Emergency self-retaining sutures and packaging

Abstract
A removable self-retaining suture system and methods for use thereof in emergency situations. The system comprises one or more self-retaining suture segments and a grasp engagement element. The system may be used for temporary wound closure in a trauma victim, and may be easily removed upon the availability of proper medical care to the victim.
Description
FIELD OF INVENTION

The present invention relates generally to filaments for surgical procedures, methods of manufacturing filaments for surgical procedures, and uses thereof.


BACKGROUND OF INVENTION

Wound closure devices such as sutures, staples and tacks have been widely used in superficial and deep surgical procedures in humans and animals for closing wounds, repairing traumatic injuries or defects, joining tissues together (bringing severed tissues into approximation, closing an anatomical space, affixing single or multiple tissue layers together, creating an anastomosis between two hollow/luminal structures, adjoining tissues, attaching or reattaching tissues to their proper anatomical location), attaching foreign elements to tissues (affixing medical implants, devices, prostheses and other functional or supportive devices), and for repositioning tissues to new anatomical locations (repairs, tissue elevations, tissue grafting and related procedures) to name but a few examples.


Sutures are often used as wound closure devices. Sutures typically consist of a filamentous suture thread attached to a needle with a sharp point. Suture threads can be made from a wide variety of materials including bioabsorbable (i.e., that break down completely in the body over time), or non-absorbable (permanent; non-degradable) materials. Absorbable sutures have been found to be particularly useful in situations where suture removal might jeopardize the repair or where the natural healing process renders the support provided by the suture material unnecessary after wound healing has been completed; as in, for example, completing an uncomplicated skin closure. Non-degradable (non-absorbable) sutures are used in wounds where healing may be expected to be protracted or where the suture material is needed to provide physical support to the wound for long periods of time; as in, for example, deep tissue repairs, high tension wounds, many orthopedic repairs and some types of surgical anastomosis. Also, a wide variety of surgical needles are available, and the shape, and size of the needle body and the configuration of the needle tip is typically selected based upon the needs of the particular application.


To use an ordinary suture, the suture needle is advanced through the desired tissue on one side of the wound and then through the adjacent side of the wound. The suture is then formed into a “loop” which is completed by tying a knot in the suture to hold the wound closed. Knot tying takes time and causes a range of complications, including, but not limited to (i) spitting (a condition where the suture, usually a knot) pushes through the skin after a subcutaneous closure), (ii) infection (bacteria are often able to attach and grow in the spaces created by a knot), (iii) bulk/mass (a significant amount of suture material left in a wound is the portion that comprises the knot), (iv) slippage (knots can slip or come untied), and (v) irritation (knots serve as a bulk “foreign body” in a wound). Suture loops associated with knot tying may lead to ischemia (knots can create tension points that can strangulate tissue and limit blood flow to the region) and increased risk of dehiscence or rupture at the surgical wound. Knot tying is also labor intensive and can comprise a significant percentage of the time spent closing a surgical wound. Additional operative procedure time is not only bad for the patient (complication rates rise with time spent under anesthesia), but it also adds to the overall cost of the operation (many surgical procedures are estimated to cost between $15 and $30 per minute of operating time).


Self-retaining sutures (including barbed sutures) differ from conventional sutures in that self-retaining sutures possess numerous tissue retainers (such as barbs) which anchor the self-retaining suture into the tissue following deployment and resist movement of the suture in a direction opposite to that in which the retainers face, thereby eliminating the need to tie knots to affix adjacent tissues together (a “knotless” closure). Knotless tissue-approximating devices having barbs have been previously described in, for example, U.S. Pat. No. 5,374,268, disclosing armed anchors having barb-like projections, while suture assemblies having barbed lateral members have been described in U.S. Pat. Nos. 5,584,859 and 6,264,675. Sutures having a plurality of barbs positioned along a greater portion of the suture are described in U.S. Pat. No. 5,931,855, which discloses a unidirectional barbed suture, and U.S. Pat. No. 6,241,747, which discloses a bidirectional barbed suture. Methods and apparatus for forming barbs on sutures have been described in, for example, U.S. Pat. No. 6,848,152. Self-retaining systems for wound closure also result in better approximation of the wound edges, evenly distribute the tension along the length of the wound (reducing areas of tension that can break or lead to ischemia), decrease the bulk of suture material remaining in the wound (by eliminating knots) and reduce spitting (the extrusion of suture material—typically knots—through the surface of the skin. All of these features are thought to reduce scarring, improve cosmesis, and increase wound strength relative to wound closures using plain sutures or staples. Thus, self-retaining sutures, because such sutures avoid knot tying, allow patients to experience an improved clinical outcome, and also save time and costs associated with extended surgeries and follow-up treatments. It is noted that all patents, patent applications and patent publications identified throughout are incorporated herein by reference in their entirety.


The ability of self-retaining sutures to anchor and hold tissues in place even in the absence of tension applied to the suture by a knot is a feature that also provides superiority over plain sutures. When closing a wound that is under tension, this advantage manifests itself in several ways: (i) self-retaining sutures have a multiplicity of retainers which can dissipate tension along the entire length of the suture (providing hundreds of “anchor” points this produces a superior cosmetic result and lessens the chance that the suture will “slip” or pull through) as opposed to knotted interrupted sutures which concentrate the tension at discrete points; (ii) complicated wound geometries can be closed (circles, arcs, jagged edges) in a uniform manner with more precision and accuracy than can be achieved with interrupted sutures; (iii) self-retaining sutures eliminate the need for a “third hand” which is often required for maintaining tension across the wound during traditional suturing and knot tying (to prevent “slippage” when tension is momentarily released during tying); (iv) self-retaining sutures are superior in procedures where knot tying is technically difficult, such as in deep wounds or laparoscopic/endoscopic procedures; and (v) self-retaining sutures can be used to approximate and hold the wound prior to definitive closure. As a result, self-retaining sutures provide easier handling in anatomically tight or deep places (such as the pelvis, abdomen and thorax) and make it easier to approximate tissues in laparoscopic/endoscopic and minimally invasive procedures; all without having to secure the closure via a knot. Greater accuracy allows self-retaining sutures to be used for more complex closures (such as those with diameter mismatches, larger defects or purse string suturing) than can be accomplished with plain sutures.


The advantages of greater accuracy and time savings provided by self-retaining sutures may be more pronounced when surgical conditions are sub-optimal. In areas of armed conflict, natural disaster zones, sites of terrorist attack, and other emergency situations, wound closure (and other tissue approximation) may be more quickly, easily, and effectively accomplished with self-retaining sutures than with their conventional counterparts and thus could potentially save more lives. Obviating the need for knots would not only enable a first responder to more quickly close a wound, but would also allow a nurse, surgeon, or other medical trauma staff to more quickly remove the temporary or emergency closure in order to treat the trauma victim.


For example, to treat soldiers suffering traumatic injuries on a battlefield, a military medic must rapidly close external wounds and quickly transport the injured patient to the closest field hospital. Then, at the field hospital, the medical personnel must remove the sutures from the wound and begin surgery. The knotless wound closure made possible by self-retaining sutures provides a significant advantage for rapid closure in the field. Likewise, self-retaining sutures can be easily and quickly removed from tissue, by locating the transition segment of a bidirectional suture, severing it, and then pulling out the remaining suture segments by each segment's distal, or deployment, ends. (Similarly, in the case of a unidirectional suture, the anchor may be severed and the suture segment pulled out from the tissue by its deployment end.) Given the time constraints presented by the aftermath of battle, in which multiple trauma victims would be brought in for treatment at once, in sometimes sub-optimal surgical conditions, as well as the potentially complex nature of wounds sustained by those injured in combat, the rapid identification of the self-retaining suture's transition point in a wound closure can be difficult.


A self-retaining suture may be unidirectional, having one or more retainers oriented in one direction along the length of the suture thread; or bidirectional, typically having one or more retainers oriented in one direction along a portion of the thread, followed by one or more retainers oriented in another (often opposite) direction over a different portion of the thread (as described with barbed retainers in U.S. Pat. Nos. 5,931,855 and 6,241,747). Although any number of sequential or intermittent configurations of retainers are possible, a common form of bidirectional self-retaining suture involves a needle at one end of a suture thread which has barbs having tips projecting “away” from the suture deployment end (which may be sharp enough to penetrate tissue itself or may have a needle attached to it) until the transition portion of the suture is reached; at the transition portion the configuration of barbs reverses itself about 180° (such that the barbs are now facing in the opposite direction) along the remaining length of the suture thread before attaching to a second needle at the opposite end (with the result that the barbs on this portion of the suture also have tips projecting “away” from the nearest needle). Projecting “away” from the needle means that the tip of the barb is further away from the needle and the portion of suture comprising the barb may be pulled more easily through tissue in the direction of the needle than in the opposite direction. Put another way, the barbs on both “halves” of a typical bidirectional self-retaining suture have tips that point towards the middle, with a transition segment (lacking barbs) interspersed between them, and with a needle attached to either end.


BRIEF SUMMARY OF INVENTION

Given the advantages of self-retaining sutures, it is desired to provide improved self-retaining sutures and methods useful in emergency situations, for wound closure and tissue approximation in suboptimal surgical conditions, such as in areas of armed conflict and natural disaster.


In accordance with one aspect, the present invention provides bidirectional self-retaining sutures having grasp engagement elements to facilitate suture deployment and subsequent removal.


In accordance with another aspect, the present invention provides unidirectional self-retaining sutures having grasp engagement elements to facilitate suture deployment and subsequent removal.


In accordance with another aspect, the present invention provides multidirectional self-retaining sutures having grasp engagement elements to facilitate suture deployment and subsequent removal.


In accordance with another aspect, the present invention provides methods of deploying and subsequently removing self-retaining sutures having grasp engagement elements.


In accordance with another aspect, the present invention provides self-retaining sutures having detachable grasp engagement elements.


The following are exemplary embodiments of the present invention:


Embodiment 1

A removable bidirectional self-retaining suture, the suture comprising:


a. a first end, a second end, and a periphery;


b. a plurality of retainers, the retainers on a first portion of the suture between the first end of the suture and a first axial location on the suture for permitting movement of the suture through tissue in a direction of movement of the first end and preventing movement of the suture through tissue in a direction opposite the direction of movement of the first end, and the retainers on a second portion of the suture between the second end of the suture and a second axial location on the suture permitting movement of the suture through tissue in a direction of movement of the second end and preventing movement of the suture through tissue in a direction opposite the direction of movement of the second end; and


c. a grasp engagement element between the first and second axial locations.


Embodiment 2

The suture of embodiment 1, wherein the grasp engagement element comprises a loop.


Embodiment 3

The suture of embodiment 2, wherein the loop is discontinuous.


Embodiment 4

The suture of embodiment 1, wherein the grasp engagement element comprises a tab.


Embodiment 5

The suture of embodiment 1, wherein the grasp engagement element comprises a suture segment having a stop at each end thereof, for preventing entry of said suture segment into tissue.


Embodiment 6

The suture of embodiment 1, wherein the grasp engagement element is comprises a different colour than the rest of the suture.


Embodiment 7

The suture of embodiment 6, wherein the suture further comprises a frangible portion between the grasp engagement element and the first and second axial locations for facilitating removal of the grasp engagement element from the suture.


Embodiment 8

The suture of embodiment 6, wherein the grasp engagement element further comprises an enhanced gripping surface.


Embodiment 9

The suture of embodiment 1, wherein the grasp engagement element has a periphery greater than the periphery of the suture.


Embodiment 10

The suture of embodiment 9, wherein the suture further comprises a frangible portion between the grasp engagement element and the first and second axial locations for facilitating removal of the grasp engagement element from the suture.


Embodiment 11

The suture of embodiment 9, wherein the grasp engagement element further comprises an enhanced gripping surface.


Embodiment 12

The suture of embodiment 1, wherein the grasp engagement element further comprises an enhanced gripping surface.


Embodiment 13

The suture of embodiment 1, wherein the suture further comprises a frangible portion between the grasp engagement element and the first and second axial locations for facilitating removal of the grasp engagement element from the suture.


Embodiment 14

The suture of embodiment 1, further comprising a detachable connector connecting the grasp engagement element and the suture.


Embodiment 15

The suture of embodiment 1, wherein the grasp engagement element is at least in part flexible.


Embodiment 16

The suture of embodiment 1, wherein the grasp engagement element is at least in part rigid.


Embodiment 17

The suture of embodiment 1, wherein the grasp engagement element comprises a different material than the rest of the suture.


Embodiment 18

The suture of embodiment 2, wherein the configuration of the loop is selected from the class comprising circles, ellipses, and polygons.


Embodiment 19

A removable multidirectional self-retaining system comprising:


a. a grasp engagement element;


b. at least three suture segments, each suture segment having a plurality of retainers between a first end of the suture segment and a second end of the suture segment for permitting movement of the suture through tissue in a direction of movement of the first end and preventing movement of the suture segment through tissue in a direction opposite the direction of movement of the first end, and a second end of each suture segment being attached to the grasp engagement element.


Embodiment 20

The system of embodiment 19, wherein the grasp engagement element comprises a loop.


Embodiment 21

The system of embodiment 20, wherein the loop is discontinuous.


Embodiment 22

The system of embodiment 19, wherein the grasp engagement element comprises a tab.


Embodiment 23

The system of embodiment 19, wherein the grasp engagement element comprises a suture segment having a stop at each end thereof, for preventing entry of said suture segment into tissue.


Embodiment 24

The system of embodiment 20, wherein the loop is circular.


Embodiment 25

The system of embodiment 20, wherein the loop is elliptical.


Embodiment 26

The system of embodiment 20, wherein the loop is polygonal.


Embodiment 27

A method of emergency wound closure, comprising:


a. providing a bidirectional self-retaining suture having a plurality of retainers, the retainers on a first portion of the suture between a first end of the suture and a first axial location on the suture for permitting movement of the suture through tissue in a direction of movement of the first end and preventing movement of the suture through tissue in a direction opposite the direction of movement of the first end, and the retainers on a second portion of the suture between a second end of the suture and a second axial location on the suture permitting movement of the suture through tissue in a direction of movement of the second end and preventing movement of the suture through tissue in a direction opposite the direction of movement of the second end;


b. inserting the first end of the suture into tissue at a first insertion point between first and second ends of the wound;


c. drawing the first end of the suture towards the first end of the wound along a first deployment path through tissue on alternating sides of the wound to a first exit point;


d. inserting the second end of the suture into tissue at a second insertion point between the first and second ends of the wound, leaving a portion of the suture between the first and second insertion points;


e. drawing the second end of the suture towards the second end of the wound along a second deployment path through tissue on alternating sides of the wound to a second exit point; and,


f. severing the suture along the portion between the first and second insertion points for removal of the suture from the wound prior to provision of permanent treatment.


Embodiment 28

The method of embodiment 27, wherein the step of inserting the second end of the suture into tissue is performed before the step of drawing the first end of the suture towards the first end of the wound.


Embodiment 29

A method of emergency wound closure, comprising:


a. providing a unidirectional self-retaining suture, the suture having a plurality of retainers between a first and second end of the suture for permitting movement of the suture through tissue in a direction of movement of the first end and preventing movement of the suture through tissue in a direction opposite the direction of movement of the first end, and a grasp engagement element at the second end of the suture;


b. positioning the grasp engagement element at least in part outside the wound;


c. inserting the first end of the suture into tissue at an insertion point at the wound; and,


d. drawing the first end of the suture towards an end of the wound along a deployment path through tissue on alternating sides of the wound to an exit point outside the tissue.


Embodiment 30

The method of embodiment 29, wherein the unidirectional suture further comprises a frangible portion proximal to the grasp engagement element.


Embodiment 31

A method of emergency wound closure comprising:


a. providing a multidirectional self-retaining system, the system having a grasp engagement element and at least two suture segments, each suture segment having a plurality of retainers between a first end of the suture segment and a second end of the suture segment for permitting movement of the suture through tissue in a direction of movement of the first end and preventing movement of the suture segment through tissue in a direction opposite the direction of movement of the first end, and a second end of each suture segment being attached to the grasp engagement element;


b. positioning the grasp engagement element at least in part outside the wound;


c. inserting the first end of a first suture segment into tissue at a first insertion point at the wound;


d. drawing the first end of the first suture segment towards a first end of the wound along a first deployment path through tissue on alternating sides of the wound to a first exit point;


e. inserting the first end of a second suture segment into tissue at a second insertion point proximal to the first insertion point; and,


f. drawing the first end of the second suture segment towards a second end of the wound along a second deployment path through tissue on alternating sides of the wound to a second exit point.


Embodiment 32

The method of embodiment 31, wherein the self-retaining system comprises at least a third suture segment having a plurality of retainers between a first end of the suture segment and a second end of the suture segment for permitting movement of the suture through tissue in a direction of movement of the first end and preventing movement of the suture segment through tissue in a direction opposite the direction of movement of the first end, the second end of the third suture segment being attached to the grasp engagement element.


Embodiment 33

The method of embodiment 32, further comprising inserting the first end of the third suture segment into tissue at a third insertion point proximal to at least one of the first and second insertion points, and drawing the first end of the third suture segment towards a third end of the wound along a third deployment path through tissue on alternating sides of the wound to a third exit point.


Embodiment 34

The method of embodiment 312, wherein the grasp engagement element comprises a connection between the suture segments.


Embodiment 35

A method of achieving an emergency closure of a stellate wound having at least three tissue apexes, comprising:


a. providing a multidirectional self-retaining system, the system having a grasp engagement element and at least three suture segments, each suture segment having a plurality of retainers between a first end of the suture segment and a second end of the suture segment for permitting movement of the suture through tissue in a direction of movement of the first end and preventing movement of the suture segment through tissue in a direction opposite the direction of movement of the first end, and a second end of each suture segment being attached to the grasp engagement element;


b. positioning the grasp engagement element proximal to the tissue apexes;


c. inserting the first end of a first suture segment into a first tissue apex and drawing the first end of the first suture segment out of the tissue;


d. inserting the first end of a second suture segment into a second tissue apex and drawing the first end of the second suture segment out of the tissue; and,


e. inserting the first end of a third suture segment into tissue at a third tissue apex and drawing the first end of the third suture segment out of the tissue.


