1. Technical Field
Embodiments of the subject matter disclosed herein generally relate to methods and systems and, more particularly, to mechanisms and techniques for indicating the time elapsed after initiation of an emergency disconnect sequence.
2. Discussion of the Background
During the past years, with the increase in price of fossil fuels, the interest in developing new production fields has increased dramatically. However, the availability of land-based production fields is limited. Thus, the industry has now extended drilling to offshore locations, which appear to hold a vast amount of fossil fuel.
The existing technologies for extracting the fossil fuel from offshore fields may use a system 10 as shown in
In typical configurations, the BOP stack 11 may be rigidly affixed atop the subsea wellhead 12 and may include (among other devices) a plurality of ram-type blowout preventers 26 useful in controlling the well as it is drilled and completed. Similarly, the LMRP 16 may be disposed upon a distal end of a long flexible riser 18 that provides a conduit through which drilling tools and fluids may be deployed to and retrieved from the subsea wellbore. Ordinarily, the LMRP 16 may include (among other things) one or more ram-type blowout preventers 26 at its distal end, an annular blowout preventer 30 at its upper end, and multiplex (MUX) pods 32.
A MUX pod system 40 is shown in
The MUX pod 40 may be fixedly attached to a frame (not shown) of the LMRP and may include hydraulically activated valves 50 (called in the art sub plate mounted (“SPM”) valves) and solenoid valves 52 that are fluidly connected to the hydraulically activated valves 50. The solenoid valves 52 are provided in an electronic section 54 and are designed to be actuated by sending an electrical signal from an electronic control board (not shown). Each solenoid valve 52 may be configured to activate a corresponding hydraulically activated valve 50. The MUX pod 40 may include pressure sensors 56 also mounted in the electronic section 54. The hydraulically activated valves 50 are provided in a hydraulic section 58 and may be fixedly attached to the MUX pod 40.
A bridge between the LMRP 16 and the BOP stack 11 is formed that matches the multiple functions from the LMRP 16 to the BOP stack 11, e.g., fluidly connects the SPM valves 50 from the MUX pod provided on the LMRP to dedicated components on the BOP stack or the LMRP. The MUX pod system is used in addition to choke and kill line connections (not shown) or lines that ensure pressure supply for the shearing function of the BOPs.
The bridge is shown in
In typical subsea blowout preventer installations, multiplex (“MUX”) cables (electrical) and/or lines (hydraulic) transport control signals (via the MUX pod and the pod wedge) to the LMRP 16 and BOP stack 11 devices so the specified tasks may be controlled from the surface. Once the control signals are received, subsea control valves are actuated and (in most cases) high-pressure hydraulic lines are directed to perform the specified tasks. Thus, a multiplexed electrical or hydraulic signal may operate a plurality of “low pressure” valves to actuate larger valves to indicate the high-pressure hydraulic lines with the various operating devices of the wellhead stack.
Examples of communication lines bridged between LMRPs and BOP stacks through feed-thru components include, but are not limited to, hydraulic choke lines, hydraulic kill lines, hydraulic multiplex control lines, electrical multiplex control lines, electrical power lines, hydraulic power lines, mechanical power lines, mechanical control lines, electrical control lines, and sensor lines. In certain embodiments, subsea wellhead stack feed-thru components include at least one MUX “pod” connection whereby a plurality of hydraulic control signals are grouped together and transmitted between the LMRP 16 and the BOP stack 11 in a single mono-block feed-thru component as shown, for example, in
When desired, ram-type blowout preventers of the LMRP 16 and the BOP stack 11 may be closed and the LMRP 16 may be detached from the BOP stack 11 and retrieved to the surface, leaving the BOP stack 11 atop the wellhead. For example, it may be necessary to retrieve the LMRP 16 from the wellhead stack in times of inclement weather or when work on a particular wellhead is to be temporarily stopped.
