The present invention relates to emergency release systems for door lock, in particular emergency lock release systems for doors having a lock, which automatically unlatch the door to open in case of emergency in a manner independent from a normal releasing operation of the lock.
Doors are used for partitioning spaces, such as inside and outside of buildings, rooms in a building, a control cabin and a passenger cabin in airplanes, and hotel rooms. Such doors are often provided with locks for the purpose of protection of privacy or security.
Some types of the doors with locks for protecting rooms are openable by simply rotating a handle or knob on the doors from inside the room, but requires releasing of the locks for opening from outside the rooms for security. Some types of the locks are released by using keys or magnetic cards, and some other types are released by pressing buttons or turning a dial in predetermined directions, in accordance with a predetermined secrete code, which the opener of the door must memorize. When the lock is released in such a way, the door is openable by rotating and pulling or pushing the handle or knob.
Recently, push button locks are often used, in particular for the door between the passenger cabin and the control cabin of jet airplanes for security. In some cases, the secrete code for releasing the lock is changed even for each flight for preventing unauthorized opening of the door. Such push button locks are disclosed, for example, in JP-58-80074 and JP-11-256896, the latter being an improvement of the former.
When the door is locked with such a lock, the door cannot be opened from the passenger cabin side without releasing the lock. For example, in case an intentional explosion occurs in the passenger cabin of a jet airplane and the air pressure in the passenger cabin is suddenly increased, if the door and the door frame partitioning the passenger and control cabins are firmer than the explosive power, the windows, doors, or even a part of the fuselage on the passenger cabin side may be destroyed. Then the air pressure in the passenger cabin is suddenly lowered due to exposure to the surrounding atmosphere, which endangers the passengers.
Further, in case the windows on the control cabin side are damaged, and the air pressure in the control cabin suddenly decreases, the door between the control and passenger cabins may be destroyed, and hit the instruments and gauges or the pilots, causing loss of flight controls.
When an explosion happens in an hermetically-sealed room, the door of the room may be destroyed, and not only the room itself but also the entire house or building may also be destroyed, resulting in serious human damage.
It is therefore an object of the present invention to provide an emergency release system for door lock which automatically opens a locked door when a pressure difference occurs across the door due to explosion, destruction of windows, or the like, for immediately balancing the pressure across the door in order to prevent damage on people or instruments in the cabin.
It is another object of the present invention to provide an emergency release system for door lock which prevents destruction of a door or a lock in emergency to improve their durability, even when there is no time to open the locked door by releasing the lock or rotating a door knob.
It is still another object of the present invention to provide an emergency release system for door lock which improves a door lock release system of a type that is openable in a normal state by releasing the door lock and rotating a door knob from outside the room, or by simply rotating a door knob from inside the room, and which enables immediate opening of a locked door in case of emergency such as explosion or destruction of windows on either side of the door.
According to the present invention, there is provided an emergency release system for door lock comprising:
The emergency release system for door lock according to the present invention may be installed on any type of a door, such as a double leaf or single leaf door. But the present invention is usually installed on a single leaf door of either right handed or left handed type. The door may be those for partitioning inside and outside of a building, partitioning rooms in a building, partitioning cabins of a transportation vehicle such as airplanes, automobiles, and ships. The present invention may be installed in particular on a door for partitioning the control cabin and the passenger cabin of an airplane.
The lock unit may include any type of a lock, as long as the lock, when released, allows retraction of the latching bolt by rotation of a handle or knob on either side of the door for opening the door, but when set, allows the retraction by rotation of the handle on only one of the sides of the door, and prevents the retraction by rotation of the handle on the other side of the door. For opening the door from the other side of the door, the lock must be released for retracting the latching bolt. For example, the lock may be a push button lock having lock pins, dial lock openable by rotation of the dial, magnetic lock openable with a magnetic card, or cylinder lock openable with a key.
The latching bolt may be, for example, a latch having a tapered end, a dead bolt in the form of a columnar or prismatic bar without a tapered end, or a cremone bolt.
