Field of the Disclosure
The present disclosure is directed toward a method and apparatus to conduct emergency aircraft landings.
Description of the Related Art
The risk of aircraft fire, explosion, and catastrophic failure when landing with a mechanical or technical problem, and the attendant safety issues, have been addressed by a number of disclosures in the related art.
However, while aviation safety continues to improve, it continues to be a concern due to the potential severity of any serious failure, whatever the cause. Failures occur as the result of a wide variety of possibilities, but often arise from either accidents originating from pilot error, equipment malfunction due to manufacturing or maintenance failures, or outside interference such as unexpected weather or operating conditions, or terrorist attacks.
Equipment malfunction can occur in a variety of ways including, for example, failures and leaks from hydraulic equipment that operates landing gears, interference inside the landing gear wheel well, such as from debris or the presence of stowaways. For these reasons, methods and apparatus for safely landing aircraft with disabled landing gear mechanisms continue to be developed with the aim of reducing the extent of the damage when such incidents occur.
In one example aspect, an apparatus is provided to support aircraft with disabled landing gears. The apparatus comprises a support assembly, a hub, a shock absorber and a transport mechanism. The support assembly includes a contact component. The support assembly is rotatably connected to the hub. The shock absorber includes a first end to which the hub is rigidly connected. The transport mechanism is to move the apparatus along a ground surface. The contact component is to contact with and to support an aircraft fuselage during landing.
In another example aspect, a system is provided to support aircraft landing with malfunctioning landing gears. The system comprises a plurality of landing struts and a control system. Each landing strut includes a support assembly and a tilt platform. The tilt platform is to adjust an angular position of the support assembly. The control system is to adjust a position of the landing strut. The plurality of rows of the landing struts is configured along a ground surface to form an emergency runway. Each support assembly is disposed with an axis of rotation perpendicular to a forward path of an aircraft in a plan view. Each row of the landing struts includes three landing struts adjusted laterally by the control system with respect to the emergency runway and the support assembly of the landing struts is angularly adjusted by the tilt platform to follow a cross section of an aircraft fuselage, for the fuselage of an aircraft to land and stop.
In yet another example aspect, a method is provided to land an aircraft with malfunctioning landing gears. The method uses a plurality of landing struts. Each landing strut includes a support assembly and a brake. A position of the support assembly is adjustable. The method comprises identifying information relating to an aircraft including a type and dimensions, adjusting a position of the support assembly of the plurality of landing struts on an emergency runway based on the information so as to accommodate a landing of the aircraft, and applying the brake system of each support assembly as the aircraft traverses each of the landing struts.
The foregoing general description of the illustrative implementations and the following detailed description thereof are merely exemplary aspects of the teachings of this disclosure, and are not restrictive.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
In the drawings, like reference numerals designate identical or corresponding parts throughout the several views. Further, as used herein, the words “a”, “an” and the like generally carry a meaning of “one or more”, unless stated otherwise. The drawings are generally not drawn to scale unless specified otherwise or illustrating schematic structures or flowcharts.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views.
In one embodiment, the support assembly 2 has a contact component 5 that may be a pressurized pneumatic tire that is connected to a wheel 7, and a hub 24 to which the support assembly 2 is rotatably connected. A shock absorber 26 includes a first end to which the hub 24 is rigidly connected. The shock absorber 26 also includes a second end which is connected to or supported by a tilt platform 28. The support assembly 2 is connected to a compressed air tank 16 by a pneumatic line 18 and a brake system 3. The brake system 3 includes a brake rotor 4, a brake caliper 6, a brake cylinder 8, and a hydraulic brake line 10. The brake rotor 4 is connected to the hub 24 and the brake caliper 6 is also connected to the hub 24. The brake caliper 6 is further connected to the brake cylinder 8 which is supported by the tilt platform 28 and an Anti-lock Brake System (ABS) controller 12 by the hydraulic brake line 10. The operation of the landing strut 201 is controlled by a controller 14 that is connected to the tilt platform 28 and, wired or wirelessly, to an air pressure controller 20, including an air pressure sensor 20a and an air pressure relief valve 20b, a position sensor 21, a wheel speed sensor 22, the brake cylinder 8, the ABS controller 12, and the compressed air tank 16. The support assembly 2 is a contact component hollow wheel and tire combination with internal passages for supplying the chamber with air. The support assembly 2 is connected to and rotates freely relative to the hub 24, which is rigidly connected to the shock absorber 26. The shock absorber 26 supports the force transmitted by an aircraft 100 (
In one embodiment, the controller 14 adjusts damping characteristics of the shock absorber 26 based on signals received from the position sensor 21. The tilt platform 28 is supported by a tilt drum 30, which is connected to at least one drum support 38. The tilt drum 30 is connected to the drum support 38 and an elevator platform 40 which is disposed on a ground surface and underneath the drum support 38. A servo motor 32 is connected to a motor support 36 which is supported by the elevator platform 40. The tilt drum 30 rotates about its center and is connected to the servo motor 32 by a coupling 34. The angular position of the landing strut 201 is determined by the position of the tilt platform 28 on the tilt drum 30. The tilt drum 30 rotates due to rotation of the servo motor 32 and the coupling 34 (
In a one embodiment, the ABS controller 12 is connected between the brake cylinder 8 and a hydraulic brake line 10 to provide ABS functionality for the landing strut 201. The controller 14 controls the functions of the landing strut 201, receives signals from various on-board sensors as well as from external networks and sources.