Embodiment 36

A method of removing an emergency self-retaining suture from tissue, the suture having a at least one self-retaining suture segment, the suture segment having a first end connected to grasp engagement element and a second end, the method comprising:


a. severing the grasp engagement element from the suture segment; and,


b. drawing the suture segment out of the tissue by its second end.


Embodiment 37

A package for holding a suture device having a grasp engagement element attached to at least one suture segment having a distal end, the package comprising


a. a base having at least one surface; and,


b. a segment holder for releasably securing the suture segment to the base; and,


c. a grasp engagement element holder for releasably securing the grasp engagement element to the base.


Embodiment 38

The package of embodiment 37, wherein the segment holder and grasp engagement element holder are positioned to segregate the segment and the grasp engagement element.


Embodiment 39

The package of embodiment 37, further comprising an additional segment holder.


Embodiment 40

The package of embodiment 39, wherein the additional segment holder is adapted to segregate an additional segment from the segment and the grasp engagement element.


Embodiment 41

The package of embodiment 37, wherein the grasp engagement element holder is adapted for contacting the device at or near the grasp engagement element while securing the grasp engagement element to the base.


Embodiment 42

The package of embodiment 37 or 38, wherein the segment holder is adapted for contacting the device at or near the segment distal end while securing the segment to the base.


Embodiment 43

The package of embodiment 37 or 38, wherein at least one holder comprises multiple sections.


Embodiment 44

The package of embodiment 37 or 38, wherein at least one holder is removable from the package.


Embodiment 45

The package of embodiment 37 or 38, further comprising a segment guide for positioning a portion of the at least one suture segment.


Embodiment 46

The package of embodiment 37, wherein the segment holder is a needle park.


Embodiment 47

The package of embodiment 37, further comprising an outer housing.


Embodiment 48

The package of embodiment 47, wherein the outer housing is adapted to hold at least one of a needle driver and a scissors.


Embodiment 49

A trauma kit comprising:


d. an outer housing;


e. a suture package containing a self-retaining suture having a grasp engagement element attached to at least one suture segment.


Embodiment 50

The kit of embodiment 49, further comprising at least one of a needle driver and scissors.


Embodiment 51

A removable bidirectional self-retaining suture, the suture comprising:


a. a suture body having a first end, a second end, and a periphery;


b. a plurality of retainers, the retainers on a first portion of the suture between the first end of the suture and a first axial location on the suture for permitting movement of the suture through tissue in a direction of movement of the first end and preventing movement of the suture through tissue in a direction opposite the direction of movement of the first end, and the retainers on a second portion of the suture between the second end of the suture and a second axial location on the suture permitting movement of the suture through tissue in a direction of movement of the second end and preventing movement of the suture through tissue in a direction opposite the direction of movement of the second end; and


c. a grasp engagement element between the first and second axial locations, the grasp engagement element having at least two apertures through which the suture body is threaded between the first and second axial locations.


Embodiment 52

The suture of embodiment 51, wherein at least one aperture of the grasp engagement element comprises a sharp edge.


The details of one or more embodiments are set forth in the description below. Other features, objects and advantages will be apparent from the description, the drawings, and the claims. In addition, the disclosures of all patents and patent applications referenced herein are incorporated by reference in their entirety.





DESCRIPTION OF DRAWINGS

Features of the invention, its nature and various advantages will be apparent from the accompanying drawings and the following detailed description of various embodiments.



FIG. 1 is a view of an emergency bidirectional suture in accordance with an embodiment of the present invention, the suture having a closed loop grasp engagement element.



FIG. 2 is a view of an emergency bidirectional suture in accordance with another embodiment of the present invention, the suture having a closed loop grasp engagement element.



FIG. 3 is a view of an emergency bidirectional suture in accordance with another embodiment of the present invention, the suture having a tabbed grasp engagement element.



FIG. 4 is a view of an emergency bidirectional suture in accordance with another embodiment of the present invention, the suture having an open polygonal grasp engagement element.



FIG. 5 is a view of an emergency bidirectional suture in accordance with still another embodiment of the present invention, the suture having an open loop grasp engagement element.



FIG. 6 is a view of an emergency bidirectional suture in accordance with still another embodiment of the present invention, the grasp engagement element including tissue stops.



FIG. 7 is a view of an emergency bidirectional suture in accordance with still another embodiment of the present invention, including a detachable grasp engagement element.



FIGS. 8a and 8b are perspective views of a use of an embodiment according to the present invention of an emergency bidirectional suture.



FIG. 9 is a perspective view of a use of an embodiment according to the present invention of an emergency bidirectional suture.



FIG. 10 is a view of an emergency unidirectional suture in accordance with an embodiment of the present invention.



FIG. 11 is a view of an emergency multidirectional suture in accordance with an embodiment of the present invention.



FIG. 12 is a view of an emergency multidirectional suture in accordance with an embodiment of the present invention.



FIG. 13 is a view of a use of an embodiment according to the present invention of an emergency multidirectional suture.



FIGS. 14A, 14B and 15 are views of emergency deployment suture in accordance with the invention, where the suture is shown in the context of optional packaging material for the suture, where FIG. 14B is an enlarged view of a portion of the suture shown in FIG. 14A.



FIG. 16 is a view of packaging of the invention that may be used to store and transport emergency deployment suture.



FIG. 17 is a view of packaging of the invention that may be used to store and transport emergency deployment suture.



FIG. 18 is a view of packaging of the invention that may be used to store and transport emergency deployment suture.



FIG. 19 is a view of packaging of the invention that may be used to store and transport emergency deployment suture.



FIG. 20 is a view of packaging of the invention that may be used to store and transport emergency deployment suture.



FIG. 21 is a view of packaging of the invention that may be used to store and transport an emergency deployment suture.



FIG. 22 is a view of packaging of the invention that may be used to store and transport emergency deployment suture and ancillary materials.





DESCRIPTION OF INVENTION
Definitions

Definitions of certain terms that may be used hereinafter include the following.


“Self-retaining system” refers to a self-retaining suture together with devices for deploying the suture into tissue. Such deployment devices include, without limitation, suture needles and other deployment devices as well as sufficiently rigid and sharp ends on the suture itself to penetrate tissue.


“Self-retaining suture” refers to a suture that comprises features on the suture filament for engaging tissue without the need for a knot or suture anchor.


“Tissue retainer” (or simply “retainer”) or “barb” refers to a physical feature of a suture filament which is adapted to mechanically engage tissue and resist movement of the suture in at least one axial directions, and preferably prevent such movement. By way of example only, tissue retainer or retainers can include hooks, projections, barbs, darts, extensions, bulges, anchors, protuberances, spurs, bumps, points, cogs, tissue engagers, traction devices, surface roughness, surface irregularities, surface defects, edges, facets and the like. In certain configurations, tissue retainers are adapted to engage tissue to resist movement of the suture in a direction other than the direction in which the suture is deployed into the tissue by the physician, by being oriented to substantially face the deployment direction. In some embodiments the retainers lie flat when pulled in the deployment direction and open or “fan out” when pulled in a direction contrary to the deployment direction. As the tissue-penetrating end of each retainer faces away from the deployment direction when moving through tissue during deployment, the tissue retainers should not catch or grab tissue during this phase. Once the self-retaining suture has been deployed, a force exerted in another direction (often substantially opposite to the deployment direction) causes the retainers to be displaced from the deployment position (i.e. resting substantially along the suture body), forces the retainer ends to open (or “fan out”) from the suture body in a manner that catches and penetrates into the surrounding tissue, and results in tissue being caught between the retainer and the suture body; thereby “anchoring” or affixing the self-retaining suture in place. In one embodiment, the emergency sutures described herein are prepared from one or more segments of filament that each comprise a plurality of cuts, that is, cuts have been made in the filament using a blade or a laser or other suitable cutting instrument, and those cuts create and provide for retainers that can fan out from the filament. Retainers formed in this way are advantageous because when the segment is pulled through tissue, the retainers can retract into the body of the filament and thus contribute little, and preferably no resistance to the movement of the suture segment through the tissue, during the time when the suture segment is being deployed into the wound or other area needing a suture. The cuts made in the filament are preferably not too deep, so as to minimize a reduction in the tensile strength of the filament caused by the presence of the cuts, where cut depths of less than about 5%, or less than about 10%, 15%, 20%, or 25% of the cross-sectional distance of the filament are provided in different optional embodiments of the invention, with 5-25% or 5-20% or 5-15% being ranges present in optional embodiments of the invention. The retainers created by cutting a filament will have a topside composed of the outer surface of the filament, and an underside formed by the cut and composed of the material that forms the inside of the filament. In various optional embodiments of the present invention, a particular cut may create a retainer having an underside that lies within a single plane, that is, the cut may be a single straight cut, or the cut may create a retainer having an underside that lies in two planes, that is, the cut may following a first trajectory for a first distance and then a second trajectory for a second distance. Retainers having undersides lying within two different planes may be advantageous where the first plane cuts into and toward the center of the filament, typically with some concomitant cutting along the longitudinal axis of the filament, effectively establishing a depth of cut, while the subsequent second plane travels along the longitudinal axis of the filament but with little or no movement toward the center of the filament, effectively establishing a retainer length. When filaments having a plurality of cuts are utilized to provide for segments comprising retainers, the underside of the retainer will join to the filament along a baseline, where this baseline may be straight or may be arcuate. An arcuate baseline may be advantageous in assisting the retainer to “fan out”. In certain other embodiments, the tissue retainers may be configured to permit motion of the suture in one direction and resist movement of the suture in another direction without fanning out or deploying. In certain other configurations, the tissue retainer may be configured or combined with other tissue retainers to resist motion of the suture filament in both directions. Typically a suture having such retainers is deployed through a device such as a cannula which prevents contact between the retainers and the tissue until the suture is in the desired location.


“Retainer configurations” refers to configurations of tissue retainers and can include features such as size, shape, flexibility, surface characteristics, and so forth. These are sometimes also referred to as “barb configurations”.


“Transition segment” or “transition portion” refers to a retainer-free (barb-free) portion of a bidirectional suture located between a first set of retainers (barbs) oriented in one direction and a second set of retainers (barbs) oriented in another direction. The transition segment can be at about the midpoint of the self-retaining suture, or closer to one end of the self-retaining suture to form an asymmetrical self-retaining suture system.


“Suture thread” or refers to the filamentary body component of the suture. The suture thread may be a monofilament, or comprise multiple filaments as in a braided suture. The suture thread may be made of any suitable biocompatible material, and may be further treated with any suitable biocompatible material, whether to enhance the sutures' strength, resilience, longevity, or other qualities, or to equip the sutures to fulfill additional functions besides joining tissues together, repositioning tissues, or attaching foreign elements to tissues.


“Monofilament suture” refers to a suture comprising a monofilamentary suture thread.


“Braided suture” refers to a suture comprising a multifilamentary suture thread. The filaments in such suture threads are typically braided, twisted, or woven together.


“Degradable suture” (also referred to as “biodegradable suture” or “absorbable suture”) refers to a suture which, after introduction into a tissue is broken down and absorbed by the body. Typically, the degradation process is at least partially mediated by, or performed in, a biological system. “Degradation” refers to a chain scission process by which a polymer chain is cleaved into oligomers and monomers. Chain scission may occur through various mechanisms, including, for example, by chemical reaction (e.g., hydrolysis, oxidation/reduction, enzymatic mechanisms or a combination of these) or by a thermal or photolytic process. Polymer degradation may be characterized, for example, using gel permeation chromatography (GPC), which monitors the polymer molecular mass changes during erosion and breakdown. Degradable suture material may include polymers such as polyglycolic acid, copolymers of glycolide and lactide, copolymers of trimethylene carbonate and glycolide with diethylene glycol (e.g., MAXON™, Tyco Healthcare Group), terpolymer composed of glycolide, trimethylene carbonate, and dioxanone (e.g., BIOSYN™ [glycolide (60%), trimethylene carbonate (26%), and dioxanone (14%)], Tyco Healthcare Group), copolymers of glycolide, caprolactone, trimethylene carbonate, and lactide (e.g., CAPROSYN™, Tyco Healthcare Group). A dissolvable suture can also include partially deacetylated polyvinyl alcohol. Polymers suitable for use in degradable sutures can be linear polymers, branched polymers or multi-axial polymers. Examples of multi-axial polymers used in sutures are described in U.S. Patent Application Publication Nos. 20020161168, 20040024169, and 20040116620. Sutures made from degradable suture material lose tensile strength as the material degrades. Degradable sutures can be in either a braided multifilament form or a monofilament form.


“Non-degradable suture” (also referred to as “non-absorbable suture”) refers to a suture comprising material that is not degraded by chain scission such as chemical reaction processes (e.g., hydrolysis, oxidation/reduction, enzymatic mechanisms or a combination of these) or by a thermal or photolytic process. Non-degradable suture material includes polyamide (also known as nylon, such as nylon 6 and nylon 6,6), polyester (e.g., polyethylene terephthlate), polytetrafluoroethylene (e.g., expanded polytetrafluoroethylene), polyether-ester such as polybutester (block copolymer of butylene terephthalate and polytetra methylene ether glycol), polyurethane, metal alloys, metal (e.g., stainless steel wire), polypropylene, polyethelene, silk, and cotton. Sutures made of non-degradable suture material are suitable for applications in which the suture is meant to remain permanently or is meant to be physically removed from the body.


“Suture diameter” refers to the diameter of the body of the suture. It is to be understood that a variety of suture lengths may be used with the sutures described herein and that while the term “diameter” is often associated with a circular periphery, it is to be understood herein to indicate a cross-sectional dimension associated with a periphery of any shape. Suture sizing is based upon diameter. United States Pharmacopeia (“USP”) designation of suture size runs from 0 to 7 in the larger range and 1-0 to 11-0 in the smaller range; in the smaller range, the higher the value preceding the hyphenated zero, the smaller the suture diameter. The actual diameter of a suture will depend on the suture material, so that, by way of example, a suture of size 5-0 and made of collagen will have a diameter of 0.15 mm, while sutures having the same USP size designation but made of a synthetic absorbable material or a non-absorbable material will each have a diameter of 0.1 mm. The selection of suture size for a particular purpose depends upon factors such as the nature of the tissue to be sutured and the importance of cosmetic concerns; while smaller sutures may be more easily manipulated through tight surgical sites and are associated with less scarring, the tensile strength of a suture manufactured from a given material tends to decrease with decreasing size. It is to be understood that the sutures and methods of manufacturing sutures disclosed herein are suited to a variety of diameters, including without limitation 7, 6, 5, 4, 3, 2, 1, 0, 1-0, 2-0, 3-0, 4-0, 5-0, 6-0, 7-0, 8-0, 9-0, 10-0 and 11-0.


“Needle attachment” refers to the attachment of a needle to a suture requiring same for deployment into tissue, and can include methods such as crimping, swaging, using adhesives, and so forth. The suture thread is attached to the suture needle using methods such as crimping, swaging and adhesives. Attachment of sutures and surgical needles is described in U.S. Pat. Nos. 3,981,307, 5,084,063, 5,102,418, 5,123,911, 5,500,991, 5,722,991, 6,012,216, and 6,163,948, and U.S. Patent Application Publication No. US 2004/0088003). The point of attachment of the suture to the needle is known as the swage.


“Suture needle” refers to needles used to deploy sutures into tissue, which come in many different shapes, forms and compositions. There are two main types of needles, traumatic needles and atraumatic needles. Traumatic needles have channels or drilled ends (that is, holes or eyes) and are supplied separate from the suture thread and are threaded on site. Atraumatic needles are eyeless and are attached to the suture at the factory by swaging or other methods whereby the suture material is inserted into a channel at the blunt end of the needle which is then deformed to a final shape to hold the suture and needle together. As such, atraumatic needles do not require extra time on site for threading and the suture end at the needle attachment site is generally smaller than the needle body. In the traumatic needle, the thread comes out of the needle's hole on both sides and often the suture rips the tissues to a certain extent as it passes through. Most modern sutures are swaged atraumatic needles. Atraumatic needles may be permanently swaged to the suture or may be designed to come off the suture with a sharp straight tug. These “pop-offs” are commonly used for interrupted sutures, where each suture is only passed once and then tied. For barbed sutures that are uninterrupted, these atraumatic needles are preferred.


Suture needles may also be classified according to the geometry of the tip or point of the needle. For example, needles may be (i) “tapered” whereby the needle body is round and tapers smoothly to a point; (ii) “cutting” whereby the needle body is triangular and has a sharpened cutting edge on the inside; (iii) “reverse cutting” whereby the cutting edge is on the outside; (iv) “trocar point” or “taper cut” whereby the needle body is round and tapered, but ends in a small triangular cutting point; (v) “blunt” points for sewing friable tissues; (vi) “side cutting” or “spatula points” whereby the needle is flat on top and bottom with a cutting edge along the front to one side (these are typically used for eye surgery).


Suture needles may also be of several shapes including, (i) straight, (ii) half curved or ski, (iii) ¼ circle, (iv) ⅜ circle, (v) ½ circle, (vi) ⅝ circle, (v) and compound curve.


Suturing needles are described, for example, in U.S. Pat. Nos. 6,322,581 and 6,214,030 (Mani, Inc., Japan); and U.S. Pat. No. 5,464,422 (W. L. Gore, Newark, Del.); and U.S. Pat. Nos. 5,941,899; 5,425,746; 5,306,288 and 5,156,615 (US Surgical Corp., Norwalk, Conn.); and U.S. Pat. No. 5,312,422 (Linvatec Corp., Largo, Fla.); and U.S. Pat. No. 7,063,716 (Tyco Healthcare, North Haven, Conn.). Other suturing needles are described, for example, in U.S. Pat. Nos. 6,129,741; 5,897,572; 5,676,675; and 5,693,072. The sutures described herein may be deployed with a variety of needle types (including without limitation curved, straight, long, short, micro, and so forth), needle cutting surfaces (including without limitation, cutting, tapered, and so forth), and needle attachment techniques (including without limitation, drilled end, crimped, and so forth). Moreover, the sutures described herein may themselves include sufficiently rigid and sharp ends so as to dispense with the requirement for deployment needles altogether.


“Needle diameter” refers to the diameter of a suture deployment needle at the widest point of that needle. While the term “diameter” is often associated with a circular periphery, it is to be understood herein to indicate a cross-sectional dimension associated with a periphery of any shape.


“Suture deployment end” refers to an end of the suture to be deployed into tissue; one or both ends of the suture may be suture deployment ends. The suture deployment end may be attached to a deployment device such as a suture needle, or may be sufficiently sharp and rigid to penetrate tissue on its own.