The lock unit may further include a release cam actuated by means of the handles, and the latch unit further includes a latch engagement member connected to the latching bolt, a sliding frame connected to the latching bolt, a bracing frame stationary with respect to the sliding frame, and a spring. The latching bolt may penetrate the sliding frame and the bracing frame, and the spring may be positioned around the latching bolt between the sliding frame and the bracing frame for urging the sliding frame and the latching bolt in a latching direction. The latch engagement member and the release cam may cooperate to retract the latching bolt to unlatch the door against the force of the spring, when either of the handles is rotated.
With this structure, the latching bolt may be constantly urged into its latching position for keeping the door latched, and retractable into the door against the force of the spring when either of the handles is rotated, by the cooperation of the release cam and the latch engagement member, allowing the door to open.
The sensor door means is designed to open automatically when a pressure difference above a predetermined threshold level occurs across the door. For example, the sensor door means may be designed to open at a small pressure difference, such as 7 g/cm2 or more.
The sensor door unit may further include a plurality of through holes provided in the door, and the sensor door means may have a concave. The through holes may preferably be positioned facing to the concave, more preferably uniformly dispersed. The concave of the sensor door means facilitates collection of the air flow received from the higher pressure side of the door through the through holes, and improves sensitivity of the sensor door means for the pressure difference. The size, number, and arrangement of the through holes in the door may suitably be selected for desired sensitivity of the sensor door means.
The latch retraction means may include a cam releasably held by the holding means, and a linking member engaging the cam and connected to the latching bolt. When the sensor door means is opened, the holding means may release the cam for allowing rotation of the cam to move the linking member, and the linking member in turn moves the latching bolt in a unlatching direction, thereby allowing the door to open.
In this embodiment, the latching bolt may be slidably connected to the linking member, and have engagement means for engaging the linking member so as to be moved by the linking member in an unlatching direction when the linking member is moved by the cam.
With this structure, the latching bolt may be moved independent from the linking unit and the sensor door unit in a normal state. But in case of emergency, the latching bolt may securely engage the linking member for effective transmission of the force applied by the cam to unlatch the door immediately.
According to another aspect, the latching bolt may be slidably connected to the latch retraction means. When the latching bolt is retracted by means of one of the handles, the latching bolt may slide with respect to the latch retraction means, with the latch retraction means remaining in its rest position.
With this structure, in a normal state, the door may be unlatched to open by rotating one of the handles, independent from the linking unit and the sensor door unit.
The emergency release system for door lock of the present invention may preferably be composed only of mechanical systems, and may not require any electrical systems. This eliminates adverse effect of the electrical systems on the instruments and gauges of the vehicle on which the system is installed, and risk of possible ignition of gases or oils in the vehicle.
The latch unit, linking unit, and sensor door unit of the emergency release system for door lock of the present invention may preferably be arranged linearly. With this arrangement, the latching bolt may be operated conveniently and securely, without undesired protrusions formed on the door surface.
A preferred embodiment of the present invention will now be explained in further detail with reference to attached drawings, in which:
The present invention will now be explained with reference to a preferred embodiment, which is illustrative only and does not intend to limit the present invention.
The emergency release system for door lock of the present invention includes lock unit A and latch unit B, which constitute a door lock release system, and linking unit C and sensor door unit D.
The lock unit A is shown in detail in
The lock (a) in the form of a push button lock has casing 24 and twelve push buttons 12 disposed in corresponding holes in the casing 24 arranged in two lines of six holes each. Inside the casing 24 is locking plate 11, which rests on the cam 3, and is vertically slidable by the action of the cam 3. The locking plate 11 has twelve holes 14 arranged in two lines of six holes each. In each hole 14 is located shaft 13, which is capped with the corresponding button 12. Each shaft 13 has in its inner end portion upper notch 16 and lower notch 15. The upper and lower notches 15 and 16 are offset in the axial direction of the shaft, i.e., the direction of pressing of the button 12, with the upper notch 16 closer to the front side, and angularly displaced from each other by 180 degrees. Spring 22 is provided between each button 12 and the corresponding shaft 13 for urging the button 12 outwards.
