The present invention relates to an embroidery sewing machine (embroidery machine) capable of sewing a cord material onto a sewing workpiece.
Examples of the conventionally-known method for sewing an ornamental chord material onto a sewing workpiece include loop sewing in which the cord material is sewn onto the sewing workpiece in a loop configuration and cord sewing in which the cord material is extended above and over the sewing workpiece and sewn onto the sewing workpiece as if adhered onto and along the upper surface of the sewing workpiece. In performing the loop sewing and the cord sewing, it was heretofore necessary to attach respective dedicated guide devices. Therefore, in order to change from one of the loop sewing and the cord sewing to the other, it was necessary to attach and detach the guide devices, which resulted in poor operating efficiency. To avoid such an inconvenience, a guide device has been proposed which can be used both for the loop sewing and the cord sewing as disclosed in Patent Literature 1.
The guide device disclosed in Patent Literature 1 is constructed to be attached or mounted to an end portion of a machine head frame, and the sewing machine is constructed in such a manner that a cord material is sewn by use of one of a plurality of needle bars, provided on the machine head frame, which is located on the end portion having the guide device mounted thereto. More specifically, in the loop sewing, the guide device forms a loop of the cord material by a loop holder of the guide device moving downward or descending in response to descending of the needle bar and releases the cord material by the loop holder moving upward or ascending by a resilient force of a coil spring in response to ascending of the needle bar. A height of the loop in the loop sewing is adjustable by changing a height of an adjusting bolt screwed to the upper end of an ascending/descending shaft. Further, when the cord sewing is to be performed, the loop holder is replaced with a cord holder, and a cord presser, provided at the distal end of the cord holder, holds the cord on the sewing workpiece by the resilient force of the coil spring.
However, the guide device disclosed in Patent Literature 1 does itself have a complicated mechanical mechanism. Thus, the technique disclosed in Patent Literature 1 encounters the inconvenience that the guide device having such a complicated mechanical mechanism has to be attached to the sewing machine. Furthermore, because the guide device disclosed in Patent Literature 1 is constructed to be attached to one end portion of the machine head frame, only one needle bar located at the end portion to which the guide device is mounted can be used for the sewing of the cord material. With such a conventionally-known structure, only up to two guide devices can be mounted to the machine head frame, one to each of the left and right ends of the machine head frame, as a result of which only two types of cord materials at most can be sewn. Furthermore, when the height of the loop sewing is to be adjusted, a mechanical adjusting operation of turning the adjusting bolt is required, and thus, the loop height adjustment tends to require time and labor.
In view of the foregoing prior art problems, it is an object of the present invention to provide an embroidery sewing machine which, with a simple construction, can selectively perform chord sewing and loop sewing of a cord material.
An embroidery sewing machine of the present invention comprises: a needle bar having a sewing needle attached thereto; a first drive source which drives the needle bar in an up-down direction; an ascending/descending member provided in corresponding relation to the needle bar; a second drive source which drives the ascending/descending member in the up-down direction; and a cord guide member mounted to the ascending/descending member for guiding a cord material onto a sewing workpiece.
According to the present invention, the cord guide member is mounted to the ascending/descending member that is driven to move in an up-down direction (i.e., move up and down) by the second drive source separate from the first drive source that drives the needle bar. By the ascending/descending member being driven to move in the up-down direction (i.e., move up and down) by the second drive source, the cord guide member can be driven independently of the up-down movement of the needle bar. Thus, the embroidery sewing machine of the present invention can selectively perform the loop sewing and the chord sewing of the cord material by merely controlling the second drive source so as to change the ascending/descending stroke of the cord guide member. More specifically, by setting the ascending/descending stroke length of the ascending/descending member at zero, the embroidery sewing machine of the present invention can perform the “cord sewing” to sew the cord material onto the sewing workpiece as if adhering the cord material onto and along the upper surface of the sewing workpiece. By moving the ascending/descending member up and down with the ascending/descending stroke length set greater than zero, the embroidery sewing machine of the present invention can perform the “loop sewing” to sew the cord material onto the sewing workpiece in a loop configuration. In the loop sewing, the height of the loop is substantially proportional to the ascending/descending stroke length of the ascending/descending member. Thus, by merely changing the ascending/descending stroke length of the ascending/descending member, it is possible to adjust the loop height of the cord material to be sewn, without performing any mechanical adjusting operation.
