The present invention relates to a method of embroidering patterns by means of a processor-controlled sewing machine, in which a number of predefined embroidery elements are embroidered in successive sequence, the invention further relating to the embroidery elements themselves, which are characterized in that information on the starting point and direction of a succeeding embroidery element is associated with the preceding embroidery element.
In embroidering a fabric using the technology currently available it is possible to use ready designed embroidery elements which are stored in a memory, either in the sewing machine or an external memory unit. Such embroidery elements can be combined and programmed to succeed one another in order to generate a desired pattern. Examples of the combination of embroidery elements are given in the document U.S. Pat. No. 4,352,334, which discloses a method of combining embroidery elements, in this case embroidered letters, so that these follow a predefined curve. By specifying certain data, such as the radius of the curve, for example, the machine then embroiders a sequence of embroidery elements along the predefined curve, in which the embroidery elements are slanted in relation to one another in order to follow the curve described. The information for the sewing machine memory on the reciprocal relationship of the embroidery elements is in this case supplied externally by user-input and is not derived from data associated with the embroidery elements themselves. Another document U.S. Pat. No. 6,202,001 describes a method of storing data on a sewing pattern in embroidery blocks, which recur cyclically in a sequence so as to produce a desired embroidery pattern.
According to one aspect of the invention a method is provided for embroidering patterns by means of a processor-controlled sewing machine. The method consists of:
According to a further aspect of the invention, embroidery elements are produced, which consist of a software product for use in an embroidery performed on a processor-controlled sewing machine, in which the embroidery is performed as the embroidering of a sequence of successive physical embroidery elements, the embroidery elements being characterized in that they are provided with a starting point and an end point for a programmed embroidery for each embroidery element stored in the memory. Furthermore, a directional change is associated with the end point for each embroidery element.
The embroidery elements are stored as data files on any desired storage medium, each separate embroidery element comprising data with information on each individual stitch in an embroidery that is to be performed by the sewing machine in order to create a physical embroidery element from the data relating to the embroidery of the physical embroidery element. This means that a corresponding data file, here simply referred to as the embroidery element, is linked to each physical embroidery element that can be embroidered by the sewing machine.
Data for each individual embroidery element can be reproduced as a graphic representation of the embroidery element including the outlines thereof and includes graphic representation of its embroidery on a display, which may be integrated with the sewing machine. On the display any desired embroidery element can be retrieved from the storage medium and shown as a named graphic representation of the embroidery element. For the sake of simplicity, each such graphic representation of an embroidery element is here referred to as a graphics module. By freely selecting graphics modules and joining a number of these together to form a sequence on the display using the graphic representations, a pattern for the desired embroidery is created. The sequence of selected graphics modules is stored in a memory as a selected sequence of embroidery elements.
According to the method an embroidery element can be set to produce a directional change for the next physical embroidery element in a sequence, or set to produce a displacement of the end point in relation to the starting point without directional change (see
By combining embroidery elements of different shape and assigning attributes to the embroidery elements, such as different sizes, for example, and through the further facility for lateral inversion of the embroidery elements, enclosed frames or continuous borders of any shape can be created by stitching the physical embroidery elements according to the sequence.
The directional change, also known as the element angle, for a certain embroidery element can be set to any angle, but in order to limit the number of elements the angles 0°, 30°, 45° and 90° may suitably be used.
The flexibility can be further increased by using a particular attribute to displace the starting point for a physical embroidery element by a desired distance in any direction in relation to the end point of the preceding physical embroidery element.
The embroideries contained in a library of physical embroidery elements contemplated, stored as software products, may have any appearance and number of colors. However, the starting point and end point should preferably lie on one of the outlines of a physical embroidery element, so that any physical embroidery element can be linked to a preceding one without any overlap occurring. The embroidery elements are stored in the sewing machine memory or can be stored to the sewing machine memory from any desired memory medium. Angled physical embroidery elements can be executed as curves with different radii. Using such physical embroidery elements it is then possible to produce oval or circular embroidered frames.
