Information
-
Patent Grant
-
6834727
-
Patent Number
6,834,727
-
Date Filed
Tuesday, January 7, 200322 years ago
-
Date Issued
Tuesday, December 28, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Bagnell; David
- Bomar; Shane
Agents
- Madan, Mossman & Sriram, P.C.
-
CPC
-
US Classifications
Field of Search
US
- 166 387
- 166 187
- 166 264
- 166 191
- 277 333
-
International Classifications
-
Abstract
Devices and methods are provided that permit a packer element to be deflated in the event of an emergency wherein power to the inflating pump is lost. An inflatable packer assembly having packer elements are selectively inflated by fluid pumped from the wellbore through an inflation tube into the packer elements. The packer assembly includes a deflation sub that houses the components of the emergency deflation mechanism. The deflation sub defines a dumping chamber that is at approximately atmospheric pressure, retains a portion of the inflation line for the packer elements and a means for separating the inflation line. To actuate the emergency deflation mechanism, an operator pulls up on the tubing string. A piston is then moved axially with respect to the housing, causing separation of the inflation line. Fluid from within the packer elements is then released into the dumping chamber to deflate the packer elements. Because the packer elements are subject to external hydrostatic pressure, the fluid contents will readily flow into the dumping chamber.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to devices and methods for deflation of an inflatable packer device in the event of a loss of power to the inflation pump or another emergency requiring a secondary method of deflation. In particular aspects, the invention also relates to inflatable packer assemblies that incorporate a deflate sub having a dumping chamber with an interior pressure that approximates atmospheric pressure.
2. Description of the Related Art
Inflatable packer assemblies are well known in the industry. These packer assemblies incorporate an inflatable packer element, or bladder, which is selectively inflated using a pump to flow fluid, such as borehole fluid, into the bladder. The packer element is ordinarily deflated by reversing the pump so that the fluid is flowed out of the bladder. A problem arises if there is an emergency wherein power is lost to the pump. The packer element cannot be deflated and, typically, the packer assembly must be detached from the tubing string. The tubing string is then removed from the borehole and the packer assembly subsequently removed using a fishing tool. This technique, while effective, is costly and time consuming. The well must be essentially shut down so that the tubing string can be removed and the fishing tool run in.
U.S. Pat. No. 5,297,633 issued to Snider et al. describes an inflatable packer assembly wherein a reciprocable fluid piston assembly is used to selectively inflate and deflate the packer. If the packer becomes stuck in the wellbore, the operator can pull up on the tubing string to shear a shear pin, thereby leaving the stuck packer in the well for later retrieval by a fishing tool. This solution for removing a stuck packer should be considered to be a last resort since it requires the well to be closed down, the sampling tool removed from the hole and a fishing device then run into the hole to retrieve the stuck packer. This is costly and time-consuming.
The prior art does teach the use of a bladder's natural shape memory to urge fluid out of the bladder. U.S. Pat. No. 4,676,310 issued to Scherbatskoy et al., for example, describes a transporter device for moving a logging tool. The transporter device includes an expandable bladder that is filled with fluid to become inflated and engage a borehole wall. The fluid is provided from an expandable reservoir. In one construction, the bladder is of a resilient construction that will normally urge fluid to flow back into the expandable reservoir. In practice, however, this arrangement is practically useless since the expandable reservoir is subject to hydrostatic pressure that precludes effective evacuation of the bladder. Little or no flow of fluid can be expected. Furthermore, there is no positive control of deflation.
An example of this is found in U.S. Pat. No. 6,257,338 issued to Kilgore, which describes a tubing string with multiple inflatable packers. The packers are inflated and deflated using a coupling that is conveyed down inside the tubing string on coiled tubing. When deflated, the fluid from the packer flows into the interior of the tubing string. Thus, fluid within the packer element is expected to flow into an area that is under hydrostatic pressure and, if such pressure is sufficiently great, deflation will be unsuccessful.
The arrangements of the prior art demonstrate the absence of an acceptable emergency deflation mechanism. To the inventors' knowledge, there are no conventional arrangements that provide a suitable mechanism for deflation of the packer element in the event of a loss of power to the fluid inflation pump or another such emergency.
There is a need to provide improved methods and devices for rapid and effective deflation of an inflatable packer. The present invention addresses the problems of the prior art.
SUMMARY OF THE INVENTION
The invention provides devices and methods that permit a packer element to be deflated in the event of an emergency wherein power to the inflating pump is lost. The invention also provides a backup procedure in the event that deflation of a packer element using conventional techniques is not successful. The devices and methods of the present invention, therefore, provide a more certain technique for deflation and removal of a packer assembly short of having to detach the packer assembly from the tubing string and fishing it out of the borehole with a separate tool. Thus, the invention offers a significant savings of time and money over the prior art.
