This application claims priority from JP 2004-099453, filed Mar. 30, 2004, the entire disclosure of which is incorporated herein by reference thereto.
1. Field
The disclosure relates to an embroidery -data producing device and method, embroidery data producing control program stored on computer-readable medium and embroidering method for producing embroidery data for making on cloth a piece of embroidery corresponding to a pattern already made on the cloth.
2. Description of the Related Art
Conventional embroidery data producing devices produce outline data on the-basis of image data (or dot pattern data) representative of a figure pattern, obtaining embroidery data by calculation on the basis of the outline data. The embroidery data producing devices include various types. For example, one type of embroidery data producing device is designed to produce outline data of a figure pattern on the basis of previous produced image data. Another type of embroidery data producing device is designed to read a figure pattern drawn on paper or the like by an image scanner to produce image data, further producing outline data on the basis of the read image data.
Japanese Patent Application Laid-Open No. 11-57260 discloses one of the conventional embroidery data producing devices. The disclosed embroidery data producing device comprises a control body, a CRT display, a flexible disc drive unit, an image scanner, etc., latter three being connected to the control body. This embroidery data producing device reads a figure pattern drawn on paper or the like by an image scanner to produce image data, further producing embroidery data on the basis of the produced image data. Further, when the figure pattern has a size larger than an embroidery region of an embroidery sewing machine, the figure pattern is divided into several sewing regions and embroidery data is produced for every figure part.
On the other hand, a figure or design according to a pattern drawn on a piece of cloth is sometimes embroidered on the cloth in order that the pattern may be rendered three-dimensional or luxurious. In such a case, the pattern is scanned by an image scanner so that image data is produced.
However, a tension of the cloth in a case where a pattern is read by the image scanner sometimes differs from a tension of the cloth held by a cloth holding frame. In this case, the size of the pattern represented by image data does not correspond with the size of the pattern on the cloth held by the frame. As a result, there occurs a difference between embroidery formed on the cloth on the basis of the embroidery data and the pattern of the cloth. Further, the difference also occurs when a posture of the pattern during read by an image scanner differs from a posture of the pattern in a case where the cloth has been held by the frame.
Therefore, an object of the disclosure is to provide an embroidery data producing device which can produce embroidery data on which an embroidery pattern corresponds with a pattern previously formed on cloth when embroidery is sewn on the pattern of the cloth.
The disclosure provides an embroidery data producing device producing embroidery data on which an embroidery sewing machine forms an embroidery pattern along another pattern previously formed on cloth held by a cloth holding frame. The device comprises image data producing means for scanning the cloth held by the cloth holding frame to produce pattern image data corresponding to the another pattern, and embroidery data producing means for producing embroidery data for forming an embroidery pattern on at least a part of the pattern on the basis of the pattern image data, the embroidery pattern having a size equal to that of the another pattern.
In the above-described device, the pattern on the cloth is read while the cloth is held by the cloth holding frame. Image data of the pattern is produced, and embroidery data is produced on the basis of the pattern image data. In this case, the size of the embroidery pattern formed on the basis of the embroidery data is adapted to become equal to that of the pattern of the cloth. Consequently, fine embroidery can be sewn on the pattern of the cloth without stitches being formed outside of the pattern.
In a preferred form, at least either one of the cloth holding frame and the cloth held by the cloth holding frame has a coordinate indicating mark indicative of a rectangular coordinate system in the embroidery sewing machine. The image data producing means scans the cloth holding frame and the cloth to produce mark image data corresponding to the coordinate indicating mark, and the embroidery data producing means is provided with image data transforming means for transforming the pattern image data into image data in the rectangular coordinate system on the basis of the mark image data and the pattern image data. In this case, the embroidery data producing means produces embroidery data on the basis of the image data transformed into the rectangular coordinate system.
