The present invention relates to EMI-EMC shielding for opto-electronic circuits and, more particularly, to the provision of a shielding arrangement for a silicon-based opto-electronic circuits formed within a silicon-on-insulator (SOI) structure.
Optical transmitters and receivers are widely used in various communication applications, such as for Local Area Networks (LANs). An optical transmitter typically produces either analog or digital optical signals based upon input electrical signals. Similarly, an optical receiver receives optical input signals and produces electrical output signals. For many applications, two-way communications are desirable. Accordingly, an optical transmitter and receiver may be paired within a housing and thus be defined as an “optical transceiver module”. In a number of instances, a relatively large number of such two-way communication links may be required (providing a desired “high port density”).
Unfortunately, as the speed and/or operating frequencies of the optical transmitter and receiver continue to increase, electromagnetic interference (EMI) may be coupled between the transmitter and receiver electrical circuit arrangements. The EMI (or noise) difficulties may become more severe as the sizes of the circuit boards and components are reduced in an effort to increase the port density. Optical receiver sensitivities for bit error rates (BER) of 1×10−12 are on the order of a few μA of photocurrent at speeds greater than 1 Gb/s, while drive voltages for the optical transmitter are anywhere from a few hundred millivolts up to the power supply voltage (several volts). These transmitter drive voltages emit a high amount of electromagnetic radiation. This fact, coupled with the close proximity of the transmitter to the receiver, has been found to significantly degrade the receiver sensitivity. In addition, the transmitter drive voltages can cause performance degradation in electronic devices external to the transceiver itself. One arrangement for addressing the problem of EMI (as well as electromagnetic compatibility—EMC) is described in U.S. Pat. No. 6,369,924, issued to R. M. Scharf et al. on Apr. 9, 2002. In this arrangement, the optical transmitter portion and the optical receiver portion are formed on separate circuit boards, with an EMI shield positioned between the two boards. The circuit boards are particularly positioned “back-to-back”, with the vertical EMI shield placed therebetween. Thus, shielding between the transmitter circuit and the receiver circuit is achieved, with the vertical orientation reducing the overall dimensions of the transceiver module.
U.S. Pat. No. 6,497,588 issued to Scharf et al. on Dec. 24, 2002 discloses a somewhat different arrangement, where both the transmitter electronics and receiver electronics are mounted on the same circuit board, thus further reducing the overall size of the transceiver module. In this arrangement, the transmitter electronics are formed on a first major surface of the circuit board and the receiver electronics are formed on the opposing (second) major surface. A metallic layer is embedded within the circuit board thickness (during fabrication of the board itself), and is used to provide EMI shielding between the two circuits.
While both of these arrangements represent an advance in the art, various opto-electronic components will be based on silicon-on-insulator (SOI) structures, where various electronic circuits are integrated within the same silicon surface layer of the SOI structure. The various physical arrangements for dividing and shielding the circuits to minimize EMI, as disclosed above, cannot be used in such a situation where a planar, monolithic transceiver circuit is formed.
Thus, a need remains in the art for an arrangement for providing EMI-EMC shielding for an opto-electronic circuit formed within an SOI structure.
The need remaining in the prior art is addressed by the present invention, which relates to EMI/EMC shielding for opto-electronic circuits and, more particularly, to the provision of a shielding arrangement for silicon-based circuits formed within a silicon-on-insulator (SOI) structure.
In accordance with the present invention, a metallic shielding structure is disposed as an outer surface layer on the optical coupling element used to couple a free space beam into and out of an opto-electronic circuit formed in an SOI structure. In particular, a metallized layer is formed on the surface of the optical coupling element that interfaces with the SOI structure, where the metallized layer is coupled to a ground plane of the SOI structure to provide the requisite shielding. The metallized layer may comprise a single, continuous layer or, alternatively, may be formed as at least two separate sections, one overlying (for example) a transmitter area on the SOI structure and the other overlying (for example) a receiver area on the SOI structure. The thickness of this metallized layer, as well as the spacing between the optical coupling element and the SOI structure, needs to be well-controlled in order for efficient evanescent optical coupling to occur. Obviously, transparent apertures must be formed in this metallized layer to allow for the passage of optical signals. A second metallized layer (also including the necessary apertures), formed to cover the top surface of the optical coupling element, may be used to provide additional EMI/EMC shielding.