In one embodiment of the invention, the embroidery sewing machine comprises a plurality of the needle bars and a plurality of the ascending/descending members corresponding to individual ones of the needle bars, and the cord guide member may be mounted to at least one of the plurality of the ascending/descending members. With the embroidery sewing machine of the invention, the cord guide members can be mounted to any desired ones of the ascending/descending members, and thus, it is possible to perform the cord sewing or the loop sewing of the cord material by use of the respective needle bars. Thus, chord materials of as many different types as the number of needle bars can be sewn.
In one embodiment of the invention, the cord guide member is detachably mounted to the ascending/descending member, and the ascending/descending member is constructed to allow one of the cord guide member and a presser foot to be detachably mounted thereto in such a manner the one of the cord guide member and the presser foot is replaceable with the other of the cord guide member and the presser foot. Thus, the embroidery sewing machine, which includes the ascending/descending-member-driving second drive source separate from the needle-bar-driving first drive source, can selectively perform the cord sewing and the loop sewing of the cord member with a simple construction where merely the cord guide member is mounted in place of an existing or conventional presser foot.
Further, in one embodiment of the invention, the cord guide member includes: a pressing section disposed beneath the needle bar corresponding to the ascending/descending member having the cord guide member mounted thereto; a lead-out hole provided in a bottom portion of the pressing section for guiding the cord material onto the sewing workpiece, the sewing needle being passed through the lead-out hole; and a lead-in hole for guiding the cord material to the lead-out hole. The cord guide member thus constructed also has functionality as the presser foot that is used in ordinary embroidery sewing.
The present invention achieves the superior advantageous benefit that it can provide an improved embroidery sewing machine which, with a simple construction, can selectively perform the chord sewing and the loop sewing of a cord material.
Certain preferred embodiments of the present invention will hereinafter be described in detail, by way of example only, with reference to the accompanying drawings, in which:
Embodiments of the present invention will hereinafter be described in detail with reference to the accompanying drawings.
Further, a slide shaft 8 extends through the needle bar case 5, so that the needle bar case 5 slides in the left-right direction by the slide shaft 8 being driven to slide by a motor. Any one of the needle bars 3 is positioned at an operating position in accordance with a sliding position of the needle bar case 5. In this way, any one of the needle bars 3 to be caused to operate or work is selected. A rotary hook of the conventionally-known structure (i.e., conventional rotary hook) is disposed under the needle bar 3 positioned at the operating position. The rotary hook is provided under a machine table 10, and a region located immediately above the rotary hook is covered with a needle plate 13. The needle plate 13 has a needle hole through which the sewing needle 12 of the selected needle bar 3 can pass.
Further, a main shaft 6 extends through the machine arm 2, so that, as the main shaft 6 is rotated by a main shaft motor (first drive source) 60 (see
Further, as shown in
Presser feet (or fabric pressing members) 18 of the conventionally-known structure (i.e., conventional presser feet) or cord guide members 20 characterizing the present invention may be mounted or attached to the lower ends of the ascending/descending bars 15. Each of the presser feet 18 is used for performing ordinary embroidery sewing, while each of the cord guide members 20 is used for guiding a cord material 27 onto a sewing workpiece when the cord material 27 is to be sewn onto the sewing workpiece.
Further, as shown
On the other hand, the conventional presser foot 18 is, as shown in
Namely, the embroidery sewing machine according to the instant embodiment is constructed in such a manner that the cord guide member 20 is mounted to any of the ascending/descending bars 15 that corresponds to a given needle bar 3 to be used for sewing of the chord material 27, instead of the presser feet 18 being attached to all of the ascending/descending bars 15 provided in the needle bar case 5.
Further, as shown in
The following describe a feed path for feeding the cord material 27 in the embroidery sewing machine. As shown in
Further, as shown in
The following describe an operational sequence for feeding the cord material 27 to a sewing position at the time of sewing of the cord material 27. A human operator passes from below the cord material 27, paid out from the thread bobbin 25 on the support plate 26, through the aligning member 32 located above the thread bobbin 25, then engages the cord material 27 with an outer surface portion of the deflecting bar 28, then passes the cord material 27 through the tension disk 31 located in front of the deflecting bar 28, then passes the cord material 27 through the loop portions formed on the hanging member 35, and then passes the cord material 27 through the guide hole 36 corresponding to the needle bar 3 to be used for sewing the cord material 27.