The advantages in executing the parts of the desired embroidery as physical embroidery elements using information on the physical embroidery element linked to each embroidery element include:
Color sorting for the sequence of selected embroidery elements means that each color to more than one embroidery element is indexed, the stitching of the embroidery for the entire embroidery sequence being performed in order such that all embroidery elements in the sequence are embroidered with a certain color having the same index, where upon a change of thread is carried through. All embroidery elements in the sequence using a thread of a color according to a second color index are then similarly embroidered. Thread changes to other color are then undertaken in turn with corresponding stitching of the entire embroidery for the selected thread and color.
A number of examples of embodiments of the present invention will be demonstrated with reference to the figures attached.
Embroideries are performed in a known manner on a processor-controlled sewing machine in that the fabric that is to be embroidered is clamped in a frame, which can be controlled by stepping motors so that in an xy-plane it moves in an x-direction or a y-direction in relation to the threaded needle of the sewing machine. The pattern which the embroidery is intended to form is programmed into a memory that is read by the processor, which accordingly controls the stepping motors in the x-direction and the y-direction in such a way that the stitching data stored in the memory for obtaining the programmed embroidery can be accomplished by moving the frame in the xy plane, so that the needle sews the stitching on the fabric in co-ordinates according to the stored embroidery data.
The term embroidery element is hereinafter used for the software product in the form of the data file which contains information that is required to enable the sewing machine processor to embroider a corresponding physical embroidery on a fabric or to enable the processor to show corresponding embroidery elements graphically on a display, the stored form of the embroidery elements and embroidery patterns being illustrated for the user for the design of embroidery patterns. Where it is readily apparent that it is the graphic or physical representation of an embroidery element which is intended, the term embroidery element is also used for these representations.
The embroidery elements are characterized in that they are assigned a starting point, an end point and a directional change. The directional change, here referred to as the element angle, may be arbitrary but in order to limit the number of element variants the element angle may be suitably limited to a few angles, such as 0°, 30°, 45° or 90°, for example. Examples of such embroidery elements in graphic form are shown with a 0° element in
By combining graphic or physical representations of the embroidery elements, the rotation of such an element is always equal to the sum of the element angles of preceding elements taking into account their respective attributes. If graphic-physical embroidery elements with the element angles 0°, 90°, 0°, 90°, 0°, 90°, 0° and 90° are assembled into a sequence, these elements will form a square frame. An example of such a frame is shown in
Embroidery elements can also be formed with the element angle 0°, so that the end point of the physical element pattern is displaced in relation to the starting point in both the x and y direction, as is shown in
Yet another example of an embroidery element variant is shown in its graphic/physical representation in
As stated, the embroidery elements are characterized in that they have a defined starting point and a defined end point for the embroidery of each embroidery element. In the figures the starting point is marked by a cross (X), whilst the end point is marked by a circle (O).
In order to allow embroidery elements to be linked together in sequences according to the aspect of the invention, each embroidery element must contain information on
In the embroidery element data, information on the end co-ordinate may either be given separately or be represented by the co-ordinates for the last stitch of the physical embroidery element (in the case of absolute stitch information), or by the sum of all the stitches forming part of the embroidery of the physical embroidery element (in the case of relative stitch information).
A sequence of embroidery elements can be created if the machine, in addition to first memories for the identity of the embroidery elements arranged in the sequence and their change parameters, contains second memories for storing the resulting absolute end co-ordinate and resulting sum of element angles for each embroidery element forming part of the sequence, taking change parameters into account. These second memories are zeroed when starting to input a new sequence.
According to the example of an embodiment, an embroidery sequence is stored as follows:
Number | Date | Country | Kind |
---|---|---|---|
0200959 | Mar 2002 | SE | national |
Number | Name | Date | Kind |
---|---|---|---|
4352334 | Childs et al. | Oct 1982 | A |
4622907 | Kimura | Nov 1986 | A |
4742786 | Hashimoto et al. | May 1988 | A |
4841891 | Hashimoto et al. | Jun 1989 | A |
5343401 | Goldberg et al. | Aug 1994 | A |
6202001 | Muto | Mar 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20030183148 A1 | Oct 2003 | US |