“Wound closure” refers to a surgical procedure for closing of a wound. An injury, especially one in which the skin or another external or internal surface is cut, torn, pierced, or otherwise broken is known as a wound. A wound commonly occurs when the integrity of any tissue is compromised (e.g., skin breaks or burns, muscle tears, or bone fractures). A wound may be caused by an act, such as a puncture, fall, or surgical procedure; by an infectious disease; or by an underlying medical condition. Surgical wound closure facilitates the biological event of healing by joining, or closely approximating, the edges of those wounds where the tissue has been torn, cut, or otherwise separated. Surgical wound closure directly apposes or approximates the tissue layers, which serves to minimize the volume new tissue formation required to bridge the gap between the two edges of the wound. Closure can serve both functional and aesthetic purposes. These purposes include elimination of dead space by approximating the subcutaneous tissues, minimization of scar formation by careful epidermal alignment, and avoidance of a depressed scar by precise eversion of skin edges.


Emergency Self-Retaining Sutures and Systems


In accordance with particular embodiments, the present invention provides emergency self-retaining sutures and systems which are unidirectional, bidirectional, multidirectional. The sutures and systems of the present invention include a grasp engagement element to facilitate removal of the emergency suture or system; in some embodiments, the grasp engagement element may be adapted to engage fingers, while in other embodiments it may be adapted to engage surgical tools (such as tweezers). It is also configured to be easily detectable, whether due to its size, shape, colour, texture, or any combination thereof. To remove an emergency suture or system of the present invention from a wound closure, the grasp engagement element may, in some embodiments, be grasped (again, by fingers or surgical tools) and severed from the rest of the suture and thus permit each self-retaining segment to be removed from the tissue in the direction it was originally deployed. In other embodiments, the grasp engagement element may be grasped and then each self-retaining segment severed from the grasp engagement element and from each other to facilitate the subsequent removal of the self-retaining segments. Grasp engagement elements may be provided with any number of configurations, including continuous loops (including circular and elliptical loops), polygons, handled loops, tabs, partial loops, and partial polygons. They include tissue stops at each end, to inhibit passage of the grasp engage element into the tissue. They may be rigid or flexible.


According to particular embodiments of the present invention, these emergency sutures and suture systems and/or sections thereof may be unmarked, marked or differentially-marked by one or more types of markers or combination of markers to facilitate the differentiation of the grasp engagement element from the rest of the device.


To serve the purpose of allowing the soldier or medical personnel to identify the grasp engagement element, any visible marking used should be readily recognized and distinguished by the soldier or medical personnel under the conditions in which the suture is to be used. For example, for a battlefield or field hospital, the marking of the grasp engagement element would desirably be readily visible to the naked eye in low light conditions.


The markers can be provided in various forms that may be identified and distinguished from one another. The markers may comprise distinguishable, patterns, shapes, lengths, colors sizes, directions and arrangements. The markers can include different colors such as red, green, orange, yellow, green, blue etc. Such colors may be used in a uniform density or varying density in which case the graduation of color density may be used to designate e.g. an orientation. The markers may be included along the entire length of the self-retaining suture system, at a number of discrete points, or only at the ends or transition section of the self-retaining suture. In some cases it may be desirable to use a color for markers that is uncommon in the operative environment. For example, it may be desirable to use green markers because green is not common in the human body.


The markers can be formed by various conventional methods. For example, the markers can be coated, sprayed, glued, dyed, stained, or otherwise affixed to the self-retaining suture systems or components thereof. Traditional colourant application processes include, without limitation, dipping, spraying (by, for example, an ink jet), painting, printing, applying and/or coating colourants on the suture section of interest. Critical fluid extraction (such as carbon oxide) may also be used to add colourant locally to all or part of the section desired to be marked. Alternatively, colourant(s) for the suture section of interest may be included in a portion of the suture material that is used to form the suture body, wherein that portion is in the section of interest of the manufactured suture.


Additionally, the colourant(s) employed for demarcating the suture section of interest may be included on a plastic biocompatible material which is applied on the suture at the section of interest. Such a layer may be absorbable, such as polyglycolide coating which has a colourant to mark the suture section of interest, or it may be a non-absorbable material, such silicone. The coloured material may be synthetic or may be derived from a natural source (whether the material be modified or unmodified), such as collagen.


Alternatively, the suture section of interest may be reverse-marked, such that where the suture body is already visibly coloured, the colourant may be absent from all or part of the suture section of interest such that at least a portion of the section of interest is optically distinguishable by the surgeon from the rest of the suture. Such a suture may manufactured by including a colourant-free portion of suture material in the suture section of interest area during the manufacture of the suture body (for example, by extrusion) or by removal of colourant from the suture section of interest after the suture body has been manufactured, whether before or after retainers have been formed on the suture body. Colourant may be removed locally by, for example, critical fluid extraction such as (e.g., carbon oxide). It is not necessary to remove all of the colourant from the section of interest of the suture as long as there is a difference detectable by a surgeon between the section of interest and the rest of the suture.


Another example of a reverse-marked suture is one that lacks a coloured layer that is present on the rest of the suture body. A plastic biocompatible material bearing a colourant may be applied on the other sections of the suture, and at least where the other sections border the section of interest. Examples of such materials are discussed above. As in the foregoing examples, demarcating the suture section of interest may be effected in the suture manufacturing process either before or after forming retainers.


Another example of a reverse-marked suture is one having a coaxial structure wherein each coaxial layer having a different colour, and a portion of the outermost layer(s) is removed to visually expose a layer below. For example, a dual-layer monofilament polypropylene suture can be produced with a white inner core (intercoaxial layer) with a blue outer coaxial layer, and portions of the outer layer can be removed to visually expose the white inner monofilament to mark the suture section of interest.


Yet another example of a reverse-marked suture is one in which an external coating is removed (or partially removed) from the suture in the suture section of interest, and where either the coating or base suture has a contrasting colour difference. This technique of removing (or partially removing) material in the suture section of interest may also create a tactile demarcation of the suture section of interest.


As described above, the grasp engagement element or detachment regions may be marked to enable that section to be identified and distinguished from other sections instead of, or in addition to, marking the suture filament itself. If such marking is present in a wavelength range other than the visible wavelength range, a detector would be used to located and image the non-visible marker so that field hospital personnel would have the use and benefit of this marker.


Bidirectional Emergency Sutures


Embodiments of bidirectional emergency sutures in accordance with the present invention are shown in FIGS. 1-7. In FIG. 1, the suture 100 includes a first self-retaining suture segment 102a, a second self-retaining suture segment 102b, and a grasp engagement element 106 comprising a ring 106a. In general, the ring 106a may be any shape that allows someone to put his or her finger through the ring, so as to allow the person to then pull the ring away from the first and second self-retaining suture segments 102a and 102b. For example, the ring may be round, as shown in FIG. 1, or it could be oval or polygonal or other shape, so long as the ring comprises an opening or aperture. The grasp engagement element 106 is joined to proximal end 108b of segment 102b and to proximal end 108a of segment 102a, preferably at different locations along the ring 106a as shown in FIG. 1. First self-retaining suture segment 102a includes a plurality of retainers 103a oriented to, when in tissue, permit movement of the segment 102a through tissue in a direction of movement of distal or deployment end 104a and resist movement of the suture through tissue in a direction opposite the direction of movement of distal end 104a. Conversely, second self-retaining suture segment 102b includes a plurality of retainers 103b oriented to, when in tissue, resist movement of the segment 102b through tissue in a direction of movement of the distal or deployment end 104b of the second segment 102b and resist movement of the segment through tissue in a direction opposite the direction of movement of the end 104b. Optionally, segment 102a may be affixed to a needle 112a, and optionally segment 102b may be affixed to a needle 112b, where either or both needles may optionally be curved as shown in FIG. 1.



FIG. 2 illustrates another embodiment of an emergency suture having looped grasp engagement element. The suture 200 includes a first self-retaining suture segment 202a, a second self-retaining suture segment 202b, and a grasp engagement element 206 (in the form of a ellipse 206a at end of a handle 206b) at the proximal ends 208a and 208b of segments 202a and 202b, respectively. First self-retaining suture segment 202a includes a plurality of retainers 203a oriented to, when in tissue, permit movement of the segment 202a through tissue in a direction of movement of distal end 204a of segment 202a, and resist movement of the suture through tissue in a direction opposite the direction of movement of the distal end 204a. Conversely, second self-retaining suture segment 202b includes a plurality of retainers 203b oriented to, when in tissue, permit movement of the segment 202b through tissue in a direction of movement of the distal end 204b of the second segment 202b and resist movement of the segment 202b through tissue in a direction opposite the direction of movement of the distal end 204b. Optionally, segment 202a may be affixed to a needle 212a, and optionally segment 202b may be affixed to a needle 212b, where either or both needles may optionally be curved as shown in FIG. 2.


An embodiment of an emergency suture in accordance with the present invention illustrated in FIG. 3 and includes a grasp engagement element 306 in the form of a tab, located between end 308a of a first self-retaining suture segment 302a and end 308b of a second self-retaining suture segment 302b. The grasp engagement element 306 is provided with a variably textured surface 310 to enhance the ability of someone to grip of the grasp engagement element 306, where the texturing may take the form of raised ridges or other uneven surface as illustrated in FIG. 3. First self-retaining suture segment 302a includes a plurality of retainers 303a oriented to, when in tissue, permit movement of the segment 302a through tissue in a direction of movement of distal end 304a of the segment 302a, and resist movement of the segment 302a through tissue in a direction opposite the direction of movement of the distal end 304a. Conversely, second self-retaining suture segment 302b includes a plurality of retainers 303b oriented to, when in tissue, permit movement of the segment 302b through tissue in a direction of movement of the distal end 304b of the second segment 302b and resist movement of the segment through tissue in a direction opposite the direction of movement of the distal end 304b. Optionally, segment 302a may be affixed to a needle 312a, and optionally segment 302b may be affixed to a needle 312b, where either or both needles may optionally be curved as shown in FIG. 3.


Providing texture differences to all or part of the grasp engagement element 306 includes providing a plurality of areas of increased and/or decreased suture body diameter along the grasp engagement element 306. For example, a plurality of indentations, a plurality of relief configurations, and any combinations thereof may be provided in the section of interest, by methods including, without limitation, compression, cutting, coating, application of agents such as abrasives, polymerisers, acid etchants, base etchants, and so forth.



FIGS. 4 and 5 illustrate embodiments having grasp engagement elements 406 and 506, respectively, in two variations on an open loop form. In FIG. 4, the grasp engagement element 406 is an open polygon and is located between proximal end 408a of a first self-retaining suture segment 402a and proximal end 408b of a second self-retaining suture segment 402b. First self-retaining suture segment 402a includes a plurality of retainers 403a oriented to, when in tissue, permit movement of the segment 402a through tissue in a direction of movement of distal end 404a and resist movement of the segment 402a through tissue in a direction opposite the direction of movement of the distal end 404a. Conversely, second self-retaining suture segment 402b includes a plurality of retainers 403b oriented to, when in tissue, permit movement of the segment 402b through tissue in a direction of movement of the distal end 404b of the second segment 402b and resist movement of the segment through tissue in a direction opposite the direction of movement of the distal end 404b. Optionally, segment 402a may be affixed to a needle 412a, and optionally segment 402b may be affixed to a needle 412b, where either or both needles may optionally be curved as shown in FIG. 4.


In FIG. 5, the grasp engagement element 506 is shown as an open loop and is located between proximal end 508a of a first self-retaining suture segment 502a and proximal end 508b of a second self-retaining suture segment 502b. First self-retaining suture segment 502a includes a plurality of retainers 503a oriented to, when in tissue, permit movement of the segment 502a through tissue in a direction of movement of distal end 504a and resist movement of the segment through tissue in a direction opposite the direction of movement of the distal end 504a. Conversely, second self-retaining suture segment 502b includes a plurality of retainers 503b oriented to, when in tissue, permit movement of the segment 502b through tissue in a direction of movement of the distal end 504b of the second segment 502b and resist movement of the segment 502b through tissue in a direction opposite the direction of movement of the distal end 504b. In some embodiments having an open loop or open polygon grasp engagement element, the element may be made of rigid or semi-rigid materials, or may be coated to effectuate rigidity or partial rigidity. Optionally, segment 502a may be affixed to a needle 512a, and optionally segment 502b may be affixed to a needle 512b, where either or both needles may optionally be curved as shown in FIG. 5.



FIG. 6 illustrates another embodiment of an emergency suture having an open looped grasp engagement element. The suture 600 includes a first self-retaining suture segment 602a, a second self-retaining suture segment 602b, and a grasp engagement element 606. Grasp engagement element 606 is provided with tissue stops 610a and 610b, adjacent to the proximal ends 608a and 608b of first and second self-retaining suture segments 602a and 602b, respectively. The tissue stops 610a and 610b each have a cross-sectional distance that is greater than the cross-sectional distance of the of the adjacent proximal ends 608a and 608b, respectively, and thus are configured to prevent slippage of the grasp engagement element 606 into tissue when the suture 600 is located within tissue and functioning in a wound closure. First self-retaining suture segment 602a includes a plurality of retainers 603a oriented to, when in tissue, permit movement of the segment 602a through tissue in a direction of movement of distal end 604a and resist movement of the segment through tissue in a direction opposite the direction of movement of the distal end 604a. Conversely, second self-retaining suture segment 602b includes a plurality of retainers oriented to, when in tissue, permit movement of the segment 602b through tissue in a direction of movement of the distal end 604b of the second segment 602b and resist movement of the segment 602b through tissue in a direction opposite the direction of movement of the distal end 604b. Optionally, segment 602a may be affixed to a needle 612a, and optionally segment 602b may be affixed to a needle 612b, where either or both needles may optionally be curved as shown in FIG. 6.


In yet another embodiment, as illustrated in FIG. 7, the grasp engagement element is 706 of suture 700 is bounded by detachment elements 710a and 710b, which are adjacent to the proximal ends 708a and 708b of first and second self-retaining suture segments 702a and 702b, respectively. Detachment elements 708a and 708b are adapted to require only a sharp tug to cause the removal of the element 706 from suture 700, and may comprise frangible material, a smaller diameter of suture material (thereby having less tensile strength than adjacent portions of the suture), or detachable connectors. First self-retaining suture segment 702a includes a plurality retainers 703a oriented to, when in tissue, permit movement of the segment 702a through tissue in a direction of movement of distal end 704a and resist movement of the segment through tissue in a direction opposite the direction of movement of the distal end 704a. Conversely, second self-retaining suture segment 702b includes a plurality of retainers 703b oriented to, when in tissue, permit movement of the segment 702b through tissue in a direction of movement of the distal end 704b of the second segment 702b and resist movement of the segment through tissue in a direction opposite the direction of movement of the distal end 704b. Optionally, segment 702a may be affixed to a needle 712a, and optionally segment 702b may be affixed to a needle 712b, where either or both needles may optionally be curved as shown in FIG. 7.



FIGS. 14A, 14B and 15 include depictions of yet another embodiment of an emergency deployment suture in accordance with the invention, where the suture is shown in the context of optional packaging material for the suture. Bidirectional suture 1401 in FIG. 14A includes first and second self-retaining suture segments 1403a and 1403b, respectively, with needles 1409a and 1409b at their respective distal ends 1411a and 1411b. In one embodiment, grasp engagement element 1405 attaches to the proximal ends 1413a and 1413b of the first and second self-retaining suture segments 1403a and 1403b, respectively, by way of being tied or otherwise joined to apertures 1407a and 1407b of the grasp engagement element 1405. In an alternative embodiment, illustrated in FIG. 14B, proximal ends 1413a and 1413b each attach to an end of a transition segment shown as dashed line 1415, where transition segment 1415 may be retainer-free filament or some other filament, thereby linking together the proximal ends 1413a and 1413b, where in this embodiment the suture 1401 passes through the apertures 1407a and 1407b at or near the transition segment. FIG. 14B shows regions 1417a and 1417b, which are optionally present as part of grasp engagement element 1405, where regions 1417a and 1417b are frangible regions of the grasp element 1405 and are thus adapted to be readily snapped or broken apart. To remove a suture such as 1401 having a grasp engagement element 1405 with two frangible regions 1417a and 1417b, from a wound closure, the grasp engagement element 1405 could be broken and the resulting pieces held apart to expose the suture, e.g., the transition segment 1415, for easy cutting. Similarly, in FIG. 15, bidirectional suture 1401 as described in relation to FIG. 14A is renumbered 1501 and includes grasp engagement element 1505 having apertures 1507a and 1507b engaging the suture 1501 at or near a transition segment of the suture 1501. Optionally, grasp engagement element 1505 may contain one, preferably two, or more than two frangible regions, and thus may be adapted to be snapped or broken apart. In some embodiments, one or more suture apertures of a grasp engagement element, such as those illustrated in FIGS. 14 and 15, may include a sharpened edge that would allow one to remove the grasp engagement while severing the suture, thus enabling easy removal of the suture from a wound closure.


Grasp engagement element 806 is depicted in FIGS. 8a and 8b. With reference to FIG. 8a, grasp engagement element 806 is engaged to each of first and second self-retaining suture segments 802a and 802b, respectively, and is positioned outside the wound 801. A first self-retaining suture segment 802a of suture 800 is deployed in a subcuticular stitch through wound edges 801b, starting at about the central portion 801a of the wound 801 and moving toward one end 801c of the wound 801, and then suture 800 is pulled in the deployment direction (that is, the direction of the end of the wound 801c) to approximate the wound edges 801a together. Dashed line 802a illustrates the first self-retaining suture segment 802a positioned underneath the tissue. Then, as illustrated in FIG. 8b, the process is repeated for the rest of the wound with the second self-retaining suture segment 802b (shown as a dashed line, representing its location within the tissue), resulting in a closed wound. When, on the second half of the wound closure, suture 800 is drawn through the tissue to approximate the wound edges on the open remainder of the wound, the act of pulling the suture 800 in the second deployment direction (that is, towards the second end of the wound 801e) comprises the necessary affixation force for the plurality of retainers on segment 802a, thus causing tissue engagement. Conversely, once suture 800 is pulled sufficiently tightly to close the second half of the wound, the engagement force of the tissue exerted against the plurality of retainers on the first segment 802a affixes the plurality of retainers on second segment 802b. To remove the suture from the tissue, the grasp engagement element 806 is grasped and the suture segments 802a and 802b are severed from each other and from the element 806. Then suture segment 802a is pulled out of the tissue from the suture exit point 801d and suture segment 802b is similarly pulled out of the tissue from the respective suture exit point 801f.