In another embodiment of the present invention, additional EMI/EMC shielding is provided by including an RF ground plane shielding layer(s) on the surface of the SOI structure itself, particularly disposed to shield the sensitive electronic circuitry formed within the SOI layer. Indeed, an RF shield over receiver electronics may be used to improve its sensitivity by shielding the circuit from the radiation emitted by other circuit components such as, for example, a transmitter circuit. In this case, an RF shield over the transmitter circuit will further improve the operation of the transceiver. These shields also need to be coupled to the SOI ground plane. The shielding may be further improved by forming metallized vias through the SOI structure to provide a low impedance contact between the metallized layers and the ground plane.
An advantage of the arrangement of the present invention is the ability to utilize wafer-to-wafer bonding to provide both the necessary optical coupling and electrical connection between the SOI structure and the optical coupling element, as well as the EMI/EMC shielding.
Other and further aspects and advantages of the present invention will become apparent during the course of the following discussion and by reference to the accompanying drawings.
Referring now to the drawings,
In order to simultaneously achieve an EMI/EMC shield and optical coupling for a silicon-based opto-electronic integrated circuit formed within an SOI structure, a very low electrical impedance arrangement at electro-magnetic frequencies is required. The interface for the optical coupling also needs to be tightly controlled in order to provide the requisite evanescent coupling between a free space optical beam coupler and the SOI structure. As discussed above, the EMI/EMC shield needs to be such that, for example, an electronic transmitter circuit is significantly electro-magnetically isolated from electronic receiver circuitry (and vice versa). Additionally, the structure needs to electro-magnetically isolate the opto-electronic circuits from external, unwanted EMI radiation sources. It is to be noted that the structural requirements for EMI shielding and EMC shielding are essentially equivalent and will be treated as such for the purposes of the present invention. The EMC shield is required to prevent the transceiver from emitting electromagnetic radiation above acceptable levels. The EMI shield is required to prevent undesired external electromagnetic radiation from adversely impacting the performance of the device. In addition, EMI and EMC shielding is required in the case of an optical transceiver to prevent the transmit function of the transceiver from adversely affecting the associated receive function. It is to be understood that the shielding arrangement of the present invention is not limited to use with a transceiver arrangement, but is more generally applicable for use with virtually any opto-electronic circuit whose operation is sensitive to the presence of electromagnetic radiation (or, alternatively, generates such radiation).
Of course, transparent openings are required to be formed at the appropriate locations along first metal layer 22 to allow for a propagating optical signal to be coupled between optical coupling element 12 and SOI layer 20 of SOI structure 14. Moreover, the thickness of first metal layer 22 needs to be well controlled, so that the spacing (gap) g between non-planar side 24 of optical coupling element 12 and top surface 26 of surface silicon layer 20 at regions 23 and 25 is within the range required to provide evanescent optical coupling between optical coupling element 12 and SOI layer 20. It has been found that a metal layer on the order of ≦10 μm provides the desired amount of EMI/EMC shielding, while not perturbing the degree of optical coupling between optical coupling element 12 and SOI layer 20.