In a described embodiment, a well sampling tool is described that incorporates an inflatable packer assembly having packer elements are selectively inflated by fluid pumped from the wellbore through an inflation tube into the packer elements. The packer assembly includes a deflation sub that houses the components of the emergency deflation mechanism. The deflation sub defines a dumping chamber that is at approximately atmospheric pressure. The dumping chamber has a capacity that will accept enough of the fluid contents of the inflated packer elements so that the packer elements become deflated enough to become disengaged from the borehole wall. Additionally, the deflation sub retains a portion of the inflation line for the packer elements and a means for separating the inflation line. In a currently preferred embodiment, the means for separating the inflation line includes a split rod arrangement wherein two reversibly interconnectable portions of the line may be axially separated from one another. To enable separation of the split rod, a hydraulic piston arrangement is formed within the deflation sub having a piston and surrounding piston housing. Shear pins or other frangible members are used to prevent premature movement of the piston and to provide a positive indication of movement of the piston.
To actuate the emergency deflation mechanism, an operator pulls up on the tubing string. The piston is then moved axially with respect to the housing, causing the split rod arrangement to separate the inflation line. Fluid from within the packer elements is then released into the dumping chamber to deflate the packer elements. Because the packer elements are subject to external hydrostatic pressure, the fluid contents will readily flow into the dumping chamber. In the unlikely event that the emergency deflation mechanism fails, the packer assembly may still be separated from the tubing string, in the conventional manner and later retrieved with a fishing tool.
The invention also has applicability to other packer arrangements and mechanical tools that utilize hydraulic fluid to be selectively set within a wellbore.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a side, cross-sectional view of a wellbore having a sampling tool therein that incorporates an inflatable packer assembly constructed in accordance with the present invention. In
FIG. 1
, the packer elements are shown deflated, prior to inflation.
FIG. 2
is a side, cross-sectional view of the sampling tool shown in
FIG. 1
with the packer elements now inflated to seal the wellbore.
FIG. 3
is an enlarged cross-sectional view of portions of the deflate sub portion of the inflatable packer assembly shown in
FIG. 1
prior to an emergency deflation of the packer elements.
FIG. 4
is a view of the deflate sub portions shown in
FIG. 3
after actuation of the emergency deflation mechanism.
FIG. 5
is a view of the deflate sub portions shown in
FIGS. 3 and 4
following release of the packer assembly from the tubing string.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The term “emergency,” as used herein, means an event wherein power to a fluid pump used to deflate a packer element is lost, or there is some other malfunction or incident wherein the packer cannot be deflated normally for removal from the wellbore. The term “emergency” also refers to any other event or contingency wherein the pump becomes unavailable or ineffective.
Referring first to
FIG. 1
, an exemplary sampling tool, indicated generally at
10
, is shown secured to the lower end of a tubing string
12
within a wellbore
14
. The sampling tool
10
is used to obtain selective samples of fluid from certain depths within the wellbore
14
. The sampling tool
10
consists of several individual subs, shown in schematic fashion, that are interconnected.
The uppermost portion of the sampling tool
10
is an extraction sub
16
that is secured to the lower end of the tubing string
12
. The extraction sub
16
houses sample tanks
17
, of a type known in the art, that retain wellbore or formation fluids that are captured by the sampling tool
10
. Additionally, the extraction sub
16
houses a submersible pump
15
that draws fluid from within the wellbore
14
and pumps it through an inflation line
18
to the packer elements
34
of the tool
10
.
Located beneath the extraction sub
16
is an emergency deflation sub
19
, the structure and function of which will be described in detail shortly. The deflation sub
19
is secured to an upper packer assembly
20
by a short mandrel
22
. A sampling mandrel
24
interconnects the upper packer assembly
20
to a lower packer assembly
26
. The sampling mandrel
24
includes at least fluid port
28
through which borehole fluid may be drawn in. A sampling line
29
extends from the fluid port
28
to the sampling tanks
17
within the extraction sub
16
so that fluid may be drawn into the tanks
17
.
A lower mandrel
30
interconnects the lower packer assembly
26
with a bullplug
32
. The upper and lower packer assemblies
20
,
26
each have an inflatable packer element, or bladder,
34
. The inflatable packer elements
34
are of a type known in the art, typically formed of an elastomeric material and inflated by filling with fluid. The inflation line
18
provides a fluid pathway between the packer elements
34
and the wellbore
14
. When so inflated, the packer elements
34
expand radially to engage and seal against the wall of the wellbore
14
. Each of the packer assemblies
20
,
26
includes collars
36
,
38
that are disposed upon and affixed to each end of the packer element
34
. The upper collars
36
are fixed against axial movement, while the lower collars
38
are axially moveable when required to compensate for inflation of the packer elements
34
. In
FIG. 1
, the tool
10
is shown in an unset position, such as during run-in, wherein the packer elements
34
are in an uninflated condition and the tool
10
may be moved upwardly and downwardly within the wellbore
14
.