In another preferred form, the embroidery data producing means is provided with outline data producing means for producing outline data defining an outline of the pattern in the rectangular coordinate system on the basis of the mark image data and the pattern image data. In this case, the embroidery data producing means produces embroidery data on the basis of the outline data.
In the above-described device, an embroidery pattern the embroidery sewing machine produces on the basis of embroidery data can accurately be positioned so as to correspond to a pattern of the cloth with no relation to an inclination of the pattern when the pattern of the cloth held by the cloth holding frame is read.
Other objects, features and advantages will become clear upon reviewing the following description of embodiment with reference to the accompanying drawings, in which:
One embodiment of the embroidery data producing device, method and program in accordance with the disclosure will be described with reference to the accompanying drawings. The program is stored on a computer-readable medium. In the following embodiment, a pattern previously printed on a piece of cloth held by a cloth holding frame is read by an image scanner so that image data is produced. Embroidery data is produced on the basis of the image data and a resolution. The embroidery data is usable for forming an embroidery pattern having a size equal to the pattern, on at least a part of the pattern.
Referring first to
A switch 7 for commanding sewing start is provided on a front face of the arm 4. A drive shaft, needle bar driving mechanism and needle bar are provided inside the arm 4 although none of them are shown. A sewing needle 8 is attached to a lower end of the needle bar. When the drive shaft is turned by a motor (not shown), the needle bar and needle 8 are moved up and down by the needle bar driving mechanism.
The cloth holding frame 5 includes an outer frame 5a coupled to the frame driving mechanism 6 and an inner frame 5b fitted in the outer frame 5a as shown in
A liquid-crystal display 9 provided with a transparent touch panel is mounted on a front face of the pillar 3 as shown in
The embroidery data producing device 10 comprises a personal computer 11, display 12, keyboard 13, mouse 14 and image scanner 15. As will be described in detail later, a pattern F is read by the image scanner 15, and image data is produced on the basis of the read pattern F. Embroidery data is produced on the basis of the image data.
A flexible disk drive (FDD) 28 and a CD-ROM drive 29 are connected to the bus 24. Further, to the input/output interface 27 is connected the keyboard 13, mouse 14, image scanner 15 and display drive circuit 30 for driving the display 12. The sewing machine 1 is also connected via the connecting code 17 to the input/output interface 27.
ROM 22 stores a starting program for starting the personal computer 11 when it is turned on, and the like. On the other hand, the hard disk 25 is incorporated with an operating system (OS), various drivers for rendering the display 12, keyboard 13, mouse 14, image scanner 15, etc. usable, application program and the like. The hard disk 25 further stores various control programs such as an embroidery data producing program, which will be described later.
Image data produced on the basis of an image read by the image scanner 15 is stored on the hard disk 25. Embroidery data (stitch data) produced on the basis of the image data is also stored on the hard disk 25. The image scanner 15 is settable at any one of four resolution values (400 dpi, 800 dpi, 1600 dpi and 3200 dpi) when reading an image.
A process of producing embroidery data will now be described with reference to
Particularly in the embodiment, when reference symbol “E” designates a rectangular sewing region previously set in the cloth holding frame 5, a line passing through the coordinate indicating marks M2 and M4 indicates a lower limit line of the sewing region E, whereas a line passing through the coordinate indicating marks M1 and M3 indicates a left limit line of the sewing region E. Further, an intersection of the lines passing through the marks M1 and M3 and M2 and M4 indicates a specified position SP which is a lower left corner of the sewing region E as viewed in
Upon completion of the previous step K0, the cloth holding frame 5 holding the cloth W is set on the image scanner 15. It is now assumed that a pattern F of a human face including eyes, a nose and a mouth as shown in
Firstly, the resolution during data read is set (S10). As described above, the resolution is set by pointing a desired one of the four resolution values on the resolution setting screen on the display 12, for example, the resolution of 1600 dpi is pointed by the block cursor BK (see
In this case, for example, as shown in
At step S13, a rectangular coordinate system (XY coordinate system) in the frame driving mechanism 6 or in the embroidery sewing machine 1 is computed on the basis of image data of the coordinate indicating marks M1 to M4. In this case, the X axis of the rectangular coordinate system is obtained on the basis of the image data of the coordinate indicating marks M2 and M4, whereas the Y axis of the rectangular coordinate system is obtained on the basis of the image data of the coordinate indicating marks M1 and M3. More specifically, the line passing through the coordinate indicating marks m2 and m4 serves as the X axis and the line passing through the coordinate indicating marks m1 and m3 serves as the Y axis.
