1. Field of the Invention
The present invention relates generally to emergency eyewash stations and more particularly to such a station having an expandable bellows waste collection system.
2. Background of the Related Art
Government and employers are increasingly aware of the need for protecting the health and safety of workers. For this reason, it is common to find eye wash fountains at industrial work sites, laboratories, and other locations where workers are exposed to gaseous fumes, liquids or solid materials which can irritate or injure eyes upon contact therewith. The Occupational Safety and Health Administration (OSHA) has made eye wash fountains mandatory for particular industrial work sites.
Early installations of eye wash fountains employed sprays of regular tap water fed from regular plant plumbing connections. These devices were adequate for a period of time, but suffered from the drawbacks of using the regular water supply. For example, there could be contaminants and bacteria in regular plumbed water. Furthermore, the pressure of regular running water is inconsistent creating an uneven water flow, or in the event of a major facility accident, the water may not be running at all.
Later devices, such as the eye wash fountains disclosed in U.S. Pat. No. 4,012,798 to Liautaud and U.S. Pat. No. 4,363,146 to Liautaud, were self-contained, gravity-fed, and independent of any plumbing connections. These self-contained eye wash fountains typically included a reservoir (or bottle)s of wash fluid spaced above two opposed liquid spray nozzles. Upon activating the fluid flow, the wash fluid from the reservoir is fed solely by gravity to the nozzles to cause a gravity-induced spray of wash fluid from the nozzles. These stations provided improved safety in terms of the quality of the water utilized but suffered from low and/or inconsistent water pressure to properly flush the eyes.
In an effort to encourage more suitable eye wash facilities, the American National Standards Institute (ANSI) promulgated voluntary standards for portable eye wash fountains relating to flushing periods and the rate of flow of wash fluid. These standards dictate that portable eye wash fountains should deliver no less than 0.4 gallons per minute (1.5 liters per minute) of eye wash fluid for a time period of 15 minutes. Responsive to the new ANSI standard, several designs emerged that included means for maintaining a constant eye-wash flow rate without any powered pumping mechanisms. For example, U.S. Pat. Nos. 5,566,406, 5,695,124 and 5,850,641 all issued to Demeny et al, disclose an emergency eyewash station having a gravity assist mechanism that acts on a flexible bag contained in a disposable paperboard box. The self-contained emergency eye wash station generally comprises a housing, a collection reservoir, and a platen. The housing includes a shelf that supports a pair of flexible containers arranged in side-by-side relation. The flexible containers are of the type generally referred to as “bag-in-a-box” packaging, having an inner flexible plastic bag containing the eyewash fluid, and an outer cardboard box structure, which supports the flexible bag in a predetermined shape. The housing further supports a delivery platform including a nozzle, which is in fluid communication with the flexible container. The nozzle selectively dispenses the eye wash fluid from the flexible container when activated. The delivery platform further includes a drain that captures the eye wash fluid dispensed from the nozzle and directs the eye wash fluid into the reservoir. The reservoir is slidably mounted to the housing while the platen is connected to the reservoir. As the reservoir fills, the platen presses downward on the flexible container with a downward gravitational force proportional to a weight of the eye wash fluid collected in the reservoir. The transfer of the weight of the eye wash fluid collected in the reservoir to the platen maintains a constant flow of eye wash fluid dispensed from the nozzle.
The above-noted gravity assist configuration has been very successful in the marketplace and is still in widespread use today. However, there is always a need for continuous improvement in safety products. One area in which the industry has asked for improvement is in making the overall size of eye-wash stations smaller. Smaller sizes translate into lower shipping costs and lower storage space requirements, along with making it easier to locate the eye-wash stations in smaller work areas. It is noted that many new eye-wash stations are being installed in locations which did not originally accommodate such safety equipment, and smaller stations make it easier to locate the units in these locations. One particular part of the station which has been ignored is the collection reservoir which is a large “empty” container attached to the bottom of the station. Improvement in the location, and or functional operation of the reservoir is needed.
Accordingly, there is a need in the industry for an improved emergency eye-wash station assembly which is smaller in size, yet still provides for all of the same functionality of the earlier prior art systems. In particular, there is a need for a reservoir collection system for an emergency eyewash station that is unobtrusive and aesthetically pleasing, yet operates effectively to ensure little or no spillage of eyewash fluid.
The present invention seeks to solve the shortcomings of the prior art devices by providing an emergency eyewash station that includes an expandable bellows as the waste collection system.