Another use of an emergency bidirectional suture is illustrated in FIG. 9, to bring wounds under high tension closer together to hold them in place until a definitive surface closure can be performed. In a gaping wound (or a wound that would be difficult to bring together because of tension across it), a bidirectional emergency suture 900 is deployed to bring the tissues into closer approximation. In this procedure, the grasp engagement element 906 is positioned at about the midpoint of the wound and self-retaining segment 902 is inserted through the wound edge, passed radially outwards from wound, and withdrawn at a distance from the wound edge at exit point 908; the distance is selected to suit the nature of the wound and surrounding tissues, while bearing in mind that the farther the distance, the greater the holding strength. The procedure is then repeated on the other side of the wound with self-retaining segment 904. For large wounds, several sutures may be required. The tissue can then be progressively “ratcheted” together over the retainers until it is as close together as is required (or as is prudent). Having a grasp engagement element between self-retaining segments 902 and 904 not only facilitates later removal of the suture, but also increases the anchorage of the self-retaining segments on either side of the wound, thereby increasing the amount of tension the suture can withstand without pulling through the tissue.


Unidirectional Emergency Sutures


The sutures of the invention also include unidirectional embodiments, as in the example shown in FIG. 10. The suture 1000 includes a self-retaining suture segment 1002 and an anchor element 1006 adjacent to a detachment element 1008 at a proximal end of segment 1002. Self-retaining suture segment 1002 includes a plurality of retainers 1003 oriented to, when in tissue, permit movement of the segment 1002 through tissue in a direction of movement of sharpened end 1004 and resist movement of the suture through tissue in a direction opposite the direction of movement of the end 1004. Once the suture is fully deployed into tissue, the grasp engagement anchor 1006 acts to resist movement of the suture in a direction towards the end 1004. Detachment element 1008 is adapted to require a breaking motion such as sharp tug, bending, or twisting to cause the removal of the element 1006 from segment 1002, and may comprise frangible material, a smaller diameter of suture material (thereby having less tensile strength than other portions of the suture), or detachable connectors.


Multidirectional Emergency Suture Systems


Self-retaining suture systems may comprise more than two suture segments. A self-retaining suture system may have one, two or more suture segments including up to about ten suture segments or more, depending upon the application. For example, as shown in FIG. 11 a suture system 1100 has five self-retaining suture segments 1102a-e radiating from a central ring 1106. Each suture segment 1102a-e has a needle at its deployment end 1104a-e, and a connector 1108a-e at its other end, each connector joining its respective suture segment to the ring 1106. The connectors may be manufactured in whole or in part of a frangible material, to facilitate the removal of the ring and subsequent removal of the suture segments from a temporary wound closure once better medical care becomes available to the patient. Alternatively, the connectors may be severed from the suture segments prior to the removal of the suture system.


Another embodiment of a multidirectional emergency suture system is illustrated in FIG. 12. Suture system 1200 has three self-retaining suture segments 1202a-c. Each of the segments 1202a-c is joined at one end, i.e., the proximal end, to a grasp engagement element 1206, which may be of any suitable shape, e.g., circular, oval, or as shown in FIG. 12, polygonal. Each of the segments 1202a-c also has a needle 1204a-c at the other end, i.e., the distal end. Grasp engagement element 1206 is not a separate component in system 1200 but is instead joined to self-retaining segments 1202a-c. They may be joined by melting, gluing, welding or the like or may be formed in one piece. As shown in FIG. 12, self-retaining suture segment 1202a has a larger diameter than segments 1202b and 1202c (and accordingly has a larger and differently configured needle attached thereto). FIG. 12 illustrates one option in a wide range of variations that are possible in multi-arm self-retaining suture systems such as 1200. The arms of the suture system may be individually selected based upon the tissue in which they will be deployed. Note that the retainers 1203a on a suture segment such as 1202a are configured such that the retainers permit the segment to be deployed in the direction of the needle attached to that arm, i.e., in the distal direction, and resist movement of the suture segment in the direction towards the grasp engagement element, i.e., in the proximal direction, which acts as an anchor as well as facilitating the later removal of the suture system from a temporary wound closure. Thus, the suture segments may be deployed through tissue and the tissue approximated towards element 1206, and the retainers will then hold the tissue in the approximated position and resist movement of the tissue away from element 1206. Note that in some multi-arm systems it may be desirable to have some arms without retainers.


Self-retaining systems having more than two suture segments are useful in applications where it is desirable to have a plurality of suture lines radiating from a common point. Such self-retaining suture systems are useful for example in closes, puncture wounds, stellate wounds and other non-linear wounds. Such wounds can be produced by blunt trauma, gunshots, explosions and the like and are quite difficult to close with regular suturing techniques. FIG. 13 illustrates a closure of a stellate wound with a multidirectional emergency suture system 1300. Stellate wounds are nonlinear wounds where several tears through tissue meet at a common point and are difficult to close with regular suturing techniques. However, such a wound can be readily closed using a multi-directional system having a self-retaining suture segment for each tissue apex. As shown in FIG. 13, system 1300 comprises four self-retaining suture segments 1302a-d each having a needle 1312a-d at one end, i.e., the proximal end, and joined at a grasp engagement element 1306 at the other end, i.e., the distal end. Each needle 1312 is inserted at the apex 1314a-d of a tissue flap and drawn through the tissue to an exit point 1310a-d located a distance away from the wound. After closing the central wound, the remaining linear wounds may be closed further if necessary using standard techniques, such as with conventional or self-retaining sutures (unidirectional or bidirectional).


Packaging of Emergency Self-Retaining Sutures


Sutures and systems described herein may be loaded into packaging adapted to prevent tangling of the suture segments, ends, and grasp engagement elements, and to provide easy removal of the suture or system from the package.


An embodiment of a package is shown in FIG. 14A, where the package is shown holding two different emergency self-retaining suture system. The package includes a base 1400, grasp engagement element holders 1404 and suture segment holders 1402 positioned some distance away from each other on base 1400. Holders may be provided with multiple sections; for example, suture segment holder 1402 provides multiple passages 1402a and 1402b so that each needle on a suture may be segregated from the other. Similarly, grasp engagement element holder 1404 may be provided with multiple sections by placing multiple passages 1404a and 1404b so that suture segments 1403 may be segregated from one another (to prevent tangling of the barbs), as is shown on grasp engagement holder 1404. Base 1400 is configured to be folded along lines A and B, and closed at tab/slot combination 1406b. The base may also be folded along line C to protect the end of a longer suture, and closed at tab/slot combination 1408b.


In another embodiment shown in FIG. 15, the packaging includes a base 1500, grasp engagement element holders 1504 and suture segment holders 1502 positioned some distance away from each other on base 1500. Both grasp engagement holders 1504 and suture segment holders 1502 are provided with multiple sections, allowing suture segments of each suture 1501 to be wound (either in an oval or an alternating arrangement) through the holders and thereby reducing the overall size of the suture/package combination. Base 1500 is configured to be folded and closed at tab/slot combinations 1505a,b. The base may also be folded to protect the end of a longer suture, and closed at tab/slot combination 1506a,b.


The embodiment in FIG. 16 includes a base 1600 having three multi-section holders 1602a-c arranged such that two of the holders (1602a and b) are roughly perpendicularly to a central holder (1602c), where this arrangement of holders permits suture 1601 to be wound in a spiral, with grasp engagement element 1605 at the center of the spiral. Needles 1609 at the ends of the suture are secured to the base at holder 1604, positioned some distance away from holders 1602a-c. Base 1600 further includes one or more of flaps 1606, 1608, 1610 and 1612 which may be folded over to further protect suture 1601. An alternative arrangement having only two multi-section holders 1602 is also an embodiment of the invention.



FIG. 17 illustrates an embodiment in which a suture 1701 may be secured in a back-and-forth arrangement, with the use of two extended multi-section holders 1702a and 1702b. Needles 1709a and 1709b are secured at some distance from grasp engagement element 1705 by use of multi-section holder 1710, and one or more of optionally present flaps 1706, 1707, 1708 and 1711 may be folded over the suture to provide additional protection.



FIG. 18 illustrates an embodiment in which sutures 1801 may be secured in a “C”-shaped arrangement with multi-section holders 1802a-d. Needles 1809a and 1809b are secured with a multi-section holder near grasp engagement element 1805, which itself is held in place with a multi-section holder 1804, but are disposed sufficiently far away to prevent entanglement. Base 1800 may be folded along line “A” in the direction shown by “B”, and optionally along either or both of lines C1 and C2, to reduce the size of the overall package.



FIG. 19 illustrates an embodiment in which a suture 1901 may be secured in a back-and-forth arrangement, along extended multi-section holders 1904a and 1904b. Needles 1909a and 1909b are secured with multi-section holder 1902 at some distance from grasp engagement element 1905. Additionally, insert 1910 securing suture 1911 in a similar fashion may be laid over base 1900, and flaps 1906 and 1908 may be folded over the insert to complete cover it.



FIG. 20 illustrates an embodiment for packaging unidirectional sutures, wherein packaging base 2000 hold unidirectional sutures 2001a and 2001b, the packaging including holders 2002a and 2002b for the grasp engagement elements 2005a and 2005b, respectively, as well as multi section holders 2004a and 2004b for needles 2009a and 2009b, respectively. FIG. 21 illustrates a multi-directional suture packaging on base 2100, in which the various segments of the suture device 2101 are segregated from each other in separate pairs; thus there is only one grasp engagement holder 2105 held securely in place with multi section holder 2104, and multiple suture segment holders 2012a and 2102b which hold needs 2009a, 2009b, 2009c and 2009d.



FIG. 22 illustrates packaging 2200 which comprises an outer sleeve 2201 in which packaged emergency sutures may be placed, along with related devices such as scissors 2202a and 2202b (although a single pair of scissors may be included), and/or needle drivers 2203a and 2203b (although a single needle driver could be included).


Materials


Suture threads described herein may be produced by any suitable method, including without limitation, injection molding, stamping, cutting, laser, extrusion, and so forth. With respect to cutting, polymeric thread or filaments may be manufactured or purchased for the suture body, and the retainers can be subsequently cut onto the suture body; the retainers may be hand-cut, laser-cut, or mechanically machine-cut using blades, cutting wheels, grinding wheels, and so forth. During cutting either the cutting device or the suture thread may be moved relative to the other, or both may be moved, to control the size, shape and depth of cut 210. Particular methods for cutting barbs on a filament are described in U.S. patent application Ser. No. 09/943,733 titled “Method Of Forming Barbs On A Suture And Apparatus For Performing Same” to Genova et al., and U.S. patent application Ser. No. 10/065,280 titled “Barbed Sutures” to Leung et al. both of which are incorporated herein by reference. The sutures may be made of any suitable biocompatible material, and may be further treated with any suitable biocompatible material, whether to enhance the sutures' strength, resilience, longevity, or other qualities, or to equip the sutures to fulfill additional functions besides joining tissues together, repositioning tissues, or attaching foreign elements to tissues.


Grasp engagement elements described herein may be produced by any suitable method, including without limitation, injection molding, stamping, cutting, laser, extrusion, and so forth. They may be integrally formed with the suture threads, or the threads and grasp engagement elements may be assembled after manufacture of each component. They may be manufactured from cloth, felt, mesh, plastic (both absorbable and non-absorbable), metallic, or other materials, and may be glued, knotted, crimped or otherwise attached to suture threads. In some embodiments, they may be manufactured from stainless steel or other radio-opaque materials. In some embodiments, they may configured to comfortably accommodate a typical adult finger; suitable diameter ranges may be 0.75″ to 1.5″, and between 1″ to 1.25″.


Packaging described herein may be made from any suitable material, such as a combination of paper and synthetic materials, or synthetic materials only, or paper only. Needle holders may be made of foam or other materials that may securely engage needles. The outer sleeves may be manufactured from any suitable materials, including materials permutable to sterilizing gas (such as ethylene dioxide) while preventing microorganism contamination, materials that are compatible with sterilisatoin by gamma radiation, materials that are moisture-resistant (such as foil), and any combinations thereof.


Additionally, sutures and systems described herein may be provided with compositions to promote healing and prevent undesirable effects such as scar formation, infection, pain, and so forth. This can be accomplished in a variety of manners, including for example: (a) by directly affixing to the suture a formulation (e.g., by either spraying the suture with a polymer/drug film, or by dipping the suture into a polymer/drug solution), (b) by coating the suture with a substance such as a hydrogel which will in turn absorb the composition, (c) by interweaving formulation-coated thread (or the polymer itself formed into a thread) into the suture structure in the case of multi-filamentary sutures, (d) by inserting the suture into a sleeve or mesh which is comprised of, or coated with, a formulation, or (e) constructing the suture itself with a composition. While compositions including analgesic agents, anti-infective agents, anti-scarring agents, lubricious agents, and anti-inflammatory agents may be generally useful in the emergency situations discussed herein, other such compositions may include without limitation anti-proliferative agents, anti-angiogenic agents, fibrosis-inducing agents, echogenic agents, cell cycle inhibitors, analgesics, and anti-microtubule agents. For example, a composition can be applied to the suture before the retainers are formed, so that when the retainers engage, the engaging surface is substantially free of the coating. In this way, tissue being sutured contacts a coated surface of the suture as the suture is introduced, but when the retainer engages, a non-coated surface of the retainer contacts the tissue. Alternatively, the suture may be coated after or during formation of retainers on the suture if, for example, a fully-coated rather than selectively-coated suture is desired. In yet another alternative, a suture may be selectively coated either during or after formation of retainers by exposing only selected portions of the suture to the coating. The particular purpose to which the suture is to be put or the composition may determine whether a fully-coated or selectively-coated suture is appropriate; for example, with lubricious coatings, it may be desirable to selectively coat the suture, leaving, for instance, the tissue-engaging surfaces of the sutures uncoated in order to prevent the tissue engagement function of those surfaces from being impaired. On the other hand, coatings such as those comprising such compounds as anti-infective agents may suitably be applied to the entire suture, while coatings such as those comprising fibrosing agents may suitably be applied to all or part of the suture (such as the tissue-engaging surfaces). Coatings may also include a plurality of compositions either together or on different portions of the suture, where the multiple compositions can be selected either for different purposes (such as combinations of analgesics, anti-infective and anti-scarring agents) or for their synergistic effects.


Although the present invention has been shown and described in detail with regard to only a few exemplary embodiments of the invention, it should be understood by those skilled in the art that it is not intended to limit the invention to the specific embodiments disclosed. Various combinations of features, and various modifications, omissions, and additions may be made to the disclosed embodiments without materially departing from the novel teachings and advantages of the invention, particularly in light of the foregoing teachings. Accordingly, it is intended to cover all such modifications, omissions, additions, and equivalents as may be included within the spirit and scope of the invention as defined by the following claims.