At step S14, outline data is produced on the basis of the image data of pattern F and resolution. The resolution value previously set in the image scanner 15 is applied to the number of dots per inch with respect to the outline data and then, outline data having a size equal to that of the pattern F is computed. Since the outline data producing process on the basis of image data is known in the art, concrete description of the process is eliminated.
At step S15, coordinate transformation is carried out, that is, the outline data in the xy coordinate system is transformed into outline data in the rectangular coordinate system (XY coordinate system) obtained at step S13.
At step S16, a process is carried out to designate a pattern part which becomes an object of embroidery sewing out of the outline of pattern F on the display 12. In the pattern part designating process, for example, the mouse 14 is operated so that a marker (not shown) displayed on the display 12 is moved to point a part of outline of the pattern F, on which part an embroidery is sewn.
At step S17, embroidery data is produced from outline data of the parts designated at step S16. Since a technique for producing embroidery data from outline data is known in the art, the description of the technique is eliminated. As shown in
A sewing start position of embroidery data is usually set at the center of the sewing region E. In the embodiment, however, the specified position SP indicated by the coordinate indicating marks M1 to M4 is determined as a sewing start position. Since the specified position SP is set at a lower left corner of the sewing region E, that is, an origin G of the XY coordinate system, a process is carried out to change a sewing start position ST of embroidery data to the origin G of the XY coordinate system (S18). Further, sewing start position data is produced on the basis of the changed sewing start position ST and located at the head of embroidery data. A needle drop location of each embroidery data is changed on the basis of the sewing start position data (see
An embroidery sewing process to be executed by the embroidery sewing machine 1 will now be described with reference to
In the above-described case, when the position of the sewing needle 8 does not correspond with the specified position SP indicated by the coordinate indicating marks M1 to M4, a frame moving switch provided on the touch panel 9 of the liquid-crystal display 9 is operated (YES at S26) so that the cloth holding frame 5 can be moved in a designated direction (S27). Thus, the position of the cloth holding frame 5 is finely controlled. The sewing start position ST is set at the specified position SP which is a lower left part of the sewing region E in the embodiment. The specified position SP is indicated by the coordinate indicating marks M1 to M4. Thus, since the specified position ST is easy to recognize, movement of the frame can be simplified at the time of sewing start.
When the sewing start key 7 is operated (YES at S23), embroidery data related to the pattern part is read in (S24) and the sewing process is carried out (S25). Thus, the embroidery sewing control is finished. As a result, embroidery stitches are formed on the portions of “mouth,” “right eye” and “left eye” of the pattern F as shown in
The following effect can be achieved from the foregoing embodiment. The pattern F drawn on the cloth W is read by the image scanner 15 while the cloth W is held on the cloth holding frame 5. The image data is produced on the basis of the read pattern F. The embroidery data is produced on the basis of the produced image data. The embroidery pattern formed on the basis of the embroidery data has a size equal to that of the pattern F read by the image scanner 15. Accordingly, the size of embroidery pattern formed on the basis of the produced embroidery data corresponds with the size of the pattern of the target embroidery drawn on the cloth. Consequently, fine embroidery can be sewn on the pattern of the cloth without stitches being formed outside of the pattern.