The emergency eyewash station of the present invention includes main body portion that houses an inner cartridge assembly containing eyewash fluid. The main body portion further includes a pivoting actuator arm assembly with a dispensing structure thereon. Finally, the station includes an expandable bellows collection reservoir attached below the main body portion.
The unit functionally dispenses the eyewash fluid similar to the prior art device as described in U.S. Pat. No. 5,566,406. The dispensing structure is connected to the eyewash fluid cartridge. Activation of the actuator arm assembly dispenses the eyewash fluid contained in the cartridge. The dispensed fluid is collected by a drain system and directed into the expandable reservoir.
The expandable bellows reservoir comprises a flexible rubber bellows-like structure having an open upper end connected to the drain and a closed bottom end. The expandable reservoir is expandable from an initial compressed state having a very small interior volume to an expanded state having an interior volume in excess of the required flush volume of approximately 6 gallons. The expandable reservoir is initially compressed to a flattened state so as to be substantially hidden from view when the unit is not in use. However, when the station is activated, and the waste fluid begin to accumulate and drain into the reservoir, the bellows can expand downwardly to increase the interior volume and capture the full volume of the eyewash fluid dispensed despite having a much smaller interior volume in its initial compressed state.
As part of an improved eyewash station that functions with a gravity assist as described in the prior art, the expandable collection system can include a gravity feed-assist mechanism, including a pair of strap extending underneath the reservoir so as to pull downwardly on the inner bladder to control the flow of eyewash fluid therefrom.
These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description, appended claims, and accompanying drawings where:
Referring the
The dispensing structure 18 is connected to the inner bladder 14, such that activation of the actuator arm assembly 16 causes the eyewash fluid contained in the inner bladder 14 to be dispensed from the dispensing structure 18.
Referring to
Referring to
Referring to
The gravity assist mechanism comprises a pair of straps 30 secured around the expandable bellows 20 and received into slots on the bottom platen 32 as shown in
Turning now to
Therefore, it can be seen that the present invention provides a unique solution to the problems of the prior art by providing an emergency eyewash station that includes a novel expandable bellows waste collection system that also assists the gravity feed of the eyewash station.
It would be appreciated by those skilled in the art that various changes and modifications can be made to the illustrated embodiments without departing from the spirit of the present invention. All such modifications and changes are intended to be within the scope of the present invention except as limited by the appended claims.
The present invention claims priority to earlier filed U.S. Provisional Patent Application 60/729,610, filed Oct. 24, 2005, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
348361 | van Order | Aug 1886 | A |
1638159 | Hopewell | Aug 1927 | A |
2545947 | Felip et al. | Mar 1951 | A |
2910064 | Brangaitis | Oct 1959 | A |
2999248 | Logan et al. | Sep 1961 | A |
2999249 | Logan et al. | Sep 1961 | A |
3035737 | Speas | May 1962 | A |
3106722 | Logan et al. | Oct 1963 | A |
3180566 | Murat et al. | Apr 1965 | A |
3871554 | Huck | Mar 1975 | A |
3904083 | Little | Sep 1975 | A |
4012798 | Liautaud | Mar 1977 | A |
D250594 | Gardner | Dec 1978 | S |
4131115 | Peng | Dec 1978 | A |
4232671 | Crump | Nov 1980 | A |
4363146 | Liautaud | Dec 1982 | A |
4493119 | Baumann | Jan 1985 | A |