Claims
  • 1. A removable bidirectional self-retaining suture, the suture comprising: a. a first end, a second end, and a periphery;b. a plurality of retainers, the plurality of retainers located on a first portion of the suture between the first end of the suture and a first axial location on the suture for permitting movement of the suture through tissue in a direction of movement of the first end and preventing movement of the suture through tissue in a direction opposite the direction of movement of the first end, and the plurality of retainers on a second portion of the suture between the second end of the suture and a second axial location on the suture permitting movement of the suture through tissue in a direction of movement of the second end and preventing movement of the suture through tissue in a direction opposite the direction of movement of the second end; andc. a grasp engagement element comprising a rigid continuous loop or polygon integrally formed with the suture between the first and second axial locations.
  • 2. The suture of claim 1, wherein the rigid continuous loop comprises a closed ring.
  • 3. The suture of claim 1, wherein the grasp engagement element has a periphery greater than the periphery of the suture.
  • 4. The suture of claim 1, wherein the suture further comprises a frangible portion between the grasp engagement element and the first and second axial locations for facilitating removal of the grasp engagement element from the suture.
  • 5. The suture of claim 1, further comprising a detachable connector connecting the grasp engagement element and the suture.
  • 6. The suture of claim 1, wherein the grasp engagement element comprises a different material than the rest of the suture.
  • 7. A removable multidirectional self-retaining system comprising: a. a grasp engagement element comprising a rigid continuous loop or polygon;b. at least three suture segments, each suture segment having a plurality of retainers between a first end of the suture segment and a second end of the suture segment for permitting movement of the suture through tissue in a direction of movement of the first end and preventing movement of the suture segment through tissue in a direction opposite the direction of movement of the first end, and a second end of each suture segment being attached to the grasp engagement element such that the grasp engagement element is integrally formed with the plurality of suture segments at the second end.
  • 8. The system of claim 7, wherein the rigid continuous loop comprises a closed ring.
  • 9. A method of emergency wound closure, comprising: a. providing a self-retaining suture, the suture having suture segments, each suture segment having a plurality of retainers between a first and second end of the suture segment for permitting movement of the suture through tissue in a direction of movement of the first end and preventing movement of the suture through tissue in a direction opposite the direction of movement of the first end, and a grasp engagement element comprising a rigid continuous loop or polygon integrally formed with the suture segments at the second end of each suture segment;b. positioning the grasp engagement element at least in part outside the wound;c. inserting the first end of one of the suture segments into tissue at an insertion point at the wound; and,d. drawing the first end of the one of the suture segments towards an end of the wound along a deployment path through tissue on alternating sides of the wound to an exit point outside the tissue.
  • 10. The method of claim 9, further comprising: e. inserting the first end of another one of the suture segments into tissue at a second insertion point between the first and second ends of the wound, leaving a portion of the suture between the first and second insertion points;f. drawing the first end of the another one of the suture segments towards the second end of the wound along a second deployment path through tissue on alternating sides of the wound to a second exit point; and,g. severing the suture along the portion between the first and second insertion points for removal of the suture from the wound prior to provision of permanent treatment.
  • 11. The method of claim 10, wherein inserting the first end of the another one of the suture segments into tissue is performed before drawing the first end of the one of the suture segments towards the first end of the wound.
  • 12. The method of claim 9, wherein said wound is a stellate wound having at least three tissue apexes, wherein said self-retaining suture is a multidirectional self-retaining suture system comprising at least three suture segments, and wherein said method further comprises: e. inserting the first end of a second suture segment into a second tissue apex and drawing the first end of the second suture segment out of the tissue; and,f. inserting the first end of a third suture segment into tissue at a third tissue apex and drawing the first end of the third suture segment out of the tissue.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the national stage of international application number PCT/US2011/060069, filed Nov. 9, 2011, which is incorporated herein by reference in its entirety and which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/411,918 filed Nov. 9, 2010, and U.S. Provisional Patent Application No. 61/412,389, filed Nov. 10, 2010, which provisional applications are incorporated herein by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2011/060069 11/9/2011 WO 00 5/1/2013
Publishing Document Publishing Date Country Kind
WO2012/064902 5/18/2012 WO A
US Referenced Citations (910)
Number Name Date Kind
709392 Brown Sep 1902 A
733723 Lukens Jul 1903 A
816026 Meier Mar 1906 A
879758 Foster Feb 1908 A
1142510 Engle Jun 1915 A
1248825 Dederer Dec 1917 A
1321011 Cottes Nov 1919 A
1558037 Morton Oct 1925 A
1728316 Von Wachenfeldt Sep 1929 A
1886721 O'Brien Nov 1932 A
2094578 Blumenthal et al. Oct 1937 A
2201610 Dawson, Jr. May 1940 A
2232142 Schumann Feb 1941 A
2254620 Miller Sep 1941 A
2347956 Lansing May 1944 A
2355907 Cox Aug 1944 A
2421193 Gardner May 1947 A
2452734 Costelow Nov 1948 A
2472009 Gardner May 1949 A
2480271 Sumner Aug 1949 A
2572936 Kulp et al. Oct 1951 A
2591063 Goldberg Apr 1952 A
2647625 Mason et al. Aug 1953 A
2684070 Kelsey Jul 1954 A
2736964 Lieberman Mar 1956 A
2779083 Enton Jan 1957 A
2814296 Everett Nov 1957 A
2817339 Sullivan Dec 1957 A
2830366 Chisena Apr 1958 A
2866256 Matlin Dec 1958 A
2910067 White Oct 1959 A
2928395 Forbes et al. Mar 1960 A
2988028 Alcamo Jun 1961 A
3003155 Mielzynski et al. Oct 1961 A
3066452 Bott et al. Dec 1962 A
3066673 Bott et al. Dec 1962 A
3068869 Shelden et al. Dec 1962 A
3068870 Levin Dec 1962 A
3082523 Modes et al. Mar 1963 A
3123077 Alcamo Mar 1964 A
3136418 Stacy et al. Jun 1964 A
3166072 Sullivan, Jr. Jan 1965 A
3187752 Glick Jun 1965 A
3206018 Lewis et al. Sep 1965 A
3209652 Burgsmueller Oct 1965 A
3209754 Brown Oct 1965 A
3212187 Benedict Oct 1965 A
3214810 Mathison Nov 1965 A
3221746 Noble Dec 1965 A
3234636 Brown Feb 1966 A
3273562 Brown Sep 1966 A
3352191 Crawford Nov 1967 A
3378010 Codling Apr 1968 A
3385299 LeRoy May 1968 A
3394704 Dery Jul 1968 A
3494006 Brumlik Feb 1970 A
3522637 Brumlik Aug 1970 A
3525340 Gilbert Aug 1970 A
3527223 Shein Sep 1970 A
3545608 Berger et al. Dec 1970 A
3557795 Hirsch Jan 1971 A
3570497 Lemole Mar 1971 A
3586002 Wood Jun 1971 A
3608095 Barry Sep 1971 A
3608539 Miller Sep 1971 A
3618447 Goins Nov 1971 A
3646615 Ness Mar 1972 A
3683926 Suzuki Aug 1972 A
3700433 Duhl Oct 1972 A
3716058 Tanner, Jr. Feb 1973 A
3720055 de Mestral et al. Mar 1973 A
3748701 De Mestral Jul 1973 A
3749238 Taylor Jul 1973 A
3762418 Wasson Oct 1973 A
3825010 McDonald Jul 1974 A
3833972 Brumlik Sep 1974 A
3845641 Waller Nov 1974 A
3847156 Trumble Nov 1974 A
3889322 Brumlik Jun 1975 A
3918455 Coplan Nov 1975 A
3922455 Brumlik Nov 1975 A
3941164 Musgrave Mar 1976 A
3951261 Mandel et al. Apr 1976 A
3963031 Hunter Jun 1976 A
3977937 Candor Aug 1976 A
3980177 McGregor Sep 1976 A
3981051 Brumlik Sep 1976 A
3981307 Borysko Sep 1976 A
3985138 Jarvik Oct 1976 A
3985227 Thyen et al. Oct 1976 A
3990144 Schwartz Nov 1976 A
4006747 Kronenthal Feb 1977 A
4008303 Glick et al. Feb 1977 A
4014434 Thyen Mar 1977 A
4024871 Stephenson May 1977 A
4027608 Arbuckle Jun 1977 A
4043344 Landi Aug 1977 A
4052988 Doddi et al. Oct 1977 A
4063638 Marwood Dec 1977 A
D246911 Bess, Jr. et al. Jan 1978 S
4069825 Akiyama Jan 1978 A
4073298 Le Roy Feb 1978 A
4075962 Mabry Feb 1978 A
4098210 Wright Jul 1978 A
4135623 Thyen Jan 1979 A
4137921 Okuzumi et al. Feb 1979 A
4182340 Spencer Jan 1980 A
4183431 Schmidt et al. Jan 1980 A
4186239 Mize et al. Jan 1980 A
4198734 Brumlik Apr 1980 A
4204541 Kapitanov May 1980 A
4204542 Bokros et al. May 1980 A
4253563 Komarnycky Mar 1981 A
4259959 Walker Apr 1981 A
4278374 Wolosianski Jul 1981 A
4300424 Flinn Nov 1981 A
4311002 Hoffmann et al. Jan 1982 A
4313448 Stokes Feb 1982 A
4316469 Kapitanov Feb 1982 A
4317451 Cerwin et al. Mar 1982 A
4372293 Vijil-Rosales Feb 1983 A
4428376 Mericle Jan 1984 A
4430998 Harvey Feb 1984 A
4434796 Karapetian Mar 1984 A
4449298 Putz May 1984 A
4454875 Pratt et al. Jun 1984 A
4467805 Fukuda Aug 1984 A
4490326 Beroff et al. Dec 1984 A
4492075 Faure Jan 1985 A
4493323 Albright et al. Jan 1985 A
4496045 Ferguson et al. Jan 1985 A
4505274 Speelman Mar 1985 A
4510934 Batra Apr 1985 A
4524771 Troutman et al. Jun 1985 A
4531522 Bedi et al. Jul 1985 A
4532926 O'Holla Aug 1985 A
4535772 Sheehan Aug 1985 A
4548202 Duncan Oct 1985 A
4553544 Nomoto et al. Nov 1985 A
4610250 Green Sep 1986 A
4610251 Kumar Sep 1986 A
4635637 Schreiber Jan 1987 A
4637380 Orejola Jan 1987 A
4653486 Coker Mar 1987 A
4669473 Richards et al. Jun 1987 A
4676245 Fukuda Jun 1987 A
4689882 Lorenz Sep 1987 A
4702250 Ovil et al. Oct 1987 A
4712553 MacGregor Dec 1987 A
4719917 Barrows et al. Jan 1988 A
4741330 Hayhurst May 1988 A
4750910 Takayanagi et al. Jun 1988 A
4776337 Palmaz Oct 1988 A
4813537 Okuhara et al. Mar 1989 A
4832025 Coates May 1989 A
4841960 Garner Jun 1989 A
4865026 Barrett Sep 1989 A
4873976 Schreiber Oct 1989 A
4887601 Richards Dec 1989 A
4895148 Bays et al. Jan 1990 A
4898156 Gatturna et al. Feb 1990 A
4899743 Nicholson et al. Feb 1990 A
4900605 Thorgersen et al. Feb 1990 A
4905367 Pinchuk et al. Mar 1990 A
4930945 Arai et al. Jun 1990 A
4932962 Yoon et al. Jun 1990 A
4946043 Roshdy et al. Aug 1990 A
4946468 Li Aug 1990 A
4948444 Schultz et al. Aug 1990 A
4950258 Kawai et al. Aug 1990 A
4950285 Wilk Aug 1990 A
4968315 Gatturna Nov 1990 A
4976715 Bays et al. Dec 1990 A
4979956 Silvestrini et al. Dec 1990 A
4981149 Yoon Jan 1991 A
4994073 Green Feb 1991 A
4994084 Brennan Feb 1991 A
4997439 Chen Mar 1991 A
5002550 Li Mar 1991 A
5002562 Oberlander Mar 1991 A
5007921 Brown Apr 1991 A
5007922 Chen et al. Apr 1991 A
5026390 Brown Jun 1991 A
5037422 Hayhurst et al. Aug 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5047047 Yoon Sep 1991 A
5053047 Yoon Oct 1991 A
5059207 Shah Oct 1991 A
5084063 Korthoff Jan 1992 A
5089010 Korthoff Feb 1992 A
5089012 Prou Feb 1992 A
5099994 Kalinski et al. Mar 1992 A
5101968 Henderson et al. Apr 1992 A
5102418 Granger et al. Apr 1992 A
5102421 Anspach, Jr. Apr 1992 A
5103073 Danilov et al. Apr 1992 A
5112344 Petros May 1992 A
5121836 Brown et al. Jun 1992 A
5123911 Granger et al. Jun 1992 A
5123913 Wilk et al. Jun 1992 A
5123919 Sauter et al. Jun 1992 A
5127413 Ebert Jul 1992 A
5131534 Brown et al. Jul 1992 A
5133738 Korthoff et al. Jul 1992 A
5141520 Goble et al. Aug 1992 A
5147382 Gertzman et al. Sep 1992 A
5154283 Brown Oct 1992 A
5156615 Korthoff et al. Oct 1992 A
5156788 Chesterfield et al. Oct 1992 A
5176692 Wilk et al. Jan 1993 A
5179964 Cook Jan 1993 A
5192274 Bierman Mar 1993 A
5192302 Kensey et al. Mar 1993 A
5192303 Gatturna et al. Mar 1993 A
5197597 Leary et al. Mar 1993 A
5201326 Kubicki et al. Apr 1993 A
5207679 Li May 1993 A
5207694 Broome May 1993 A
5217486 Rice et al. Jun 1993 A
5217494 Coggins et al. Jun 1993 A
5222508 Contarini Jun 1993 A
5222976 Yoon Jun 1993 A
5224946 Hayhurst et al. Jul 1993 A
5234006 Eaton et al. Aug 1993 A
5242457 Akopov et al. Sep 1993 A
5246441 Ross et al. Sep 1993 A
5249673 Sinn Oct 1993 A
5258013 Granger et al. Nov 1993 A
5259846 Granger et al. Nov 1993 A
5263973 Cook Nov 1993 A
5269783 Sander Dec 1993 A
5282832 Toso et al. Feb 1994 A
5292326 Green et al. Mar 1994 A
5306288 Granger et al. Apr 1994 A
5306290 Martins et al. Apr 1994 A
5312422 Trott May 1994 A
5320629 Noda et al. Jun 1994 A
5330488 Goldrath Jul 1994 A
5330503 Yoon Jul 1994 A
5336239 Gimpelson Aug 1994 A
5341922 Cerwin et al. Aug 1994 A
5342376 Ruff Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5350385 Christy Sep 1994 A
5352515 Jarrett et al. Oct 1994 A
5354271 Voda Oct 1994 A
5354298 Lee et al. Oct 1994 A
5358511 Gatturna et al. Oct 1994 A
5363556 Banholzer et al. Nov 1994 A
5372146 Branch Dec 1994 A
5374268 Sander Dec 1994 A
5374278 Chesterfield et al. Dec 1994 A
5380334 Torrie et al. Jan 1995 A
5386912 Holzwarth et al. Feb 1995 A
5387383 Collier et al. Feb 1995 A
5391173 Wilk Feb 1995 A
5403346 Loeser Apr 1995 A
5411523 Goble May 1995 A
5414988 DiPalma et al. May 1995 A
5417691 Hayhurst May 1995 A
5425746 Proto et al. Jun 1995 A
5425747 Brotz Jun 1995 A
5437362 Sinn Aug 1995 A
5437680 Yoon et al. Aug 1995 A
5450860 O'Connor Sep 1995 A
5451461 Broyer Sep 1995 A
5460263 Brown et al. Oct 1995 A
5462561 Voda Oct 1995 A
5464422 Silverman Nov 1995 A
5464426 Bonutti Nov 1995 A
5464427 Curtis et al. Nov 1995 A
5472452 Trott Dec 1995 A
5478353 Yoon Dec 1995 A
5480403 Lee et al. Jan 1996 A
5480411 Liu et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5486197 Le et al. Jan 1996 A
5494154 Ainsworth et al. Feb 1996 A
5500000 Feagin et al. Mar 1996 A
5500991 Demarest et al. Mar 1996 A
5503266 Kalbfeld et al. Apr 1996 A
5520084 Chesterfield et al. May 1996 A
5520691 Branch May 1996 A
5522845 Wenstrom, Jr. Jun 1996 A
5527342 Pietrzak et al. Jun 1996 A
5531760 Alwafaie Jul 1996 A
5531761 Yoon Jul 1996 A
5531790 Frechet et al. Jul 1996 A
5533611 Bordighon et al. Jul 1996 A
5533982 Rizk et al. Jul 1996 A
5536582 Prasad et al. Jul 1996 A
5540705 Meade et al. Jul 1996 A
5540718 Bartlett Jul 1996 A
5545148 Wurster Aug 1996 A
5546957 Heske Aug 1996 A
5549631 Bonutti Aug 1996 A
5554171 Gatturna et al. Sep 1996 A
5566821 Brown et al. Oct 1996 A
5566822 Scanlon Oct 1996 A
5569272 Reed et al. Oct 1996 A
5571139 Jenkins, Jr. Nov 1996 A
5571175 Vanney et al. Nov 1996 A
5571216 Anderson Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5584859 Brotz Dec 1996 A
5593424 Northrup, III et al. Jan 1997 A
5601557 Hayhurst Feb 1997 A
5626590 Wilk May 1997 A
5626611 Liu et al. May 1997 A
5632753 Loeser May 1997 A