Further, the coordinate indicating marks M1 to M4 are previously formed on the cloth holding frame 5, and the image scanner 15 reads the coordinate indicating marks M1 to M4 together with the pattern F, producing the mark image data. The rectangular coordinate system (XY) is obtained on the basis of the mark image data. The outline data is produced on the basis of the image data of pattern F. The coordinate transformation is carried out so that the outline data is transformed to the outline data in the rectangular coordinate system (XY). The embroidery data is produced from the transformed outline data. Accordingly, the embroidery data in the rectangular coordinate system (XY) in the embroidery sewing machine 1 can be produced. Consequently, the inclination of the pattern F can be corrected when the pattern F is read by the image scanner 15 and accordingly, the embroidery pattern formed on the basis of the embroidery data can accurately be positioned so as to correspond to a pattern to be embroidered of the cloth with no relation to an inclination of the pattern.
Further, the step (S16) is provided in which any part of the pattern F read by the image scanner 15 is designated as the pattern part on which the embroidery is to be formed. Consequently, embroidery date can be produced so as to correspond to any part of the whole pattern F.
The invention should not be limited to the above-describe embodiment but may be modified as follows:
1. The coordinate indicating mark formed on the outer frame 5A of the cloth holding frame 5 may comprise any group of four of twelve marks as shown in
2. As shown in
3. No coordinate indicating mark may be formed on the cloth holding frame or cloth. In this case, the cloth holding frame is read by the image scanner and image data of the cloth holding frame is produced. Values of X and Y axes are computed on the basis of the image data of the cloth holding frame, whereby the rectangular coordinate system (XY) in the cloth holding frame 5 is obtained.
4. When the embroidery sewing machine is provided with a plurality of types of cloth holding frames differing from each other in the shape and size, a frame number may be applied to every type of cloth holding frame, and the control device 20 may previously store frame information containing the sewing region E, sewing start position of the cloth holding frame and the like with the frame information corresponding to the frame number. The frame number may be supplied when embroidery data is produced on the basis of the image data of the cloth holding frame and pattern read by the image scanner. The sewing region E and sewing start position each corresponding to the supplied frame number are read to be utilized in the embroidery data producing process.
5. The cloth W may be cylindrical cloth such as a T-shirt when the embroidery sewing machine is provided with a cylindrical sewing bed.
6. In the embroidery data producing process as shown in
7. In the foregoing embodiment, the portion of the cloth W on which the pattern F is printed is located over the inner frame 5b. However, the portion may be located below the inner frame 5b, instead. More specifically, when the inner frame 5b is fitted into the outer frame 5a from above with the cloth W being placed on the outer frame 5a, the cloth W is held by the cloth holding frame 5. In this case, when the cloth holding frame 5 holding the cloth W is set on the image scanner 15, the cloth W is located slightly higher than a reading face of the image scanner 15. However, since the thickness of the cloth holding frame 5 is very thin, the image scanner 15 can read the pattern F printed on the cloth W.
8. In the foregoing embodiment, the embroidery data producing program is provided on which the computer controlling the embroidery data producing device carries out the embroidery data producing process. The embroidery data producing program stored on a semiconductor memory, CD-ROM, CD-R or the like may be read and the control device 20 may execute the read embroidery data producing program. Further, a cable circuit or radio or wireless circuit may be used to read the embroidery data producing program from an external device.
9. The present invention should not be limited to the foregoing embodiment but various changes and modifications may be added to the embodiment without departing from the spirit of the invention. The present invention thus involves the changes and modifications in its scope.
The foregoing description and drawings are merely illustrative of the principles of the present invention and are not to be construed in a limiting sense. Various changes and modifications will become apparent to those of ordinary skill in the art. All such changes and modifications are seen to fall within the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-099453 | Mar 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5880963 | Futamura | Mar 1999 | A |
5911182 | Uyama et al. | Jun 1999 | A |
6256551 | Muto | Jul 2001 | B1 |
Number | Date | Country |
---|---|---|
A 11-057260 | Mar 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20050234585 A1 | Oct 2005 | US |