4527716 | Haas et al. | Jul 1985 | A |
4641384 | Landsberger et al. | Feb 1987 | A |
4675924 | Allison et al. | Jun 1987 | A |
4688276 | Allison et al. | Aug 1987 | A |
4750643 | Wortrich | Jun 1988 | A |
4758237 | Sacks | Jul 1988 | A |
4784652 | Wikstrom | Nov 1988 | A |
4881283 | Liautaud | Nov 1989 | A |
4928697 | Hsu | May 1990 | A |
4938421 | Berfield et al. | Jul 1990 | A |
4939800 | Fiorentino et al. | Jul 1990 | A |
4998850 | Crowell | Mar 1991 | A |
5008963 | Stein | Apr 1991 | A |
5046648 | Herbstzuber | Sep 1991 | A |
5150811 | Kelston | Sep 1992 | A |
5157798 | Van Kammen | Oct 1992 | A |
5170518 | Warriner | Dec 1992 | A |
5171306 | Vo | Dec 1992 | A |
5195655 | Bukhman | Mar 1993 | A |
5201726 | Kirkham | Apr 1993 | A |
5216765 | Paterson et al. | Jun 1993 | A |
D342309 | Paterson et al. | Dec 1993 | S |
5320615 | Van Keuren | Jun 1994 | A |
5334180 | Adolf et al. | Aug 1994 | A |
5381567 | Tanner et al. | Jan 1995 | A |
5401259 | Py | Mar 1995 | A |
5530972 | Tanner | Jul 1996 | A |
5531707 | Kers | Jul 1996 | A |
5566406 | Demeny et al. | Oct 1996 | A |
5607410 | Branch | Mar 1997 | A |
5634458 | Joshi et al. | Jun 1997 | A |
5695124 | Demeny et al. | Dec 1997 | A |
5732853 | Ganzeboom et al. | Mar 1998 | A |
5740569 | Gurries, II et al. | Apr 1998 | A |
5754900 | Suda | May 1998 | A |
5791519 | Van Marcke | Aug 1998 | A |
5850641 | Demeny et al. | Dec 1998 | A |
5967197 | Shown | Oct 1999 | A |
6029293 | Paterson et al. | Feb 2000 | A |
6070279 | Lundstedt | Jun 2000 | A |
6098844 | Nicolle | Aug 2000 | A |
6131766 | King et al. | Oct 2000 | A |
6142344 | Kai | Nov 2000 | A |
6161228 | Wietecha | Dec 2000 | A |
6186361 | Teetsel, III | Feb 2001 | B1 |
D438983 | Stein | Mar 2001 | S |
6205599 | Anders | Mar 2001 | B1 |
6270014 | Bollas et al. | Aug 2001 | B1 |
6296626 | Stein | Oct 2001 | B1 |
6385794 | Miedzius et al. | May 2002 | B1 |
6398766 | Branch | Jun 2002 | B1 |
6432078 | Peyman | Aug 2002 | B1 |
6458108 | Tangri | Oct 2002 | B1 |
D466589 | Miedzius | Dec 2002 | S |
6510965 | Decottignies et al. | Jan 2003 | B1 |
6520431 | Donovan | Feb 2003 | B2 |
6540726 | Follman et al. | Apr 2003 | B1 |
6554164 | Jones | Apr 2003 | B1 |
6561383 | Reddy et al. | May 2003 | B1 |
6595920 | Walton | Jul 2003 | B2 |
6610036 | Branch et al. | Aug 2003 | B2 |
6726061 | Good | Apr 2004 | B2 |
6758837 | Peclat et al. | Jul 2004 | B2 |
6782568 | Novak et al. | Aug 2004 | B2 |
6913598 | Tangri | Jul 2005 | B2 |
20010052681 | Deavila | Dec 2001 | A1 |
20030032930 | Branch | Feb 2003 | A1 |
20030208186 | Moreyra | Nov 2003 | A1 |
20040039354 | Lutz, II | Feb 2004 | A1 |
20040124211 | Jones | Jul 2004 | A1 |
20040204674 | Anderson et al. | Oct 2004 | A1 |
20040244106 | Chesters | Dec 2004 | A1 |
20050054992 | Madritsch et al. | Mar 2005 | A1 |
20050077318 | Macler et al. | Apr 2005 | A1 |
20050217019 | Johnson et al. | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
1625382 | Jun 2005 | CN |
0083782 | Jul 1983 | EP |
0723769 | Jul 2001 | EP |
2625098 | Jun 1989 | FR |
1460064 | Dec 1976 | GB |
2157569 | Oct 1985 | GB |
10151148 | Jun 1998 | JP |
2001-079061 | Mar 2001 | JP |
WO8702237 | Apr 1987 | WO |
8705498 | Sep 1987 | WO |
WO9619177 | Jun 1996 | WO |
WO03065967 | Aug 2003 | WO |
Entry |
---|
All Safety Products, Inc., “www.allsafetyprocuts.biz”, Gravity FED Eye Wash Station. |
PlumberSurplus, “www.plumbersurplus.com”, Speakman SE-577-SD Emergency Safety Equipment Eyewash Station. |
Ramsey Group, “www.ramsey-group.com/pureflow1000.html”, Fend-All Pure Flow 1000 Emergency Eyewash Station (FEN-1000). |
First Aid Supplies & Safety Products, “www.firstaidandsafetyonline.com/showproduct-catid-24.asp”, Eyewash Station; Bradley Eyewash Stations, Emergency Eyewash Station, Portable Eyewash. |
Number | Date | Country | |
---|---|---|---|
20070089233 A1 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
60729610 | Oct 2005 | US |