In another embodiment, the lateral platform 44 has two rollers 48 rather than the four rollers 48 shown in the figure.
In addition to the vertical adjustment of the position of the support assembly 2 through the use of the first hydraulic piston 42 (
In another embodiment, each landing strut 200 has two landing strut platforms 202 (
While the position of each landing strut 200 remains the same relative to the other two landing struts 200 in a row across the emergency runway 300, the height of each row can vary with that of other rows along the length of the emergency runway 300, for example to create an upward or downward slope over the length of the emergency runway 300. The variation in height between rows of landing struts 200 is adjusted by the first hydraulic piston 42 of each landing strut 200 (
In one embodiment, a landing pit 102 is located at one or both ends of the emergency runway 300 such that the aircraft 100 is slowed by the array of landing struts 200 along the length of the emergency runway 300, and then comes to a stop before or in the landing pit 102 located at the end of the array of landing struts 200. The landing pit 102 may be filled with a material or mixture of material, for example, sand, dirt, soft soil or liquid, to retard the forward motion of the aircraft 100, reduce the risk of fire, and maintain an upright position of the aircraft 100 to ease rescue operations, while minimizing the risk of injury to passengers and ground crew, and of damage to the aircraft 100.
In one embodiment, the emergency runway 300 has a landing pit 102 at each end, the landing pit 102 is a manmade body of water such as a large pool or canal which may connect to a larger body of water such as a river or lake, providing additional runoff room for the aircraft 100.
At Step S1, an aircraft 100 that is expected to arrive at the emergency runway 300 is identified and initial data is input, including sources external to the landing strut 200 such as data about the expected aircraft 100. Example data may include aircraft type, fuselage dimensions, weight, approach speed (generally at a rate of around aircraft 100 to 130 knots), approach angle, wind speed, and ambient weather conditions. The angular, vertical and lateral position of the support assembly 2 of each landing strut 200 is adjusted as needed to accommodate the dimensions of the incoming aircraft fuselage 101.
At Step S2, the controller 14 transmits its available data elements to the controller 14 of at least the next landing strut 200 along the anticipated path of travel of the aircraft 100 on the emergency runway 300. Available data include those provided by all the sensors described by
At Step S3, data received from Step S2 are recorded to memory.
At Step S4, system-level analysis of the emergency runway 300 is performed on the data from Step S3. Example data of interest include how many and which landing struts 200 have made contact with the aircraft 100. This can determine if the aircraft 100 has made full contact with the emergency runway 300, the velocity of the aircraft 100 along the emergency runway 300, and if the rate of deceleration of the aircraft 100 is sufficient such that the aircraft 100 will come to a stop before the aircraft 100 reaches the end of the emergency runway 300.
Based on the analysis of Step S4, local analysis of the particular landing strut 200 is performed to determine which settings of Steps S5 through Step S7 should be adjusted.
At Step S5, if applicable, damping stiffness of the shock absorber 26 is adjusted in case the load is out of tolerance relative to the downward load applied.
At Step S6, hydraulic brake pressure applied is adjusted by the ABS controller 12 based on rotation speed of the support assembly 2 to prevent the support assembly 2 from locking. However, the hydraulic pressure applied can be varied from one end of the emergency runway 300 toward the other to provide optimal brake force once the aircraft 100 has stabilized on the emergency runway 300. For example, the brake force applied by each subsequent landing strut 200 is gradually increased to maintain a state of threshold braking and maximize effectiveness for each support assembly 2.
At Step S7, pneumatic air pressure is adjusted in the support assembly 2 if pressure readings are out of tolerance for the given pressure and load upon the support assembly 2, primarily a function of the weight of the aircraft 100.
The aforementioned adjustments may occur as the aircraft 100 is traversing each landing strut 200.
Upon completion of Step S7, the process of
Thus, the foregoing discussion discloses and describes merely exemplary embodiments of the present invention. As will be understood by those skilled in the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting of the scope of the invention, as well as other claims. The disclosure, including any readily discernable variants of the teachings herein, defines, in part, the scope of the foregoing claim terminology such that no inventive subject matter is dedicated to the public.