While remaining mindful of the need to tightly control the thickness of first metal layer 22, the need remains to provide a sound electrical contact between first metal layer 22 and an RF ground plane 40 on SOI structure 14. In the embodiment as illustrated in
Various wafer-to-wafer bonding techniques are well-known in the art and may be used to join optical coupling element 12 to SOI structure 14 and affect the electrical connection between first metal layer 22 and bond pads 28 on SOI structure 14. Regardless of the bonding technique that is used, there are two requirements that need to be simultaneously met: (1) physical/electrical contact between first metal layer 22 and bond pads 28 to form the desired RF shielding; and (2) well-controlled spacing in the optical coupling regions so that evanescent coupling occurs into and out of SOI layer 20. In some cases, a separate layer of relatively low index material is used as an evanescent coupling layer, providing physical contact in the evanescent coupling regions. In this event, the metal portions of the electrical contacts are heated to a re-flow temperature and then cooled to form the electrical contacts. In other cases, a relatively thick metallic layer and/or bond pads may be used and heated to become pliable, where the two components are then pressed together to form the electrical contact and provide the desired spacing required for optical evanescent coupling.
As mentioned above, a second metal layer 42 may be formed over top surface 44 of optical coupling element 12 and used to provide additional EMI/EMC shielding.
One known method of forming optical coupling element 12 is the use of standard silicon MEMS techniques. Metal deposition, optical-quality prism fabrication and metallized thru-hole vias are capabilities that all currently exist within this process and thus may be used to form a metallized optical coupling arrangement for EMI/EMC shielding in accordance with the present invention. The optical-quality prism fabrication can be achieved by a variety of methods including, but not limited to, the use of a wet anisotropic etch or gray scale lithography, as long as the mode angle for evanescent coupling is achieved.
As mentioned above, it is an obvious requirement to maintain transparent “windows” in the metal layer(s) of optical coupling element 12 in order to allow for the free space optical signals to easily pass therethrough and into/out of SOI layer 20 of SOI structure 14.
The EMI/EMC shielding arrangement of the present invention may be further improved by adding a metallic shielding arrangement to SOI structure 14 itself. The use of such an RF shield will increase the EMI/EMC performance of the optical transceiver integrated circuit formed within SOI structure 14 and, advantageously, may easily be incorporated into the processing steps used to fabricate the transceiver circuitry itself.
A second RF ground plane shield 70 may be disposed over that portion of SOI structure 14 associated with the position of transmitter circuitry 72.
As mentioned above, ground planes 60 and 70 are formed during the integrated circuit fabrication process utilized to form the transceiver opto-electronic components, using a conventional metallization process. The metallization thickness in this process is typically 2 μm thick, but other thicknesses may be used. As is well known, multiple levels of metal are typically formed in the silicon structure during the integrated circuit fabrication process. Advantageously, additional ground planes can be added at these metal layers to increase the overall shielding effectiveness. These additional metal layers must be electrically connected in order to provide the requisite shielding. Inter-level metallization connections are known and can be used to provide this desired electrical connection.
As discussed above, a receiver RF ground plane shield may be designed to shield the most sensitive circuitry. In the receiver circuitry, the front-end pre-amplifier stage (transimpedance amplifier—TIA) of the receiver includes the most sensitive circuitry. The utilization of an RF shield over this front-end stage in accordance with the present invention will help its EMI performance, but may degrade the overall sensitivity performance of the TIA stage in the absence of an EMI source. The amount of isolation degradation will depend on whether the RF shield and its connection to the RF ground are a true RF ground potential. This electrical connection has the potential to be very difficult to implement, due to the relative thinness of the RF ground plane shield (i.e., ≦2 μm), where this relatively thin shield results in generating parasitic inductances, capacitances and resistances. Depending on the implementation, these parasitics may cause the shield to act as an antenna at high frequencies. The parasitics may be reduced by utilizing a large number of RF ground bond pads 64, as shown in
Additional isolation and EMI/EMC performance may be achieved, in accordance with the present invention, by extending metallized RF ground vias from the shield planes through the depth of SOI structure 14.
The foregoing preferred embodiments are intended to illustrate, rather than limit, the scope of the present invention. Those skilled in the art will recognize that these embodiments may be modified without departing from the spirit and scope of the present invention as defined by the claims appended hereto:
The present application claims the benefit of Provisional Application No. 60/530,520, filed Dec. 18, 2003.
Number | Date | Country | |
---|---|---|---|
60530520 | Dec 2003 | US |