FIG. 2
shows the tool
10
set within the wellbore
14
, the packer elements
34
having been inflated so as to seal against the wall of the borehole
14
. The elements
34
are inflated by pumping fluid from the borehole
14
through the inflation line
18
and into each of the packer elements
34
. It is noted that a portion
40
of the inflation line
18
is coiled about the circumference of the sampling mandrel
24
. When the upper packer element
34
is inflated, as shown in
FIG. 2
, the lower collar
38
moves axially upwardly, thereby increasing the distance between it and the upper collar
36
of the lower packer assembly
26
. The coiled portion
40
compensates for this increase in distance, as can be appreciated by reference to
FIGS. 1 and 2
.
Referring now to
FIGS. 3
,
4
and
5
, the interior of the deflation sub
19
is shown in cross-section. The deflation sub
19
includes a tubular housing
50
that defines a dumping chamber
52
therewithin. The dumping chamber
52
is empty of liquid initially and of a sufficient volume to accommodate enough of the fluid contents of the two packer elements
34
to ensure deflation of the packer elements
34
so that the elements
34
become disengaged from the wall of the borehole
14
. Further, the dumping chamber
52
is maintained at a pressure that is significantly lower than the hydrostatic pressure within the wellbore
14
. In a currently preferred embodiment, the dumping chamber
52
is at approximately atmospheric pressure. No special preparation of the dumping chamber
52
is required. The chamber
52
will contain normal atmospheric gases and should be sealed prior to running into the borehole
14
. The dumping chamber
52
is bounded by the outer radial wall
54
of the housing
50
and at each axial end by a bulkhead or wall
56
,
58
.
Beneath the dumping chamber
52
is a hydraulic piston assembly, generally indicated at
60
, that includes a piston
62
reciprocally retained within a piston cylinder, or piston housing
64
. O-ring seals
66
surround the piston
62
and create a fluid seal against the piston housing
64
. A hydraulic chamber
68
is formed at the upper end of the piston
62
. The hydraulic chamber
68
is filled with hydraulic fluid. A hydraulic metering port
70
is disposed through the piston
62
to permit fluid communication between the hydraulic chamber
68
and the annulus
72
defined between the piston
62
and the piston housing
64
on the opposite side of the seals
66
. When the piston
62
is moved with respect to the piston housing
64
, hydraulic fluid is metered through the port
70
between the annulus
72
and the chamber
68
.
The inflation line
18
and the sampling line
29
are disposed axially through the housing
50
of the deflation sub
19
so that each passes through the piston
62
, the hydraulic chamber
68
and the dumping chamber
52
. The inflation line
18
includes a separable split rod portion
74
wherein a upper portion
76
and a lower portion
78
are reversibly affixed together. The lower portion
78
leads to the packer elements
34
and is secured within the piston
62
so as to move with the piston
62
. The upper portion
76
is fixedly disposed within the housing
50
.
A first shear screw
80
, or set of shear screws, is disposed though the outer housing
50
and the piston
62
. The shear screw
80
secures the piston
62
axially with respect to the housing
50
and is a frangible member that will break upon application of a preset amount of axial force to the housing
50
. A second set of shear screws
82
is also disposed through the housing
50
and into the piston
62
. This set of shear screws
82
are each placed through a plate
84
in the housing
50
having enlarged openings
86
. The openings
86
permit some movement of the shear screws
82
therewithin. The second set of shear screws
82
requires a greater force to shear than the first shear screw
80
.
In operation, the sampling tool
10
is lowered to a desired depth within the wellbore
14
and is then set within the wellbore
14
by inflation of the packer assemblies
20
,
26
. The pump
15
is actuated to flow wellbore fluid into the packer elements
34
. The set position for the tool
10
is illustrated in FIG.
2
. Once the tool
10
is set, formation fluids are then drawn into the sample tanks
17
through port
28
and sampling line
29
. When it is desired to unset the tool
10
, either to remove it from the wellbore
14
or to move it to another location, the pump
15
is actuated to reverse the flow of fluid, drawing it from the packer elements
34
and returning it to the wellbore
14
. This is the conventional method of unsetting the tool
10
. In an emergency, the packer elements
34
are deflated by pulling up on the tubing string
12
and, thus, the housing
50
of the deflation sub
19
. A predetermined amount of upward force is applied to the tubing string
12
that is sufficient to shear the first shear screw
80
but not the second set of shear screws
82
. The first shear screw
80
separates, thus permitting the housing
50
to move with respect to the piston
62
. Fluid is metered through the metering port
70
into the hydraulic chamber
68
to compensate for the displacement of the piston
62
. The second set of shear screws
82
are moved within the openings
86
but are not broken. As this movement of the piston
62
occurs, the split rod arrangement
74
separates the upper and lower portions
76
,
78
of the inflation line
18
proximate the dumping chamber
52
. This position is shown in FIG.
