroidery data creation program of the present disclosure sets a range within a predetermined distance from a line segment found first as a search range by the search step, and can thus determine the line segment searching order in an even shorter time.
In the illustrated embodiments, a controller (CPU 11) preferably is implemented using a suitably programmed general purpose computer, e.g., a microprocessor, microcontroller or other processor device (CPU or MPU). It will be appreciated by those skilled in the art, that the controller also can be implemented as a single special purpose integrated circuit (e.g., ASIC) having a main or central processor section for overall, system-level control, and separate sections dedicated to performing various different specific computations, functions and other processes under control of the central processor section. The controller also can be implemented using a plurality of separate dedicated or programmable integrated or other electronic circuits or devices (e.g., hardwired electronic or logic circuits such as discrete element circuits, or programmable logic devices such as PLDs, PLAs, PALs or the like). The controller also can be implemented using a suitably programmed general purpose computer in conjunction with one or more peripheral (e.g., integrated circuit) data and signal processing devices. In general, any device or assembly of devices on which a finite state machine capable of implementing the described procedures can be used as the controller of the invention.
Although the invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the exemplary embodiments or structures. Though the various elements of the exemplary embodiments are shown in various combinations and configurations, which are exemplary, other combinations and configurations, including more, less or only a single element, are also within the spirit and scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2005-373742 | Dec 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4982674 | Hayakawa | Jan 1991 | A |
5934209 | Mizuno | Aug 1999 | A |
6010238 | Kotaki | Jan 2000 | A |
6356648 | Taguchi | Mar 2002 | B1 |
6629015 | Yamada | Sep 2003 | B2 |
6836695 | Goldman | Dec 2004 | B1 |
6934599 | Kaymer et al. | Aug 2005 | B2 |
20040243275 | Goldman | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
A 2001-259268 | Sep 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20070162177 A1 | Jul 2007 | US |