Each shaft 13 has a tapered positioning plate 17 of an umbrella-like shape provided on the side of the shaft 13 opposite to the end capped with the button 12. The positioning plate 17 has a surface tapered toward the rear side of the lock unit A, and a smaller diameter portion. Positioning spring 19 is suspended from above each positioning plate 17, and attached to reset plate 20 located on the rear side of the locking plate 11. The reset plate 20 is urged downward by spring 21 located on its upper surface, so that the positioning springs 19 are kept in contact with the positioning plate 17. The reset plate 20 has a surface that is in engagement of reset button 18, and when the reset button 18 is pressed, the reset plate 20 slides upward, so that the positioning springs 19 are out of contact with the positioning plates 17. The reset plate 20 rests on the cam 3, and is vertically slidable against the force of the spring 21 by the action of the cam 3.
When the button 12 is pressed down and the pressing force is released, the button 12 immediately returns to is initial position by the action of the spring 22, and the shaft 13 remains in the pressed position, since the positioning spring 19 moves along the tapered surface of the positioning plate 17 into contact with its smaller diameter portion to maintain the shaft 13 in the pressed position.
Stopper plate 23 is connected to the casing 24, and is positioned on the rear side of the reset plate 20 to limit the stroke of the shaft 13 at a predetermined depth by contacting with the rear surface of the tapered positioning plates 17. Stopper bar 28 is integrally provided on the rear surface of each positioning plate 17, and positioned through the corresponding hole in the stopper plate 23.
On the rear side of the stopper plate 23 are provided cylinders 25. In each cylinder 25, piston 27 having piston rod 29 and spring 26 urging the piston 27 toward the shaft 13 are located. The piston rod 29 extends out of the cylinder 25, and is provided with knob 30 fixed on its free end.
The knobs 30 are arranged on the rear surface of the lock unit A, i.e. on the control cabin side, and are turnable to rotate the shaft 13 for changing the angular orientation of the notches 15 and 16 of the shaft 13 for setting the notches 15 and 16 in accordance with a secrete code for releasing the lock (a). Each knob 30 has a notched pointer for indicating which button must be pushed according to the security code for releasing the lock (a). For example, for buttons 12 that must not be pressed down for unlocking, corresponding knobs 30 are oriented with their pointer pointing up 31a, whereas for buttons 12 that must be pressed down for unlocking, corresponding knobs 30 are turned for 180 degrees to be oriented with their pointer pointing down 31b.
The operation of the lock unit A discussed above for locking and unlocking the door 7 with the latch 6 are explained below.
Next, a secrete code for release is set on the lock unit A. For example, when the top button 12′ in the right line is selected as a secrete code, the corresponding knob 30′ is turned for 180 degrees so that the pointer points downward 31b as shown in
For opening the door 7 by rotating the main knob 1 from this state, only the top button 12′ in the right line is pressed down as shown in
In the state shown in
It may happen that a non-selected button 12″ is pressed by error. In that case, the reset button 18 is pressed to move the reset plate 20 upward against the force of the spring 21 to lift up the corresponding positioning spring 19″. Disengagement of the positioning spring 19″ from the positioning plate 17″ allows the corresponding piston 27″, stopper bar 28″, positioning plate 17″, and the shaft 13″ to move frontward by the force of the spring 26″, so that the lower notch 15″ is returned to its initial position and the positioning spring 19″ contacts the tapered surface of the positioning plate 17″.
Next, the latch unit B is explained with reference to
From the initial position shown in
Referring to
The linking member 40 has two parallel plates 40a and stopper plate 40b connecting the parallel plates 40a. The stopper plate 40b slidably supports the free end of the linking bar 34. Catch pin 42 is fixed between the two parallel plates 40a. The linking member 40 is slidably supported in the casing 48 by means of guide pins 46, which are provided on the outer surface of the parallel plates 40a, and received and guided by slits 47 in the casing 48. The linking member 40 is urged by spring 45 toward the latch 6, i.e., to the left in
The cam plate 44 has claw 44′ on one end and recess 56 on the other end, and is rotatably supported on shaft 51 fixed to the casing 48, between the two parallel plates 40a. Around the shaft 51 is provided spring 43, one end of which engages spring engagement portion 50 of the cam plate 44 and the other end of which is supported by pin 49 fixed to the casing 48. This spring 43 urges the cam plate 44 to rotate clockwise in
The cam plate 44 may be made of a laminate of three layers in order to improve its strength, resistance against torsion and shaking, and to prevent burr at the cutting edge during its processing.