After passing the cord material 27 through the guide hole 36 as above, the human operator passes from above the cord material 27 through a thread hole 11a formed in the needle clamper 11 of the needle bar 3 corresponding to the guide hole 36 and then passes the cord material 27 through a thread guide 21a provided on the mounting member 21 of the ascending/descending bar 15 corresponding to the needle bar 3, as shown in
The embroidery sewing machine according to the instant embodiment of the present invention is constructed in such a manner that, when the cord material 27 is to be sewn onto an embroidery sewing workpiece s (sewing workpiece), it can selectively perform the cord sewing and the loop sewing of the cord material 27 by merely changing an ascending/descending stroke of the corresponding ascending/descending bar 15. A part (a) of
In the cord sewing shown in the part (a) of
In the loop sewing shown in the part (b) of
The height of the loop (loop height) corresponds to the stroke length of the cord guide member 20. Namely, as the stroke length of the cord guide member 20 is increased, the loop height increases in substantial proportion to the increase of the stroke length of the cord guide member 20. Thus, changing the stroke length of the cord guide member 20 can change the loop height.
Further,
The human operator can change the stroke length of the cord guide member 20 (i.e., the ascending/descending stroke of the ascending/descending 15) by merely changing a related setting via a not-shown operation panel. In accordance with the setting made via the not-shown operation panel, a not-shown control device controls a reciprocating driving amount of the motor 16 to thereby control the stroke length of the cord guide member 20. The stroke length of the cord guide member 20 can be set in appropriate units (e.g., 0.1 mm) within an appropriate stroke range (of, for example, 0 to 25 mm). The stroke length of the cord guide member 20 can be set in advance, for each of the needle bars 3 to be used for the sewing of the cord material 27. Also, the stroke length of the cord guide member 20 corresponding to the currently used needle bar 3 can be changed on the spot after the embroidery sewing machine is deactivated temporarily in the middle of the sewing.
Thus, the human operator can readily change the stroke length of the cord guide member 20 without performing any mechanical adjusting operation and thereby not only select between the cord sewing and the loop sewing but also change the loop height for the loop sewing. Further, because the selection between the cord sewing and the loop sewing can be realized by only the stroke length of the cord guide member 20 being changed through control of the motor 16, even the cord guide member 20 usable for both the cord sewing and the loop sewing can be simple in mechanical construction. In this way, it is possible to provide an improved embroider sewing machine which can selectively perform the cord sewing and the loop sewing of the cord material 27 with a simple construction.
With the embroider sewing machine according to the instant embodiment of the invention, where a separate cord guide member 20 is mounted to each of the ascending/descending bars 15 corresponding to the needle bars 3, the cord material 27 can be sewn by a desired one of the cord sewing or the loop sewing for each of the plurality of needle bars 3 provided in the single needle bar case 5. Assuming that the needle bars shown in
Note that, even with the cord guide member 20 attached to a given one of the ascending/descending bars 15, it is also possible to perform ordinary embroidery sewing by use of the needle bar 3 corresponding to the given ascending/descending bar 15. In such a case, by the embroidery sewing workpiece s being pressed by the bottom surface of the pressing section 20a, the cord guide member 20 can function similarly to the presser foot 18. Thus, when only the cord sewing or the loop sewing of the cord material 27 is to be performed, the ordinary embroidery sewing can be performed with no problem even where the cord guide members 20 are attached in corresponding relation to all of the needle bars 3. Note, however, that, with the construction where the cord guide members 20 are used also as the presser feet, some problem might be encountered depending on the thickness of the embroidery sewing workpiece or manner or style of the embroidery. In such a case, the cord guide member 20 corresponding to the needle bar 3 that is used for performing the ordinary embroidery sewing may be replaced with the ordinary presser foot 18.
The present invention should not be construed as limited to the above-described embodiment alone and may be modified variously within the scope of the technical idea described in the claims, description and drawings. For example, the construction for mounting the cord guide member 20 to the ascending/descending bar 15 is not limited to the one employed in the above-described embodiment. Further, the ascending/descending bar 15 is not limited to a bar shape as long as it is an ascending/descending member ascendable and descendable in its axial direction.
Number | Date | Country | Kind |
---|---|---|---|
2014-065801 | Mar 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/059273 | 3/25/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/147118 | 10/1/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3547059 | Dolney | Dec 1970 | A |
4372230 | Ciecior | Feb 1983 | A |
4637329 | Czelusniak, Jr. | Jan 1987 | A |
20130152838 | Matsumoto | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
0560477 | Aug 1993 | JP |
H05295648 | Nov 1993 | JP |
H06257060 | Sep 1994 | JP |
H08226067 | Sep 1996 | JP |
H0931826 | Feb 1997 | JP |
2004308082 | Nov 2004 | JP |
2006136484 | Jun 2006 | JP |
2014151005 | Aug 2014 | JP |
Entry |
---|
International Search Report issued in Intl. Appln. No. PCT/JP2015/059273 dated Jun. 16, 2015. English translation provided. |
Number | Date | Country | |
---|---|---|---|
20160348291 A1 | Dec 2016 | US |