To retrieve the LMRP 16 from the wellhead stack, an Emergency Disconnect Sequence (“EDS”) may be initiated. An EDS may include a number of different functions that are to be performed by the LMRP 16 and the BOP stack. The functions of the EDS may be carried out by the LMRP 16 and/or the BOP stack as set forth above via the MUX pod 40 and/or the bridge. A particular EDS may include a predetermined number of functions. For example, one particular EDS may include eighteen (18) functions while another EDS may include twenty-five (25) functions. A particular EDS may take a predetermined period of time to complete. For example, one particular EDS may take 20 (twenty) seconds to complete while another EDS may take 25 (twenty-five) seconds to complete. An EDS may be initiated using an EDS system 60 as shown in
An operator may desire to track the progress of the different functions and verify that the EDS is complete. An operator may choose to track the progress of the number of different functions or to verify that the EDS is complete by referring to a document 66 that may constitute one or more EDS charts (called in the art a FAT document). The document 66 may list information about the EDS. For example, the document 66 may list the order, name, and timing of the different functions of each EDS. In the example shown in
Therefore, it is desired to provide a novel approach for indicating the time elapsed after initiation of an EDS.
According to an exemplary embodiment, there is a rig control interface. The rig control interface includes an emergency disconnect sequence button configured to initiate an emergency disconnect sequence signal to be sent to multiplex pods resulting in an emergency disconnect sequence including a plurality of functions being performed by devices in one or both of a lower marine riser package and a blowout preventer stack; and an emergency disconnect sequence timer display triggered by initiation of the emergency disconnect sequence signal, the emergency disconnect sequence timer display configured to indicate one or both of time elapsed after initiation of the emergency disconnect sequence signal and a status of the plurality of functions being performed by the devices in the one or both of the lower marine riser package and the blowout preventer stack.
According to another exemplary embodiment, there is a rig control system. The rig control system includes a processor, a first plurality of sensors connected to a blowout preventer stack; a second plurality of sensors connected to a lower marine riser package releasably connectable to the blowout preventer stack; a multiplex pod connected to the lower marine riser package, the multiplex pod configured to receive an emergency disconnect sequence signal from the processor and to transport electric and/or hydraulic control signals to devices in one or both of the lower marine riser package and the blowout preventer stack in response to the emergency disconnect sequence signal; and a stack screen connected to the processor, the stack screen including: an emergency disconnect sequence button configured to initiate the emergency disconnect sequence signal sent to the multiplex pods resulting in an emergency disconnect sequence including a plurality of functions being performed by the devices in the one or both of the lower marine riser package and the blowout preventer stack; and an emergency disconnect sequence timer display triggered by initiation of the emergency disconnect sequence signal, the emergency disconnect sequence display configured to indicate one or both of time elapsed after initiation of the emergency disconnect sequence signal and a status of the plurality of functions being performed by the devices in the one or both of the lower marine riser package and the blowout preventer stack.
According to another exemplary embodiment, there is a method for disconnecting a lower marine riser package from a blowout preventer stack. The method includes receiving an emergency disconnect sequence initiation input, the emergency disconnect sequence initiation input to initiate an emergency disconnect sequence signal sent to multiplex pods resulting in an emergency disconnect sequence including a plurality of functions being performed by devices in one or both of a lower marine riser package and a blowout preventer stack; identifying the emergency disconnect sequence being fired; setting an emergency disconnect sequence timer to indicate one or both of time elapsed after initiation of the emergency disconnect sequence signal and a status of the plurality of functions being performed by the devices in the one or both of the lower marine riser package and the blowout preventer stack; and outputting the one or both of the time elapsed after initiation of the emergency disconnect sequence signal and the status of the plurality of functions being performed by the devices in the one or both of the lower marine riser package and the blowout preventer stack.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate one or more embodiments and, together with the description, explain these embodiments. In the drawings:
The following description of the exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims. The following embodiments are discussed, for simplicity, with regard to the terminology and structure of an emergency disconnect sequence (“EDS”) system provided with a stack screen for initiating an EDS. However, the embodiments to be discussed next are not limited to these systems, but may be applied to other systems that may include other interfaces, such as interfaces for initiating other sequences.
Reference throughout the specification to “an exemplary embodiment” or “another exemplary embodiment” means that a particular feature, structure, or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrases “in an exemplary embodiment” or “in another exemplary embodiment” in various places throughout the specification is not necessarily referring to the same embodiment. Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
According to an exemplary embodiment, an EDS timer (or timer display) may be provided to indicate the time elapsed after initiation of an EDS. In this way, the progress of different functions of the EDS may be accurately tracked and that the EDS is complete may be accurately verified. This may eliminate long wait times to verify that the EDS is complete. Further, this automatic tracking of the time elapsed after the initiation of the EDS is operator-friendly in that it eliminates burden from an operator.