5643288 Thompson Jul 1997 A
5643295 Yoon Jul 1997 A
5643319 Green et al. Jul 1997 A
5645568 Chervitz et al. Jul 1997 A
5647874 Hayhurst Jul 1997 A
5649939 Reddick Jul 1997 A
5653716 Malo et al. Aug 1997 A
5662654 Thompson Sep 1997 A
5662714 Charvin et al. Sep 1997 A
5669935 Rosenman et al. Sep 1997 A
5676675 Grice Oct 1997 A
D386583 Ferragamo et al. Nov 1997 S
5683417 Cooper Nov 1997 A
D387161 Ferragamo et al. Dec 1997 S
5693072 McIntosh Dec 1997 A
5695879 Goldmann et al. Dec 1997 A
5697976 Chesterfield et al. Dec 1997 A
5702397 Goble et al. Dec 1997 A
5702462 Oberlander Dec 1997 A
5709692 Mollenauer et al. Jan 1998 A
5715942 Li et al. Feb 1998 A
5716358 Ochoa et al. Feb 1998 A
5716376 Roby et al. Feb 1998 A
5722991 Colligan Mar 1998 A
5723008 Gordon Mar 1998 A
5725557 Gatturna et al. Mar 1998 A
5728114 Evans et al. Mar 1998 A
5731855 Koyama et al. Mar 1998 A
5741277 Gordon et al. Apr 1998 A
5744151 Capelli Apr 1998 A
5763411 Edwardson et al. Jun 1998 A
5765560 Verkerke et al. Jun 1998 A
5766246 Mulhauser et al. Jun 1998 A
5779719 Klein et al. Jul 1998 A
5782864 Lizardi Jul 1998 A
5807403 Beyar et al. Sep 1998 A
5807406 Brauker et al. Sep 1998 A
5810853 Yoon Sep 1998 A
5814051 Wenstrom, Jr. Sep 1998 A
5843087 Jensen et al. Dec 1998 A
5843178 Vanney et al. Dec 1998 A
5855619 Caplan et al. Jan 1999 A
5863360 Wood et al. Jan 1999 A
5871089 Odermatt Feb 1999 A
5887594 LoCicero, III Mar 1999 A
5891166 Schervinsky Apr 1999 A
5893856 Jacob et al. Apr 1999 A
5895395 Yeung Apr 1999 A
5895413 Nordstrom Apr 1999 A
5897572 Schulsinger et al. Apr 1999 A
5899911 Carter May 1999 A
5916224 Esplin Jun 1999 A
5918733 Cerwin et al. Jul 1999 A
5919234 Lemperle et al. Jul 1999 A
5921982 Lesh et al. Jul 1999 A
5925078 Anderson Jul 1999 A
5931855 Buncke Aug 1999 A
5935138 McJames, II et al. Aug 1999 A
5938668 Scirica et al. Aug 1999 A
5941899 Granger et al. Aug 1999 A
5950633 Lynch et al. Sep 1999 A
5954747 Clark Sep 1999 A
5964765 Fenton, Jr. et al. Oct 1999 A
5964783 Grafton et al. Oct 1999 A
5968097 Frechet et al. Oct 1999 A
5972024 Northrup, III et al. Oct 1999 A
5984933 Yoon Nov 1999 A
5993459 Larsen et al. Nov 1999 A
5997554 Thompson Dec 1999 A
6001111 Sepetka et al. Dec 1999 A
6012216 Esteves et al. Jan 2000 A
6015042 Cerwin et al. Jan 2000 A
6015410 Tormala et al. Jan 2000 A
6024757 Haase et al. Feb 2000 A
6027523 Schmieding Feb 2000 A
6029806 Cerwin et al. Feb 2000 A
6039741 Meislin Mar 2000 A
6042583 Thompson et al. Mar 2000 A
6045571 Hill et al. Apr 2000 A
6056778 Grafton et al. May 2000 A
6063105 Totakura May 2000 A
6071292 Makower et al. Jun 2000 A
6074419 Healy et al. Jun 2000 A
6076255 Shikakubo et al. Jun 2000 A
6083244 Lubbers et al. Jul 2000 A
6102947 Gordon Aug 2000 A
6106544 Brazeau Aug 2000 A
6106545 Egan Aug 2000 A
6110484 Sierra Aug 2000 A
6129741 Wurster et al. Oct 2000 A
6135385 Martinez de Lahidgalga Oct 2000 A
D433753 Weiss Nov 2000 S
6146406 Shluzas et al. Nov 2000 A
6146407 Krebs Nov 2000 A
6149660 Laufer et al. Nov 2000 A
6159234 Bonutti et al. Dec 2000 A
6160084 Langer et al. Dec 2000 A
6163948 Esteves et al. Dec 2000 A
6165203 Krebs Dec 2000 A
6168633 Shoher et al. Jan 2001 B1
6174324 Egan et al. Jan 2001 B1
6183499 Fischer et al. Feb 2001 B1
6187095 Labrecque et al. Feb 2001 B1
6203565 Bonutti et al. Mar 2001 B1
6206908 Roby Mar 2001 B1
6214030 Matsutani et al. Apr 2001 B1
6231911 Steinback et al. May 2001 B1
6235869 Roby et al. May 2001 B1
6241747 Ruff Jun 2001 B1
6251143 Schwartz et al. Jun 2001 B1
6254616 Wright Jul 2001 B1
6260696 Braginsky et al. Jul 2001 B1
6264675 Brotz Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6270517 Brotz Aug 2001 B1
6315788 Roby Nov 2001 B1
6319231 Andrulitis Nov 2001 B1
6322581 Fukuda et al. Nov 2001 B1
6334865 Redmond et al. Jan 2002 B1
6383201 Dong May 2002 B1
6387363 Gruskin May 2002 B1
6388043 Langer et al. May 2002 B1
6395029 Levy May 2002 B1
D462766 Jacobs et al. Sep 2002 S
6443962 Gaber Sep 2002 B1
6463719 Dey et al. Oct 2002 B2
6471715 Weiss Oct 2002 B1
6478809 Brotz Nov 2002 B1
6481569 Alpern Nov 2002 B1
6485503 Jacobs et al. Nov 2002 B2
6491701 Tierney et al. Dec 2002 B2
6491714 Bennett Dec 2002 B1
6494898 Roby et al. Dec 2002 B1
6495127 Wallace et al. Dec 2002 B1
RE37963 Thal Jan 2003 E
6506190 Walshe Jan 2003 B1
6506197 Rollero et al. Jan 2003 B1
6511488 Marshall et al. Jan 2003 B1
6514265 Ho et al. Feb 2003 B2
6527795 Lizardi Mar 2003 B1
6548002 Gresser et al. Apr 2003 B2
6548569 Williams et al. Apr 2003 B1
6551343 Tormala et al. Apr 2003 B1
6554802 Pearson et al. Apr 2003 B1
6565597 Fearnot et al. May 2003 B1
6592609 Bonutti Jul 2003 B1
6596296 Nelson et al. Jul 2003 B1
6599310 Leung et al. Jul 2003 B2
6607541 Gardiner et al. Aug 2003 B1
6610078 Bru-Magniez et al. Aug 2003 B1
6613059 Schaller et al. Sep 2003 B2
6613254 Shiffer Sep 2003 B1
6616982 Merrill et al. Sep 2003 B2
6623492 Berube et al. Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6632245 Kim Oct 2003 B2
6641592 Sauer et al. Nov 2003 B1
6641593 Schaller et al. Nov 2003 B1
6645226 Jacobs et al. Nov 2003 B1
6645227 Fallin et al. Nov 2003 B2
6648921 Anderson et al. Nov 2003 B2
6656182 Hayhurst Dec 2003 B1
6659270 Williamson, IV et al. Dec 2003 B2
6689153 Skiba Feb 2004 B1
6689166 Laurencin et al. Feb 2004 B2
6692761 Mahmood et al. Feb 2004 B2
6702844 Lazarus Mar 2004 B1
6712830 Esplin Mar 2004 B2
6712859 Rousseau et al. Mar 2004 B2
6716234 Grafton et al. Apr 2004 B2
6720402 Langer et al. Apr 2004 B2
6726705 Peterson et al. Apr 2004 B2
6739450 Roshdy et al. May 2004 B2
6746443 Morley et al. Jun 2004 B1
6746458 Cloud Jun 2004 B1
6749616 Nath Jun 2004 B1
6773450 Leung et al. Aug 2004 B2
6783554 Amara et al. Aug 2004 B2
6814748 Baker et al. Nov 2004 B1
6818010 Eichhorn et al. Nov 2004 B2
6838493 Williams et al. Jan 2005 B2
6848152 Genova et al. Feb 2005 B2
6852825 Ledlein et al. Feb 2005 B2
6860891 Schulze Mar 2005 B2
6860901 Baker et al. Mar 2005 B1
6867248 Martin et al. Mar 2005 B1
6877934 Gainer Apr 2005 B2
6881766 Hain Apr 2005 B2
6893452 Jacobs May 2005 B2
6905484 Buckman et al. Jun 2005 B2
6911035 Blomme Jun 2005 B1
6911037 Gainor et al. Jun 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6921811 Zamora et al. Jul 2005 B2
6923819 Meade et al. Aug 2005 B2
6938755 Braginsky et al. Sep 2005 B2
6945021 Michel Sep 2005 B2
6945980 Nguyen et al. Sep 2005 B2
6960221 Ho et al. Nov 2005 B2
6960233 Berg et al. Nov 2005 B1
6974450 Weber et al. Dec 2005 B2
6981983 Rosenblatt et al. Jan 2006 B1
6984241 Lubbers et al. Jan 2006 B2
6986780 Rudnick et al. Jan 2006 B2
6991643 Saadat Jan 2006 B2
6996880 Kurtz, Jr. Feb 2006 B2
7021316 Leiboff Apr 2006 B2
7029490 Grafton et al. Apr 2006 B2
7033379 Peterson Apr 2006 B2
7037984 Ledlein et al. May 2006 B2
7048748 Ustuner May 2006 B1
7056331 Kaplan et al. Jun 2006 B2
7056333 Walshe Jun 2006 B2
7057135 Li Jun 2006 B2
7063716 Cunningham Jun 2006 B2
7070610 Im et al. Jul 2006 B2
7081135 Smith et al. Jul 2006 B2
7083637 Tannhauser Aug 2006 B1
7083648 Yu et al. Aug 2006 B2
7107090 Salisbury, Jr. et al. Sep 2006 B2
7112214 Peterson et al. Sep 2006 B2
7125403 Julian et al. Oct 2006 B2
7125413 Grigoryants et al. Oct 2006 B2
D532107 Peterson et al. Nov 2006 S
7138441 Zhang Nov 2006 B1
7141302 Mueller et al. Nov 2006 B2
7144401 Yamamoto et al. Dec 2006 B2
7144412 Wolf et al. Dec 2006 B2
7144415 DelRio et al. Dec 2006 B2
7150757 Fallin et al. Dec 2006 B2
7156858 Shuldt-Hempe et al. Jan 2007 B2
7156862 Jacobs et al. Jan 2007 B2
7160312 Saadat Jan 2007 B2
7172595 Goble Feb 2007 B1
7172615 Morriss et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7195634 Schmieding et al. Mar 2007 B2
7211088 Grafton et al. May 2007 B2
7214230 Brock et al. May 2007 B2
7217744 Lendlein et al. May 2007 B2
7225512 Genova et al. Jun 2007 B2
7226468 Ruff Jun 2007 B2
7232447 Gellman et al. Jun 2007 B2
7244270 Lesh et al. Jul 2007 B2
7279612 Heaton et al. Oct 2007 B1
7297142 Brock Nov 2007 B2
7322105 Lewis Jan 2008 B2
7329271 Koyfman et al. Feb 2008 B2
7371253 Leung et al. May 2008 B2
7513904 Sulamanidze et al. Apr 2009 B2
7582105 Kolster Sep 2009 B2
7600634 Malinowski et al. Oct 2009 B2
7601164 Wu Oct 2009 B2
7624487 Trull et al. Dec 2009 B2
7645293 Martinek et al. Jan 2010 B2
7806908 Ruff Oct 2010 B2
7845356 Paraschac et al. Dec 2010 B2
7857829 Kaplan et al. Dec 2010 B2
7879072 Bonutti et al. Feb 2011 B2
7919112 Pathak et al. Apr 2011 B2
8118834 Goraltchouk et al. Feb 2012 B1
8216273 Goraltchouk et al. Jul 2012 B1
8226684 Nawrocki et al. Jul 2012 B2
8246652 Ruff Aug 2012 B2
8308761 Brailovski et al. Nov 2012 B2
8403947 Ochiai Mar 2013 B2
8460338 Goraltchouk et al. Jun 2013 B2
8615856 Gelbart Dec 2013 B1
8641732 Goraltchouk et al. Feb 2014 B1
8783258 Jacobs et al. Jul 2014 B2
8932328 Megaro et al. Jan 2015 B2
9023081 Maiorino et al. May 2015 B2
9038688 Maiorino et al. May 2015 B2
20010011187 Pavcnik et al. Aug 2001 A1
20010018592 Schaller et al. Aug 2001 A1
20010018599 D'Aversa et al. Aug 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20010051807 Grafton Dec 2001 A1
20020007218 Cauthen Jan 2002 A1
20020022861 Jacobs et al. Feb 2002 A1
20020029011 Dyer Mar 2002 A1
20020029066 Foerster Mar 2002 A1
20020077448 Antal et al. Jun 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020099394 Houser et al. Jul 2002 A1
20020111641 Peterson et al. Aug 2002 A1
20020111688 Cauthen Aug 2002 A1
20020138009 Brockway et al. Sep 2002 A1
20020151932 Bryant et al. Oct 2002 A1
20020151980 Cauthen Oct 2002 A1
20020161168 Shalaby et al. Oct 2002 A1
20020165555 Stein et al. Nov 2002 A1
20020173822 Justin et al. Nov 2002 A1
20020179718 Murokh et al. Dec 2002 A1
20020198544 Uflacker Dec 2002 A1
20030004579 Rousseau et al. Jan 2003 A1
20030040795 Elson et al. Feb 2003 A1
20030052028 Lei Mar 2003 A1
20030069602 Jacobs et al. Apr 2003 A1
20030088270 Lubbers et al. May 2003 A1
20030149447 Morency Aug 2003 A1
20030158604 Cauthen, III et al. Aug 2003 A1
20030167072 Oberlander Sep 2003 A1
20030199923 Khairkhahan et al. Oct 2003 A1
20030203003 Nelson et al. Oct 2003 A1
20030204193 Gabriel et al. Oct 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030225424 Benderev Dec 2003 A1
20030229361 Jackson Dec 2003 A1
20030236551 Peterson Dec 2003 A1
20040006353 Bosley, Jr. et al. Jan 2004 A1
20040010275 Jacobs et al. Jan 2004 A1
20040010276 Jacobs et al. Jan 2004 A1
20040015187 Lendlein et al. Jan 2004 A1
20040024169 Shalaby et al. Feb 2004 A1
20040024420 Lubbers et al. Feb 2004 A1
20040030354 Leung et al. Feb 2004 A1
20040039415 Zamierowski Feb 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040050721 Roby et al. Mar 2004 A1
20040059370 Greene, Jr. et al. Mar 2004 A1
20040059377 Peterson et al. Mar 2004 A1
20040060409 Leung et al. Apr 2004 A1
20040060410 Leung et al. Apr 2004 A1
20040068293 Scalzo et al. Apr 2004 A1
20040068294 Scalzo et al. Apr 2004 A1
20040088003 Leung et al. May 2004 A1
20040093023 Allen et al. May 2004 A1
20040098051 Fallin et al. May 2004 A1
20040106949 Cohn et al. Jun 2004 A1
20040116620 Shalaby et al. Jun 2004 A1
20040138683 Shelton et al. Jul 2004 A1
20040153153 Elson et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040167575 Roby Aug 2004 A1
20040186487 Klein et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040193217 Lubbers et al. Sep 2004 A1
20040193257 Wu et al. Sep 2004 A1
20040230223 Bonutti et al. Nov 2004 A1
20040260340 Jacobs et al. Dec 2004 A1
20040265282 Wright et al. Dec 2004 A1
20040267309 Garvin Dec 2004 A1
20050004601 Kong et al. Jan 2005 A1
20050004602 Hart et al. Jan 2005 A1
20050033324 Phan Feb 2005 A1
20050034431 Dey et al. Feb 2005 A1
20050038472 Furst Feb 2005 A1
20050049636 Leiboff Mar 2005 A1
20050055051 Grafton Mar 2005 A1
20050059984 Chanduszko et al. Mar 2005 A1
20050065533 Magen et al. Mar 2005 A1
20050070959 Cichocki, Jr. Mar 2005 A1
20050080455 Schmieding et al. Apr 2005 A1
20050085857 Peterson et al. Apr 2005 A1
20050096698 Lederman May 2005 A1
20050113936 Brustad et al. May 2005 A1
20050119694 Jacobs et al. Jun 2005 A1
20050125020 Meade et al. Jun 2005 A1
20050125034 Cichocki, Jr. Jun 2005 A1
20050125035 Cichocki, Jr. Jun 2005 A1
20050149064 Peterson et al. Jul 2005 A1
20050149118 Koyfman et al. Jul 2005 A1
20050154255 Jacobs Jul 2005 A1
20050171561 Songer et al. Aug 2005 A1
20050177190 Zamierowski Aug 2005 A1
20050181009 Hunter et al. Aug 2005 A1
20050182444 Peterson et al. Aug 2005 A1
20050182445 Zamierowski Aug 2005 A1
20050186247 Hunter et al. Aug 2005 A1
20050197699 Jacobs et al. Sep 2005 A1
20050199249 Karram Sep 2005 A1
20050203576 Sulamanidze et al. Sep 2005 A1
20050209542 Jacobs et al. Sep 2005 A1
20050209612 Nakao Sep 2005 A1
20050234510 Zamierowski Oct 2005 A1
20050240220 Zamierowski Oct 2005 A1
20050267531 Ruff et al. Dec 2005 A1
20050267532 Wu Dec 2005 A1
20050277984 Long Dec 2005 A1
20050283246 Cauthen, III et al. Dec 2005 A1
20060020272 Gildenberg Jan 2006 A1
20060030884 Yeung et al. Feb 2006 A1
20060036266 Sulamanidze et al. Feb 2006 A1
20060058470 Rizk Mar 2006 A1
20060058574 Priewe et al. Mar 2006 A1
20060058799 Elson et al. Mar 2006 A1
20060058844 White et al. Mar 2006 A1
20060063476 Dore Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060064116 Allen et al. Mar 2006 A1
20060064127 Fallin et al. Mar 2006 A1
20060079469 Anderson et al. Apr 2006 A1
20060079935 Kolster Apr 2006 A1
20060085016 Eremia Apr 2006 A1
20060089525 Mamo et al. Apr 2006 A1
20060089672 Martinek Apr 2006 A1
20060111734 Kaplan et al. May 2006 A1
20060111742 Kaplan et al. May 2006 A1
20060116503 Lendlein et al. Jun 2006 A1
20060116718 Leiboff Jun 2006 A1
20060122608 Fallin et al. Jun 2006 A1
20060135994 Ruff Jun 2006 A1
20060135995 Ruff Jun 2006 A1
20060140999 Lendlein et al. Jun 2006 A1
20060142784 Kontos Jun 2006 A1
20060193769 Nelson et al. Aug 2006 A1
20060194721 Allen Aug 2006 A1
20060200062 Saadat Sep 2006 A1
20060207612 Jackson et al. Sep 2006 A1
20060229671 Steiner et al. Oct 2006 A1
20060235445 Birk et al. Oct 2006 A1
20060235447 Walshe Oct 2006 A1
20060235516 Cavazzoni Oct 2006 A1
20060241658 Cerundolo Oct 2006 A1
20060249405 Cerwin et al. Nov 2006 A1
20060253126 Bjerken et al. Nov 2006 A1
20060257629 Ledlein et al. Nov 2006 A1
20060258938 Hoffman et al. Nov 2006 A1
20060272979 Lubbers et al. Dec 2006 A1
20060276808 Arnal et al. Dec 2006 A1
20060282099 Stokes et al. Dec 2006 A1
20060286289 Prajapati et al. Dec 2006 A1
20060287675 Prajapati et al. Dec 2006 A1
20060287676 Prajapati et al. Dec 2006 A1
20060293710 Foerster et al. Dec 2006 A1
20070005109 Popadiuk et al. Jan 2007 A1
20070005110 Collier et al. Jan 2007 A1
20070016251 Roby Jan 2007 A1
20070021779 Garvin et al. Jan 2007 A1
20070027475 Pagedas Feb 2007 A1
20070038249 Kolster Feb 2007 A1
20070065663 Trull et al. Mar 2007 A1
20070088135 Lendlein et al. Apr 2007 A1
20070088391 McAlexander et al. Apr 2007 A1
20070134292 Suokas et al. Jun 2007 A1
20070135840 Schmieding Jun 2007 A1