The engagement bar 53 has two hooks 55 on one end, and is provided with compression spring 54 arranged therearound. The compression spring 54 urges the engagement bar 53 toward the cam plate 44, i.e., to the left in the figures, to securely keep the hooks 55 in engagement in the recess 56 in the cam plate 44. Here, the engagement bar 53 pushes the cam plate 44 to rotate counterclockwise, which rotation is limited by the positioning pin 60. The other end of the engagement bar 53 is connected to the sensor door unit D to be discussed below.
The sensor door unit D includes sensor door (d) and through holes 57 provided in the door 7 on the passenger cabin side at locations facing to the sensor door (d). The sensor door (d) has a scoop-like shape having a concave and side walls so as to effectively catch the air flow coming through the holes 57. One edge of the sensor door (d) is pivotally secured with hinge 52 on the door 7 on the control cabin side so that the sensor door (d) is opened into the control cabin. On the same edge side, the sensor door (d) is also connected to the free end of the engagement bar 53 of the linking unit C via a link, which is secured on one end to the sensor door (d) with screws 59 and pivotally connected to the engagement bar 53 on the other end with pin 58. In this embodiment, the door 7 is provided with nine holes 57 arranged in three lines of the holes each, but the number and arrangement of the holes may be determined as desired.
When a pressure difference above a designed threshold level occurs across the door 7, and the air pressure on the passenger cabin side becomes relatively higher, air flows through the holes 57 to hit the sensor door (d), and the sensor door (d) pivots at the hinge 52 to open into the control cabin. At the same time, the link secured to the sensor door (d) pulls the engagement bar 53 away from the latch 6.
Operation of the emergency release system for door lock is now discussed in detail.
In a normal state where no abnormal air pressure difference is present across the door 7, the emergency release system is at the initial rest position as shown in
When the lock (a) is not set as shown in
For preventing unauthorized entry into the control cabin, the lock (a) is set to lock the door 7 in accordance with a desired secrete code. That is, as shown in
To release the lock (a) for opening the door 7, the buttons 12′ corresponding to the selected knobs 30′ are pressed down to bring the corresponding upper notches 16′, now oriented downward, into alignment with the locking plate 11, as shown in FIG. 14. In this state, when a rotational torque is applied to the main knob 1, the knob 1, cam 3, and the release cam 4 are allowed to rotate, since the cam portion 3′ is able to push the locking plate 11 upward, so that the locking plate 11 enters the lower notches 15 and the selected upper notches 16′ as shown in
The emergency release system functions to automatically open the door 7 when an abnormal air pressure difference occurs across the door 7. This function is explained with reference to
For closing the door 7 opened by means of the emergency release system, the sensor door (d) is closed manually, the shaft 51 is rotated counterclockwise with a screw driver or the like tool to rotate the cam plate 44 counterclockwise into the initial position, and the hooks 55 of the engagement bar 53 are engaged in the recess 56 in the cam plate 44.
Although the present invention has been described with reference to the preferred embodiment, it should be understood that various modifications and variations can be easily made by those skilled in the art without departing from the spirit of the invention. Accordingly, the foregoing disclosure should be interpreted as illustrative only and is not to be interpreted in a limiting sense. The present invention is limited only by the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2002-001850 | Jan 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1986125 | Teichmann | Jan 1935 | A |
3738681 | Wada et al. | Jun 1973 | A |
4230352 | Sealey et al. | Oct 1980 | A |
4480451 | Fujiya | Nov 1984 | A |
4522359 | Church et al. | Jun 1985 | A |
4714282 | Henderson | Dec 1987 | A |
4717909 | Davis | Jan 1988 | A |
5116089 | Taylor | May 1992 | A |
5201556 | Kendall | Apr 1993 | A |
5590917 | Brooks et al. | Jan 1997 | A |
Number | Date | Country |
---|---|---|
11-256896 | Sep 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20030131639 A1 | Jul 2003 | US |