The present invention relates generally the technical field of fitness and rehabilitation. More particularly, the present invention is specific to training and rehabbing the human skeletal musculature.
Work-out facilities in public and/or private gyms are supported by trainers with particular expertise in achieving a customer's fitness goals. A customer usually trains for achieving a certain fitness goal. The trainer develops corresponding fitness programs and exercise routines. The outcomes of these routines and programs are assessed over time as the customer endures weeks if not months of physical activities. Routines and exercise programs are altered after this longer term feedback has occurred. However, the trainer and customer have little knowledge on the immediate impact of any one specific exercise routine. For example, while performing a particular exercise on a given exercise machine, neither the trainer nor the customer are able to accurately assess the impact of the current activity.
In a similar fashion, athletes, stroke victims, elderly people, and generally people who are going through physical therapy to regain or strengthen certain movements, are left without any immediate feedback on the effectiveness of the current exercise.
Physical signals of the human body can be extracted by sensors and analyzed to evaluate health conditions. A surface EMG sensor is conventionally used to measure activation level of the muscles. Generally, a cathode, anode, electrodes, and a ground electrode are used in surface EMG sensors. However, the signal obtained from the surface of the skin with conventional EMG sensors has a large noise ratio that hinders the performance and accuracy of the EMG sensor. Therefore, a design with higher quality and accuracy is needed.
Thus, there is a need for an accurate sEMG sensor of high quality that is configured for use on an individual during exercise and/or physical therapy. Such a device is preferably designed to minimize the noise ratio experienced from the placement of sensors on the skin, and provides instant feedback pertaining to the exercises performed by the user in real-time.
The present invention provides a system for monitoring and displaying surface EMG data of a targeted muscle group. The system comprises a stand-alone surface EMG sensor and a communication device (such as a smart phone) with a corresponding application program (app) to process, record, and display the resulting data provided by the present invention.
The surface EMG sensor is placed on the skin near the area of the muscle to be treated, and senses surface EMG potentials when activated. The surface EMG sensor of the present invention is preferably comprised of the following components:
The amplification circuit of the present invention contains an instrumentation amplifier, a DC offset circuit, and a operational amplifier. Preferably, the instrumentation amplifier employed by the present invention is an AD8220 JFET input, and the operational amplifier is CMOS. The processing program is downloaded in a Bluetooth chip with a microprocessor.
In the preferred embodiment of the present invention, the preferred sampling frequency of the Bluetooth chip is 1000 Hz. Additionally, the wireless transmitter terminal is a Bluetooth radio, however it is envisioned that alternate embodiments of the present invention may employ a conventional Wi-Fi radio. Preferably, the mobile device employed by the present invention is a smart phone or similar smart device.
The mobile device receives the sensed EMG potential and processed signals. A specific proposed pre-loaded application uses the received signals and allows for the user to receive feedback to his/her exercise routine. The application has different modules to allow the user to select what muscle group is being targeted and what kind of exercise is being conducted. The application on the smart Bluetooth and/or Wi-Fi enabled device also allows for statistical measures of the received EMG signal in order to help with providing instantaneous and long term feedback to the user. The real-time feedback provided to the user allows for adjustments to the exercise routine of the user while performing the exercise, as well as for assessing the effectiveness of the chosen exercise routine on the targeted muscle group.
The present invention will be better understood with reference to the appended drawing sheets, wherein:
The present invention is a sEMG home training device and system configured for personal use by an individual while exercising or performing physical therapy. As shown in
The sensor box (10) of the present invention can be set on any location on human skin. As shown in
S101, collecting analogue sEMG signals of particular muscle group by sEMG sensor that has four prongs on one side of the sensor box. Middle two prongs, the second silver prong (22) and the third silver prong (23) senses surface EMG potential, and produces analogue signals. The other two prongs, the first silver prong (21) and the fourth silver prong (24) provide ground signals. Preferably, the prongs are coated with silver having 99.99% purity to improve the sampling efficiency, as well as the signal quality, ensuring a reduction of noise.
S102, magnifying and transferring analogue sEMG signals to digital signals. Before magnification, filtering is done to the analogue sEMG signals to dele noises.
Referring now to
Referring now to
Referring now to
S103, processing the digital sEMG signals to get characteristic output values. This step is preferably accomplished by using a Bluetooth chip equipped with a microprocessor. It should be understood that the present invention does not restrict the amplification circuits, and that any circuit that can achieve the signal amplification objective can be used. The sampling frequency is preferably 1000 Hz in order to cover the sEMG frequency bandwidth but also different frequencies can be used.
S104, sending the output value by wireless communication to mobile devices. The wireless communication can be any wireless techniques and this invention has no restriction on the range or type of wireless transmission employed. Preferably, this invention uses Bluetooth as the transmitter terminal, and smart phone as the mobile device. A Bluetooth radio is preferably disposed within the smart phone, as well as in the sensor box (10) of the present invention.
A specific proposed pre-loaded application (62) on the mobile device uses the processed EMG signal, and allows for the user to receive feedback pertaining to his/her exercise routine. As seen in
Based on the above system, this invention provides a sEMG home trainer device. As seen in
The application (or ‘App’) can be pre-loaded on the storage of mobile devices to instruct and guide muscle exercising and rehabilitation functions.
Alternate embodiments of the present invention include variations on the size, color, and shape of the sensor box (10) of the present invention. Similarly, it is envisioned that alternate forms of wireless technology may be employed in lieu of a Bluetooth radio, including WiFi or RF data transfer. The nature of the power source employed within the sensor box (10) is subject to change with advancements in small battery technology.
Having illustrated the present invention, it should be understood that various adjustments and versions might be implemented without venturing away from the essence of the present invention. Further, it should be understood that the present invention is not solely limited to the invention as described in the embodiments above, but further comprises any and all embodiments within the scope of this application.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the present invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The exemplary embodiment was chosen and described in order to best explain the principles of the present invention and its practical application, to thereby enable others skilled in the art to best utilize the present invention and various embodiments with various modifications as are suited to the particular use contemplated.
This application is a non-provisional application of provisional patent application No. 62/145,500, filed on Apr. 9, 2015, and priority is claimed thereto.
Number | Date | Country | |
---|---|---|---|
62145500 | Apr 2015 | US |