20070135843 Burkhart Jun 2007 A1
20070151961 Kleine et al. Jul 2007 A1
20070156175 Weadock et al. Jul 2007 A1
20070167958 Sulamanidze et al. Jul 2007 A1
20070185494 Reese Aug 2007 A1
20070187861 Genova et al. Aug 2007 A1
20070208355 Ruff Sep 2007 A1
20070208377 Kaplan et al. Sep 2007 A1
20070213744 Farris Sep 2007 A1
20070213770 Drefyss Sep 2007 A1
20070219587 Accardo Sep 2007 A1
20070224237 Hwang et al. Sep 2007 A1
20070225642 Houser et al. Sep 2007 A1
20070225761 Shetty Sep 2007 A1
20070225763 Zwolinski et al. Sep 2007 A1
20070225764 Benavitz et al. Sep 2007 A1
20070227914 Cerwin et al. Oct 2007 A1
20070233188 Hunt et al. Oct 2007 A1
20070239206 Shelton, IV et al. Oct 2007 A1
20070239207 Beramendi Oct 2007 A1
20070243228 McKay et al. Oct 2007 A1
20070257395 Lindh et al. Nov 2007 A1
20070282247 Desai et al. Dec 2007 A1
20070293892 Takasu Dec 2007 A1
20080004490 Bosley, Jr. et al. Jan 2008 A1
20080004603 Larkin et al. Jan 2008 A1
20080009838 Schena et al. Jan 2008 A1
20080009888 Ewers et al. Jan 2008 A1
20080009902 Hunter et al. Jan 2008 A1
20080027273 Gutterman Jan 2008 A1
20080027486 Jones et al. Jan 2008 A1
20080046094 Han et al. Feb 2008 A1
20080058869 Stopek et al. Mar 2008 A1
20080064839 Hadba et al. Mar 2008 A1
20080066764 Paraschac et al. Mar 2008 A1
20080066765 Paraschac et al. Mar 2008 A1
20080066766 Paraschac et al. Mar 2008 A1
20080066767 Paraschac et al. Mar 2008 A1
20080077181 Jones et al. Mar 2008 A1
20080082113 Bishop et al. Apr 2008 A1
20080082129 Jones et al. Apr 2008 A1
20080086169 Jones et al. Apr 2008 A1
20080086170 Jones et al. Apr 2008 A1
20080109036 Stopek et al. May 2008 A1
20080128296 Stopek et al. Jun 2008 A1
20080131692 Rolland et al. Jun 2008 A1
20080132943 Maiorino et al. Jun 2008 A1
20080169059 Messersmith et al. Jul 2008 A1
20080195147 Stopek Aug 2008 A1
20080208358 Bellamkonda et al. Aug 2008 A1
20080215072 Kelly Sep 2008 A1
20080221618 Chen et al. Sep 2008 A1
20080234731 Leung et al. Sep 2008 A1
20080248216 Yeung et al. Oct 2008 A1
20080255611 Hunter Oct 2008 A1
20080255612 Hunter Oct 2008 A1
20080262542 Sulamanidze et al. Oct 2008 A1
20080281338 Wohlert et al. Nov 2008 A1
20080281355 Mayer et al. Nov 2008 A1
20080281357 Sung et al. Nov 2008 A1
20080300491 Bonde et al. Dec 2008 A1
20080312688 Naworocki et al. Dec 2008 A1
20090012560 Hunter et al. Jan 2009 A1
20090018577 Leung et al. Jan 2009 A1
20090043336 Yuan et al. Feb 2009 A1
20090076543 Maiorino et al. Mar 2009 A1
20090082856 Flanagan Mar 2009 A1
20090088835 Wang Apr 2009 A1
20090099597 Isse Apr 2009 A1
20090105753 Greenhalgh et al. Apr 2009 A1
20090107965 D'Agostino Apr 2009 A1
20090112236 Stopek Apr 2009 A1
20090112259 D'Agostino Apr 2009 A1
20090143819 D'Agostino Jun 2009 A1
20090200487 Maiorino et al. Aug 2009 A1
20090210006 Cohen et al. Aug 2009 A1
20090216253 Bell et al. Aug 2009 A1
20090226500 Avelar et al. Sep 2009 A1
20090228021 Leung Sep 2009 A1
20090248066 Wilkie Oct 2009 A1
20090248067 Maiorino Oct 2009 A1
20090248070 Kosa et al. Oct 2009 A1
20090250356 Kirsch et al. Oct 2009 A1
20090250588 Robeson et al. Oct 2009 A1
20090259233 Bogart et al. Oct 2009 A1
20090259251 Cohen Oct 2009 A1
20090287245 Ostrovsky et al. Nov 2009 A1
20090299407 Yuan et al. Dec 2009 A1
20090299408 Schuldt-Hempe et al. Dec 2009 A1
20090306710 Lindh et al. Dec 2009 A1
20090312791 Lindh, Sr. et al. Dec 2009 A1
20100021516 McKay Jan 2010 A1
20100023055 Rousseau Jan 2010 A1
20100057123 D'Agostino et al. Mar 2010 A1
20100063540 Maiorino Mar 2010 A1
20100071833 Maiorino Mar 2010 A1
20100087855 Leung et al. Apr 2010 A1
20100101707 Maiorino et al. Apr 2010 A1
20100140115 Kirsch Jun 2010 A1
20100160961 Nawrocki et al. Jun 2010 A1
20100163056 Tschopp et al. Jul 2010 A1
20100170812 Odierno Jul 2010 A1
20100198257 Stopek et al. Aug 2010 A1
20100211097 Hadba et al. Aug 2010 A1
20100211098 Hadba et al. Aug 2010 A1
20100239635 McClain et al. Sep 2010 A1
20100292718 Sholev et al. Nov 2010 A1
20100294103 Genova et al. Nov 2010 A1
20100294104 Genova et al. Nov 2010 A1
20100294105 Genova et al. Nov 2010 A1
20100294106 Genova et al. Nov 2010 A1
20100294107 Genova et al. Nov 2010 A1
20100298637 Ruff Nov 2010 A1
20100298639 Leung et al. Nov 2010 A1
20100298848 Leung et al. Nov 2010 A1
20100298867 Ruff Nov 2010 A1
20100298868 Ruff Nov 2010 A1
20100298871 Ruff et al. Nov 2010 A1
20100298874 Leung et al. Nov 2010 A1
20100298875 Leung et al. Nov 2010 A1
20100298876 Leung et al. Nov 2010 A1
20100298878 Leung et al. Nov 2010 A1
20100298879 Leung et al. Nov 2010 A1
20100298880 Leung et al. Nov 2010 A1
20100313723 Genova et al. Dec 2010 A1
20100313729 Genova et al. Dec 2010 A1
20100313730 Genova et al. Dec 2010 A1
20100318122 Leung et al. Dec 2010 A1
20100318123 Leung et al. Dec 2010 A1
20100318124 Leung et al. Dec 2010 A1
20110009902 Leung et al. Jan 2011 A1
20110022086 D'Agostino et al. Jan 2011 A1
20110046668 Goraltchouk et al. Feb 2011 A1
20110046669 Goraltchouk et al. Feb 2011 A1
20110056859 Kozlowski Mar 2011 A1
20110093010 Genova et al. Apr 2011 A1
20110106152 Kozlowski May 2011 A1
20110125188 Goraltchouk et al. May 2011 A1
20110130774 Criscuolo et al. Jun 2011 A1
20110166597 Herrmann et al. Jul 2011 A1
20110251640 Lauria Oct 2011 A1
20110264138 Avelar et al. Oct 2011 A1
20110288583 Goraltchouk et al. Nov 2011 A1
20110319932 Avelar et al. Dec 2011 A1
20120109188 Viola May 2012 A1
20120116449 Kirsch et al. May 2012 A1
20120245659 Matthews Sep 2012 A1
20130072971 Kim et al. Mar 2013 A1
20130103078 Longo et al. Apr 2013 A1
20130165971 Leung et al. Jun 2013 A1
20130172931 Gross et al. Jul 2013 A1
20130180966 Gross et al. Jul 2013 A1
20130204295 Hunter et al. Aug 2013 A1
20130226233 D'Agostino et al. Aug 2013 A1
20130226234 Avelar et al. Aug 2013 A1
20130238021 Gross et al. Sep 2013 A1
20130238022 Gross et al. Sep 2013 A1
20130245684 Ruff et al. Sep 2013 A1
20130317545 Gross et al. Nov 2013 A1
20130345745 Kim Dec 2013 A1
20140039527 Avelar et al. Feb 2014 A1
Foreign Referenced Citations (156)
Number Date Country
1014364 Sep 2003 BE
2309844 Dec 1996 CA
WO 2009132284 Oct 2009 CA
2640420 Sep 2004 CN
01810800 Jun 1970 DE
02618662 Nov 1977 DE
03227984 Feb 1984 DE
04302895 Aug 1994 DE
19618891 Apr 1997 DE
19802213 Aug 1999 DE
19833703 Feb 2000 DE
10245025 Apr 2004 DE
102005004317 Jun 2006 DE
0121362 Sep 1987 EP
0329787 Aug 1989 EP
0513713 May 1992 EP
0428253 Jul 1994 EP
0632999 Jan 1995 EP
0513736 Feb 1995 EP
0464479 Mar 1995 EP
0464480 Mar 1995 EP
0726062 Aug 1996 EP
0576337 Mar 1997 EP
0576337 Mar 1997 EP
0760228 Mar 1997 EP
0574707 Aug 1997 EP
0612504 Nov 1997 EP
0558993 Apr 1998 EP
0913123 May 1999 EP
0914802 May 1999 EP
0916310 May 1999 EP
0664198 Jun 1999 EP
0960600 Dec 1999 EP
0717958 Aug 2000 EP
0705567 Mar 2002 EP
0673624 Aug 2002 EP
0839499 Sep 2003 EP
0755656 Dec 2003 EP
1075843 Feb 2005 EP
1525851 Apr 2005 EP
1532942 May 2005 EP
0826337 Dec 2005 EP
0991359 Nov 2007 EP
1852071 Nov 2007 EP
2036502 Mar 2009 EP
1948261 Nov 2010 EP
2245992 Nov 2010 EP
1726317 Jul 2012 EP
2619129 Feb 1989 FR
2693108 Jan 1994 FR
0267007 Mar 1927 GB
1091282 Nov 1967 GB
1428560 Jul 1973 GB
1506362 Apr 1978 GB
1508627 Apr 1978 GB
47-044390 Nov 1972 JP
1506362 Apr 1978 JP
54-116419 Sep 1979 JP
63-288146 Nov 1988 JP
64-013034 Jan 1989 JP
001113091 May 1989 JP
3-080868 Apr 1991 JP
3-165751 Jul 1991 JP
4-096758 Mar 1992 JP
4-266749 Sep 1992 JP
9-103477 Apr 1997 JP
410085225 Apr 1998 JP
11-313826 Nov 1999 JP
011332828 Dec 1999 JP
2002-059235 Feb 2002 JP
2003-275217 Sep 2003 JP
2007-502281 Feb 2007 JP
2009-118967 Jun 2009 JP
10-2005-0072908 Jul 2005 KR
6013299 Feb 2006 KR
501224 Mar 2002 NZ
531262 Dec 2005 NZ
2139690 Oct 1999 RU
2175855 Nov 2001 RU
2241389 Dec 2004 RU
2268752 Jan 2006 RU
560599 Jun 1977 SU
1745214 Jul 1992 SU
1752358 Aug 1992 SU
WO 8600020 Jan 1986 WO
WO 8701270 Mar 1987 WO
WO 8809157 Dec 1988 WO
WO 8905618 Jun 1989 WO
WO 9009149 Aug 1990 WO
WO 9014795 Dec 1990 WO
WO 9222336 Dec 1992 WO
WO 9516399 Jun 1995 WO
WO 9529637 Nov 1995 WO
WO 9606565 Mar 1996 WO
WO 9852473 Nov 1998 WO
WO 9855031 Dec 1998 WO
WO 9921488 May 1999 WO
WO 9933401 Jul 1999 WO
WO 9952478 Oct 1999 WO
WO 9959477 Nov 1999 WO
WO 9962431 Dec 1999 WO
WO 0051658 Sep 2000 WO
WO 0051685 Sep 2000 WO
WO 0106952 Feb 2001 WO
WO 0156626 Aug 2001 WO
WO 03001979 Jan 2003 WO
WO 03003925 Jan 2003 WO
WO 03045255 Jun 2003 WO
WO 03077772 Sep 2003 WO
WO 03092758 Nov 2003 WO
WO 03103733 Dec 2003 WO
WO 03103972 Dec 2003 WO
WO 03105703 Dec 2003 WO
WO 2004014236 Feb 2004 WO
WO 2004030517 Apr 2004 WO
WO 2004030520 Apr 2004 WO
WO 2004030704 Apr 2004 WO
WO 2004030705 Apr 2004 WO
WO 2004062459 Jul 2004 WO
WO 2004100801 Nov 2004 WO
WO 2004112853 Dec 2004 WO
WO 2005016176 Feb 2005 WO
WO 2005074913 Aug 2005 WO
WO 2005096955 Oct 2005 WO
WO 2005096956 Oct 2005 WO
WO 2005112787 Dec 2005 WO
WO 2006005144 Jan 2006 WO
WO 2006012128 Feb 2006 WO
WO 2006037399 Apr 2006 WO
WO 2006061868 Jun 2006 WO
WO 2006079469 Aug 2006 WO
WO 2006082060 Aug 2006 WO
WO 2006099703 Sep 2006 WO
WO 2006138300 Dec 2006 WO
WO 2007005291 Jan 2007 WO
WO 2007005296 Jan 2007 WO
WO 2007038837 Apr 2007 WO
WO 2007053812 May 2007 WO
WO 2007089864 Aug 2007 WO
WO 2007112024 Oct 2007 WO
WO 2007133103 Nov 2007 WO
WO 2008128113 Oct 2008 WO
WO 2008150773 Dec 2008 WO
WO 2009042841 Apr 2009 WO
WO 2009068252 Jun 2009 WO
WO 2009087105 Jul 2009 WO
WO 2009097556 Aug 2009 WO
WO 2009151876 Dec 2009 WO
WO 2010008815 Jan 2010 WO
WO 2010052007 May 2010 WO
WO 2011025760 Mar 2011 WO
WO 2011053375 May 2011 WO
WO 2011090628 Jul 2011 WO
WO 2011139916 Nov 2011 WO
WO 2011140283 Nov 2011 WO
WO 2015069042 May 2015 WO
Non-Patent Literature Citations (169)
Entry
US 8,663,276, 03/2014, Leung et al. (withdrawn)
Extended European Search Report re: 11839516 dated Aug. 14, 2014.
Bacci, Pier Antonio, “Chirurgia Estetica Mini Invasiva Con Fili Di Sostegno”, Collana di Arti, Pensiero e Scienza; Minelli Editore—2006; 54 pgs.
Behl, Marc et al., “Shape-Memory Polymers”, Materials Today Apr. 2007; 10(4); 20-28.
Belkas, J. S. et al., “Peripheral nerve regeneration through a synthetic hydrogel nerve tube”, Restorative Neurology and Neuroscience 23 (2005) 19-29.
Bellin, I. et al., “Polymeric triple-shape materials”, Proceedings of the National Academy of Sciences of the United States of America Nov. 28, 2006; 2103(48):18043-18047.
Boenisch, U.W. et al ‘Pull-Out strength and stiffness of meniscal repair using absorbable arrows or Ti-Cron vertical and horizontal loop sutures’ American Journal of Sports Medicine, Sep.-Oct. 1999 vol. 27, Issue 5, pp. 626-631.
Buckley, P.R. ‘Actuation of Shape Memory Polymer using Magnetic Fields for Applications in Medical Devices’ Master of Science in Mechanical Engineering in Massachusetts Institute of Technology Jun. 2003, 144 pages.
Buncke, Jr., H.J. et al ‘The Suture Repair of One-Millimeter Vessels, microvascular surgery’ (1966) Report of First Conference; Oct. 6-7 pp. 24-35.
Bunnell, S. ‘Gig pull-out suture for tendons’ J Bone Joint Surg. Am (1954) vol. 36A, No. 4 pp. 850-851.
CCPR Centro De Cirurgia Plastica e Reabilitacao Up Lifting (Aptos Threads) http://ccpr.com.br/upl-l.htm, Aug. 19, 2002 pp. 1-2.
Dahlin, Lars, “Techniques of Peripheral Nerve Repair”, Scandinavian Journal of Surgery 97: 310-316, 2008.
Datillo, Jr., P.P. ‘Knotless Bi-directional Barbed Absorbable Surgical Suture’ Dissertation submitted to the Graduate Faculty of North Carolina State University Textile Management and Technology Nov. 2002, 75 pages.
Datillo, Jr. P.P. et al ‘Medical Textiles: Application of an Absorbable Barbed Bi-Directional Surgical Suture’ (2002) The Journal of Textile and Apparel Technology and Management vol. 2, Issue 2, pp. 1-5.
Datillo, Jr., P. et al ‘Tissue holding performance of knotless absorbable sutures’ Society for Biomaterials 29th Annual Meeting Transactions (2003) p. 101.
Declaration of Dr. Gregory L. Ruff, dated Aug. 19, 2005, 8 pages, with Exhibits A-E.
De Persia, Raúl et al., “Mechanics of Biomaterials: Sutures After the Surgery”, Applications of Engineering Mechanics in Medicine, GED—University of Puerto Rico, Mayaguez May 2005, p. F1-F27.
Delorenzi, C.L., “Barbed Sutures: Rationale and Technique”, Aesthetic Surg. J. Mar. 2006 26(2): 223-229.
Demyttenaere, Sebastian V. et al., “Barbed Suture for Gastrointestinal Closure: A Randomized Control Trial”, Surgical Innovation; vol. 16, No. 3; Sep. 2009; pp. 237-242.
Einarsson, Jon I. et al., “Barbed Suture, now in the toolbox of minimally invasive gyn surgery”, OBG Management; vol. 21, No. 9; Sep. 2009; pp. 39-41.
Gross, Alex, “Physician perspective on thread lifts”, Dermatology Times Feb. 2006 27(2): 2 pages.
Gross, R.A. et al ‘Biodegradable Polymers for the Environment’ Science (2002) vol. 297, Issue 5582 pp. 803.
Han, H. et al ‘Mating and Piercing Micromechanical Suture for Surface Bonding Applications’ (1991) Proceedings of the 1991 Micro Electro Mechanical Systems (MEMS>91), an Investigation of Micro Structures, Sensors, Actuators, Machines and Robots pp. 253-258.
Ingle, N.P. et al ‘Barbed Suture Anchoring Strength: Applicability to Dissimilar Polymeric Materials’ College of Textiles, North Carolina State University, 7th World Biomaterials Congress 2004, 1 page.
Ingle, N.P. et al ‘Mechanical Performance and Finite Element Analysis of Bi-directional Barbed Sutures’ Master of Science in Textile Technology & Management at North Carolina State University Aug. 2003, 126 pages.
Ingle, N.P. et al., “Optimizing the tissue anchoring performance of barbed sutures in skin and tendon tissues”, Journal of Biomechanics 43 (2010); pp. 302-309.
Ingle, Nilesh P et al., “Testing the Tissue-holding Capacity of Barbed Sutures”, College of Textiles, North Carolina State University, Fiber Science, the Next Generation Oct. 17-19, 2005, New Jersey Institute of Technology, Newark, NJ, 4 pages.
Jennings et al ‘A New Technique in primary tendon repair’ Surg. Gynecol. Obstet. (1952) vol. 95, No. 5 pp. 597-600.
Kaminer, M. et al., “ContourLift™: A New Method of Minimally Invasive Facial Rejuvenation”, Cosmetic Dermatology Jan. 2007; 20(1): 29-35.
Kelch et al., “Shape-memory Polymer Networks from Olio[(Σ-hydroxycaproate)-co-glycolate]dimethacrylates and Butyl Acrylate with Adjustable Hydrolytic Degradation Rate”, Biomacromolecules 2007;8(3):1018-1027.
Khademhosseini, Ali et al., “Nanobiotechnology Drug Delivery and Tissue Engineering”, Chemical Engineering Progress 102:38-42 (2006).
Kuniholm J.F. et al ‘Automated Knot Tying for Fixation in Minimally Invasive, Robot Assisted Cardiac Surgery’ Master of Science in Mechanical & Aerospace Engineering at North Carolina State University May 2003, 71 pages.
Lendlein, A. et al ‘Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications’ (2002) Science vol. 296 pp. 1673-1676.
Lendlein, A. et al ‘Shape-Memory Polymers’ Agnew Chem. Int. Ed. (2002) vol. 41 pp. 2034-2057.