According to an exemplary embodiment shown in
The MUX pods 506 may receive an EDS signal and may transport electric and/or hydraulic control signals to devices in the LMRP 504 and/or the BOP stack in response to the EDS signal.
Returning to
In an exemplary embodiment, the stack screen 512 may be a touch screen. In this exemplary embodiment, the stack screen 512 may include the EDS button 514 and the EDS timer as touch-screen displays. The EDS button touch-screen display may be located next to the EDS timer touch-screen display. The EDS timer touch-screen display may be a pop-up display that may be enlarged when in an active state. When the EDS timer touch-screen pop-up display is in an active state, visual access of the remaining remaining portion of the stack screen 512 may be inhibited.
In another exemplary embodiment, the stack screen may be a computer display. The stack screen may include the EDS button as a selectable control and the EDS timer as a display on the computer display. In another exemplary embodiment, the stack screen may be a physical control panel. The stack screen may include the EDS button as a physical button and the EDS timer as a display.
In the exemplary embodiment shown in
The stack screen 512 may include an EDS completion indicator. As noted above, in the exemplary embodiment shown in
The operation of the EDS system 500 of
In operation 802, the method may begin. Before initiation of an EDS, the EDS timer 516 may read “0” as shown in
Referring to
In
In
The stack screen 1212 may include a number of different controls and displays including an EDS button 1214 and an EDS timer 1216. The EDS timer may be displayed as a touch-screen pop-up display. The EDS timer touch-screen display may be a pop-up display that may be enlarged when in an active state. When the EDS timer touch-screen pop-up display is in an active state, visual access of the remaining portion of the stack screen 1212 may be inhibited.
The EDS timer touch screen display may include a progress bar. The progress bar may include a completed portion 1218 and an uncompleted portion 1220. The completed portion 1218 and the uncompleted portion 1220 may be displayed in contrast with each other. For example, the completed portion 1218 may be displayed in green while the uncompleted portion 1220 may be displayed in red. The completed portion 1218 may extend while the uncompleted portion 1220 may shrink as the EDS progresses through a plurality of functions constituting the EDS.
In
The stack screen 1312 may include a number of different controls and displays including an EDS icon 1315 and an EDS timer 1316. The EDS icon and the EDS timer may be displayed as displays on a computer display. The control panel 1318 may include an EDS button 1314. The EDS icon 1315 on the stack screen may be activated when the EDS button 1314 is activated. The EDS timer 1316 may appear next to the EDS icon 1315 when the EDS button 1314 and the EDS icon 1315 are activated.
The disclosed exemplary embodiments provide EDS systems and a method for indicating the time elapsed after initiation of an EDS. It should be understood that this description is not intended to limit the invention. On the contrary, the exemplary embodiments are intended to cover alternatives, modifications and equivalents, which are included in the spirit and scope of the invention as defined by the appended claims. Further, in the detailed description of the exemplary embodiments, numerous specific details are set forth in order to provide a comprehensive understanding of the claimed invention. However, one skilled in the art would understand that various embodiments may be practiced without such specific details.
Although the features and elements of the present exemplary embodiments are described in the embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the embodiments or in various combinations with or without other features and elements disclosed herein.
This written description uses examples of the subject matter disclosed to enable any person skilled in the art to practice the same, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4234047 | Mott | Nov 1980 | A |
4624318 | Aagaard | Nov 1986 | A |
4921048 | Crow et al. | May 1990 | A |
5046896 | Cole | Sep 1991 | A |
5332035 | Schultz et al. | Jul 1994 | A |
5657823 | Kogure et al. | Aug 1997 | A |
5967231 | Laurel et al. | Oct 1999 | A |
6047781 | Scott et al. | Apr 2000 | A |
6056071 | Scott et al. | May 2000 | A |
6068069 | Scott et al. | May 2000 | A |
6085851 | Scott et al. | Jul 2000 | A |
8181704 | Fenton | May 2012 | B2 |
8305227 | Jaffrey et al. | Nov 2012 | B2 |
8360172 | Santelmann | Jan 2013 | B2 |
20040173356 | Dore et al. | Sep 2004 | A1 |
20060157252 | Dore et al. | Jul 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20120132430 A1 | May 2012 | US |