4
. With the upper and lower portions
76
,
78
now separated, fluid within the packer elements
34
exits the lower portion
78
into the dumping chamber
52
. The fluid is urged into the chamber by the pressure differential between the hydrostatic pressure within the wellbore
14
(acting upon the outside of the packer elements
34
) and the lower pressure within the dumping chamber
52
. The packer elements
34
are thereby deflated at least sufficiently to permit them to be disengaged from the borehole wall.
In the unlikely event that the packer elements
34
are not successfully deflated using the above-described method, the tool
10
may then be separated from the tubing string
12
to permit later removal by a fishing tool. To separate the tool
10
from the tubing string
12
, a second upward force is applied to the tubing string
12
. The second upward force is greater than the first upward force previously applied to shear screw
80
. The second upward force is sufficient to shear the second set of screws
82
as shown in FIG.
5
. The second upward force separates the housing
50
from the piston
62
. The sampling line
29
will be broken away as well as the deflation sub
19
is separated from the packer assemblies
20
,
26
.
It will be understood by those of skill in the art that the devices and methods of the present invention are not useful only with inflatable packer devices but are also applicable to other tools and devices that are set using hydraulic fluid, such as a mechanical packer device that uses hydraulic setting. Those of skill in the art will recognize that numerous modifications and changes may be made to the exemplary designs and embodiments described herein and that the invention is limited only by the claims that follow and any equivalents thereof.
Claims
- 1. An inflatable packer assembly for use in a borehole comprising:a packer element that is selectively inflatable by filling with fluid and deflatable by expelling of fluid; a fluid pathway for transmitting fluid to the packer element from a fluid source; and a fluid dumping chamber operably associated with the packer element to receive fluid therefrom during deflation of the packer element, the fluid dumping chamber having an internal pressure that is below hydrostatic pressure within the borehole.
- 2. The inflatable packer assembly of claim 1 wherein the internal pressure approximates atmospheric pressure.
- 3. The inflatable packer assembly of claim 1 wherein the fluid pathway comprises an inflation line having a split rod assembly that permits the inflation fine to be readily separated into two portions so that fluid may enter the dumping chamber.
- 4. The inflatable packer assembly of claim 3 further comprising a hydraulic piston assembly for separating the inflation line, the hydraulic piston assembly comprising:a tubular outer piston housing; and a piston reciprocally retained within the piston housing.
- 5. The inflatable packer assembly of claim 4 wherein the piston is releasably secured to the piston housing by a first frangible member that breaks upon application of a first predetermined force to the hydraulic piston assembly.
- 6. The inflatable packer assembly of claim 5 wherein the piston is further releasably secured to the piston housing by a second frangible member that breaks upon application of a second predetermined force to the hydraulic piston assembly, the second predetermined force being greater than the first predetermined force.
- 7. The inflatable packer assembly of claim 1 wherein the fluid dumping chamber is defined within a deflation sub that is selectively releasable from the packer element.
- 8. A device for deflating an inflatable packer element within a wellbore comprising:a housing defining a fluid dumping chamber therein for receiving fluid from within the inflatable packer element, the dumping chamber having an internal pressure that is below wellbore hydrostatic pressure; a fluid pathway between the inflatable packer element to be deflated and the fluid dumping chamber; and a release mechanism for selectively releasing fluid from the inflatable packer element into said dumping chamber.
- 9. The device of claim 8 wherein the release mechanism comprises a split rod assembly incorporated into the fluid pathway.
- 10. The device of claim 9 wherein the release mechanism further comprises a hydraulic piston assembly.
- 11. The device of claim 8 wherein the internal pressure of the dumping chamber approximates atmospheric pressure.
- 12. The device of claim 8 wherein the housing comprises a separate deflation sub that is releasably secured to the inflatable packer element.
- 13. A method for deflating an inflatable packer element that is filled with fluid, the method comprising the steps of:providing a fluid pathway from the packer element to a fluid dumping chamber having an internal pressure that is below wellbore hydrostatic pressure; and allowing packer element shape memory and hydrostatic wellbore pressure to expel fluid from the packer element into the dumping chamber.
- 14. The method of claim 13 wherein the internal pressure of the dumping chamber is approximately atmospheric pressure.
- 15. The method of claim 13 wherein the step of providing a fluid pathway to the dumping chamber comprises severing a fluid inflation line.
- 16. The method of claim 15 wherein the fluid inflation line is severed by actuating a hydraulic piston assembly.
US Referenced Citations (13)