Leung, J. et al ‘Barbed, Bi-directional Medical Sutures: Biomechanical Properties and Wound Closure Efficacy Study’ 2002 Society for Biomaterials 28th Annual Meeting Transactions 1 page.
Leung, J. et al ‘Barbed, Bi-directional Surgical Sutures’ International Conference & Exhibition on Healthcare & Medical Textiles, Jul. 8-9, 2003 pp. 1-8.
Leung, J. et al ‘Barbed, Bi-directional Surgical Sutures: In Vivo Strength and Histopathology Evaluations’ 2003 Society for Biomaterials 29th Annual Meeting Transactions pp. 100.
Leung, J. et al., “Barbed Suture Technology: Recent Advances”, Medical Textiles 2004, Advances in Biomedical Textiles and Healthcare Products, Conference Proceedings, IFAI Expo 2004, Oct. 26-27, 2004, Pittsburgh, PA., pp. 62-80.
Leung, J. et al ‘Performance Enhancement of a Knotless Suture via Barb Geometry Modifications’ 7th World Biomaterials Congress 2004, 1 page.
Li, Y.Y. et al ‘Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications’ (2003) Science vol. 299 pp. 2045-2047.
Liu, Changdeng et al., “Shape Memory Polymer with Improved Shape Recovery”, Mater. Res. Soc. Symp. Proc. vol. 855E, 2005 Materials Research Society, pp. W4.7.1-W4.7.6.
Madduri, Srinivas, et al., “Neurotrophic factors release from nerve conduits for peripheral axonal regeneration”, European Cells and Materials vol. 16; Suppl. 1 (2008), p. 14.
Madhave et al ‘A biodegradable and biocompatible gecko-inspired tissue adhesive’ PNAS 105(7) pp. 2307-2312 (2008).
Maitland et al., “Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms”, Journal of Biomedical Optics May/Jun. 2007;12(3): pp. 030504-1 to 030504-3.
Malina, M. et al ‘Endovascular AAA Exclusion: Will Stents with Hooks and Barbs Prevent Stent-Graft Migration’ Journal Endovascular Surgery (1998) vol. 5 pp. 310-317.
Mansberger et al ‘A New Type Pull-Out Wire for Tendon Surgery: A Preliminary Report’ Department of Surgery, University Hospital and University of Maryland School of Medicine, Baltimore, Maryland, Received for Publication May 10, 1951 pp. 119-121.
Martin, D.P. et al ‘Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial’ Biochemical Engineering Journal vol. 16 (2003) pp. 97-105.
Mason, M.L. ‘Primary and Secondary Tendon Suture. A discussion of the significance of technique in tendon surgery’ (1940) Surg Gynecol Obstet 70.
McKee, GK ‘Metal anastomosis tubes in tendon suture’ The Lancet (1945) pp. 659-660.
McKenzie ‘An Experimental Multiple Barbed Suture for the Long Flexor Tendons of the Palm and Fingers’ The Journal of Bone and Joint Surgery (1967) vol. 49B, No. 3 pp. 440-447.
Middleton and Tipton ‘Synthetic Biodegradable Polymers as Medical Devices’ (1998) Medical Plastics and Biomaterials Magazine, 9 pages.
Moran et al., “Bidirectional-Barbed Sutured Knotless Running Anastomosis v Classic van Velthovan in a Model System”, Journal of Endourology Oct. 2007; 21(10); 1175-1177.
Muliner, “Metal Foam Has a Good Memory”, Dec. 18, 2007 Original story at <http.//www.physorg.com/news117214996.html>.
Murtha et al., “Evaluation of a Novel Technique for Wound Closure Using a Barbed Suture”, Journal of the American Society of Plastic Surgeons 2006; 117(6); 1769-1780.
Nie, Zhihong and Kumacheva, Eugenia, “Patterning surfaces with functional polymers”, Nature Materials vol. 7(2008): 277-290.
Paul, Malcolm D., “Bidirectional Barbed Sutures for Wound Closure: Evolution and Applications”, Journal of the American College of Certified Wound Specialists (2009) 1, 51-57.
Paul, Malcolm D. and Rui Avelar, “Quill™ SRS Techniques & Procedures A Novel Approach to Soft Tissue Approximation”, Canada, Angiotech Pharmaceuticals, Inc., First Edition Aug. 2007: 20 pages.
Paul, Malcolm D. and Rui Avelar, “Quill™ SRS Techniques & Procedures A Novel Approach to Soft Tissue Approximation”, Canada, Angiotech Pharmaceuticals, Inc., Second Edition Aug. 2008: 20 pages.
Paul, Malcolm D. and Rui Avelar, “Quill™ SRS Techniques & Procedures A Novel Approach to Soft Tissue Approximation”, Canada, Angiotech Pharmaceuticals, Inc., Third Edition 2009, 8 2007-2009: 27 pages.
Paul, Malcolm D. and Rui Avelar, “Quill™ SRS Techniques & Procedures a Novel Approach to Soft Tissue Approximation”, Canada, Angiotech Pharmaceuticals, Inc., Fourth Edition 2010, 8 2007-2010: 27 pages.
Paul, Malcolm D., “Using Barbed Sutures in Open/Subperiosteal Midface Lifting”, Aesthetic Surgery Journal 2006(26): 725-732.
Potenza, A. ‘Tendon Healing Within the Flexor Digital Sheath in the Dog: An Experimental Study’ Journal of Bone & Joint Surgery (1962) vol. 44A No. 1 pp. 49-64.
Pulvertaft ‘Suture Materials and Tendon Junctures’ American Journal of Surgery (1965) vol. 109 pp. 346-352.
Quill Medical, Inc. ‘Barbed Sutures, wrinkle filters give patients more innovative, non-surgical options’ Press Release of Program presented at American Society of Plastic Surgeons annual scientific meeting; Philadelphia, Oct. 9, 2004 3 pages.
Quill Medical, Inc. ‘Quill Medical's Novel-Self-Anchoring Surgical Suture Approved for Sale in Europe’ Press Release; Research Triangle Park, N.C. May 10, 2004, 1 page.
Quill Medical, Inc., “Quill Medical, Inc. Receives FDA Clearance for First-in-Class Knot-Less Self-Anchoring Surgical Suture”, Press Release; Research Triangle Park, N.C., Nov. 4, 2004, 1 page.
Richert, Ludovic, et al., “Surface Nanopatterning to Control Cell Growth”, Advanced Materials 2008(15): 1-5.
Rodeheaver, G.T. et al., “Barbed Sutures for Wound Closure: In Vivo Wound Security, Tissue Compatibility and Cosmesis Measurements”, Society for Biomaterials 30th Annual Meeting Transactions, 2005, 2 pages.
Rofin-Baasel ‘Laser Marking on Plastic Materials’ (2001) RB50.0, Rofin-Baasel Inc. 2 pages.
Ruff, Gregory, “Technique and Uses for Absorbable Barbed Sutures”, Aesthetic Surgery Journal Sep./Oct. 2006; 26:620-628.
Scherman, Peter et al., “Sutures as longitudinal guides for the repair of nerve defects-Influence of suture numbers and reconstruction of nerve bifurcations”, Restorative Neurology and Neuroscience 23 (2005) 79-85.
Schmid A. et al ‘The outspreading anchor cord. A material for arthroscopic suturing of a fresh anterior cruciate ligament rupture’ Surgical Clinic of the University of Gottingen (1987) pp. 417-426.
Semenov, G.M. et al ‘Surgical Suture’ (2001) Piter, Saint Petersburg, pp. 12-13 and 92-98.
Serafetinides, AA ‘Short pulse laser beam interactions with polymers biocompatible materials and tissue’ Proce SPIE vol. 3052 (1996) pp. 111-123.
Sulamanidze, M. et al., “APTOS Suture Lifting Methods: 10 Years of Experience”, Clin Plastic Surg 36 (2009); pp. 281-306.
Sulamanidze, M.A. et al ‘Clinical aspects of bloodless facelift using APTOS filaments’ A.V. Vishnevsky Institute of Surgery, Bol'shaya Serpukhovskaya ul, 7, 113811, Moscow, Russia (2002) pp. 24-34.
Sulamanidze, M.A. et al ‘Facial lifting with Aptos threads’ International Journal of Cosmetic Surgery and Aesthetic Dermatology (2001) No. 4 pp. 1-8.
Sulamanidze, M.A. et al ‘Management of Facial Rhytids by Subcutaneous Soft Tissue Dissection’ (2000) International Journal of Cosmetic Surgery and Aesthetic Dermatology vol. 2 No. 4 pp. 255-259.
Sulamanidze, M.A. et al ‘Morphological foundations of facelift using APTOS filaments’ Bolshaya Serpukhovskaya ul 27, 113811 Moscow, Russia (2002) pp. 19-26.
Sulamanidze, M.A. et al ‘Removal of Facial Soft Tissue Ptosis with Special Threads’ Dermatol Surg (2002) vol. 28 pp. 367-371.
Sulamanidze, MD, M.A., et al., “Soft tissue lifting in the mid-face: old philosophy, new approach-internal stitching technique (APTOS Needle)”, Plastic and Aesthetic Surgery Clinic Total Sharm, Moscow, Russia, (2005):15-29.
Sulzle, Inc. B.G. et al Drilled End Surgical Needles Jul. 2002 Syracuse, New York.
Surgical Specialties Corporation, “Wound Closure Catalog”; Summer 2005, 5 pages.
Szarmach, R. et al ‘An Expanded Surgical Suture and Needle Evaluation and Selection Program by a Healthcare Resource Management Group Purchasing Organization’ Journal of Long-Term Effects of Medical Implants (2003) vol. 13 No. 3 pp. 155-170.
Tan E.L. et al., “A wireless, passive strain sensor based on the harmonic response of magnetically soft materials”, Smart Materials and Structures 17 (2008): pp. 1-6.
Verdan, C. ‘Primary Repair of Flexor Tendons’ Journal of Bone and Joint Surgery (1960) vol. 42, No. 4 pp. 647-657.
Villa, Mark T. et al., “Barbed Sutures: A Review of Literature”, Plastic and Reconstructive Surgery; Mar. 2008; vol. 121, No. 3; pp. 102e-108e.
Wu. W. ‘Barbed Sutures in Facial Rejuvenation’ Aesthetic Surgery Journal (2004) vol. 24 pp. 582-587.
Zoltan, J. ‘Cicatrix Optimia: Techniques for Ideal Wound Healing’ English language edition University Park Press Baltimore (1977) Chapter 3 pp. 54-55.
International Search Report and Written Opinion for PCT/US2011/060069 dated May 18, 2012.
Communication from EPO re: 10000486 dated Apr. 4, 2011, 4 pages.
European Search Report re: EP05025816 dated Jun. 23, 2006.
European Search Report for EP07006258.3 dated May 4, 2007, 4 pages.
European Search Report for EP07015906 dated Oct. 2, 2007.
European Search Report for EP07015905.8 dated Oct. 2, 2007, 2 pages.
European Search Report for EP07016222 dated Jan. 7, 2008.
European Search Report for EP09014651 dated Jan. 12, 2010.
European Search Report for EP10000629.5 dated Mar. 10, 2010, 4 pages.
European Search Report re: EP10000486 dated Apr. 23, 2010.
European Search Report re: 10004453 dated Jun. 15, 2010.
European Search Report for EP10011871.0 dated Dec. 3, 2010, 2 pages.
European Search Report for EP10011868.6 dated Dec. 6, 2010, 2 pages.
European Search Report for EP10011869 dated Jan. 20, 2011.
European Search Report for EP10011872 dated Apr. 20, 2011.
European Search Report for EP10012437 dated Apr. 28, 2011.
European Search Report for EP10186592.1 dated Jan. 19, 2011, 2 pages.
European Search Report for EP10184766 dated Apr. 20, 2011.
Extended European Search Report re: 07015905.8 dated Oct. 23, 2007.
Extended European Search Report re: 07016222.7 dated Jan. 30, 2008.
International Preliminary Examination Report re: PCT/US1998/10478 dated Dec. 11, 1999.
International Preliminary Report re: PCT/US2007/002688 dated Aug. 14, 2008.
International Preliminary Report re: PCT/US2008/060127 dated Oct. 13, 2009.
International Preliminary Report re: PCT/US2008/087788 dated Jun. 22, 2010.
International Preliminary Report re: PCT/US2009/032693 dated Aug. 3, 2010.
International Preliminary Report re: PCT/US2009/040545 dated Oct. 19, 2010.
International Preliminary Report re: PCT/US2009/041685 dated Oct. 26, 2010.
International Preliminary Report re: PCT/US2009/044274 dated Nov. 17, 2010.
International Preliminary Report re: PCT/US2011/035431 dated Nov. 6, 2012.
International Preliminary Report re: PCT/US2011/059238 dated May 7, 2013.
International Search Report for PCT/US1994/09631 dated Dec. 9, 1994.
International Search Report for PCT/US1998/10478 dated Sep. 23, 1998.
International Search Report for PCT/US2002/20449 dated May 20, 2003.
International Search Report for PCT/US2002/027525 dated Dec. 9, 2002, 3 pages.
International Search Report for PCT/US2003/030424 dated Nov. 1, 2004.
International Search Report for PCT/US2003/030664 dated May 25, 2004.
International Search Report for PCT/2003/030666 dated Dec. 15, 2004.
International Search Report for PCT/US2003/025088 dated Dec. 29, 2003.
International Search Report re: PCT/US2003/030674 dated Sep. 2, 2004.
International Search Report re: PCT/US2004/014962 dated Feb. 24, 2005.
International Search Report for PCT/US2005/017028 dated Mar. 26, 2008.
International Search Report for PCT/US2007/002688 dated Oct. 22, 2007.
International Search Report for PCT/US2007/074658 dated Jun. 12, 2007, 3 pages.
International Search Report for PCT/US2008/060127 dated Sep. 23, 2008, 5 pages.
International Search Report for PCT/US2008/064921 dated Nov. 19, 2008, 3 pages.
International Search Report for PCT/US2008/075849 dated Jun. 23, 2009, 19 pages.
International Search Report for PCT/US2008/077813 dated Mar. 31, 2009.
International Search Report for PCT/US2008/082009 dated Feb. 16, 2010.
International Search Report for PCT/US2009/032693 dated Aug. 26, 2009.
International Search Report for PCT/US2009/034703 dated Sep. 28, 2009.
International Search Report for PCT/US2009/040545 dated Oct. 29, 2009.
International Search Report for PCT/US2009/063081 dated Aug. 2, 2010.
International Search Report for PCT/US2009/041685 dated Dec. 22, 2009.
International Search Report for PCT/US2009/044274 dated Jan. 15, 2010.
International Search Report for PCT/US2010/056898 dated Aug. 2, 2011.
International Search Report for PCT/US2010/060889 dated Oct. 11, 2011.
International Search Report for PCT/US2011/034660 dated Feb. 8, 2012.
International Search Report for PCT/US2011/035270 dated Jan. 12, 2012.
International Search Report for PCT/US2011/035271 dated Jan. 12, 2012.
International Search Report re: PCT/US2011/035431 dated Jan. 12, 2012.
International Search Report re: PCT/US2011/040014 dated Feb. 9, 2012.
International Search Report for PCT/US2011/059238 dated May 21, 2012.
International Search Report for PCT/US2012/030441 dated Sep. 27, 2012.
International Search Report for PCT/US2012/041001 dated Sep. 26, 2012.
Partial European Search Report re: EP05025816 dated Mar. 20, 2006.
Singapore Search Report for Singapore Patent Application No. 200702625-5 dated Nov. 26, 2008, 7 pages.
Singapore Search Report for Singapore Patent Application No. 200702350-0 dated Nov. 26, 2008, 6 pages.
Singapore Search Report for Singapore Patent Application No. 200703688-2 dated Nov. 26, 2008, 7 pages.
Singapore Search Report for Singapore Patent Application No. 201103117-6 dated Mar. 8, 2013.
Supplementary European Search Report re: EP98923664 dated Jun. 12, 2001.
Supplementary European Search Report re: EP03752630 dated Nov. 17, 2005.
Supplementary European Search Report re: 03770556 dated Nov. 17, 2005.
Supplementary European Search Report re: 03754965 dated Nov. 18, 2005.
Supplementary European Search Report re: EP03785177 dated May 19, 2009.
Supplementary European Search Report re: 05750101 dated Apr. 7, 2010.
Supplementary European Search Report re: 07017663 dated Nov. 7, 2007.
Written Opinion of the International Searching Authority re: PCT/US2010/056898 dated Aug. 2, 2011.
Written Opinion of the International Searching Authority re: PCT/US2012/041001 dated Sep. 26, 2012.
Croce, E. et al ‘Intracorporeal Knot-Tying and Suturing Techniques in Laparoscopic Survery: Technical Details’ Journal of the Society of Laparoendoscopic Surgeons (2000) vol. 4 pp. 17-22.
Jeong, H.E. et al ‘A nontransferring dry adhesive with hierarchial polymer nanohairs’ PNAS 106 (14) pp. 5639-5644 (2009).
Related Publications (1)
Number Date Country
20130226233 A1 Aug 2013 US
Provisional Applications (2)
Number Date Country
61411918 Nov 2010 US
61412389 Nov 2010 US