Emission abatement assembly having a mixing baffle and associated method

Information

  • Patent Grant
  • 8789363
  • Patent Number
    8,789,363
  • Date Filed
    Wednesday, June 13, 2007
    17 years ago
  • Date Issued
    Tuesday, July 29, 2014
    10 years ago
Abstract
An emission abatement assembly includes a fuel-fired burner having a combustion chamber and a particulate filter positioned downstream of the fuel-fired burner. A mixing baffle is positioned between the fuel-fired burner and the particulate filter.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to diesel emission abatement devices.


BACKGROUND

Untreated internal combustion engine emissions (e.g., diesel emissions) include various effluents such as NOX, hydrocarbons, and carbon monoxide, for example. Moreover, the untreated emissions from certain types of internal combustion engines, such as diesel engines, also include particulate carbon-based matter or “soot”. Federal regulations relating to soot emission standards are becoming more and more rigid thereby furthering the need for devices and/or methods which remove soot from engine emissions.


The amount of soot released by an engine system can be reduced by the use of an emission abatement device such as a filter or trap. Such a filter or trap is periodically regenerated in order to remove the soot therefrom. The filter or trap may be regenerated by use of a fuel-fired burner to burn the soot trapped in the filter. In such a case, the fuel-fired burner generates heat which is transferred to the downstream filter to burn the soot trapped in the filter. Poor temperature distribution of the generated heat can cause some regions of the filter to be hotter than desired, and other regions to be colder than desired. In the regions that are hotter than desired, the filter can potentially be damaged, whereas the colder regions may not be regenerated.


SUMMARY

According to one aspect of the disclosure, an emission abatement assembly includes a fuel-fired burner having a combustion chamber and a particulate filter positioned downstream of the fuel-fired burner. A mixing baffle is positioned between the fuel-fired burner and the particulate filter.


According to another aspect of the disclosure, an emission abatement assembly includes a particulate filter and a fuel-fired burner positioned upstream of the particulate filter. The fuel-fired burner includes a housing having an exhaust gas inlet port. The fuel-fired burner also includes a combustion chamber having a shroud secured thereto. The combustion chamber and the shroud cooperate to separate a flow of exhaust gas entering the housing through the exhaust gas inlet port into a combustion flow which is advanced through the combustion chamber of the fuel-fired burner, and a bypass flow which is bypassed around the combustion chamber of the fuel-fired burner. The fuel-fired burner also includes a mixing baffle positioned downstream of the combustion chamber and upstream of the particulate filter. The mixing baffle is configured to mix the combustion flow and the bypass flow.


According to yet another aspect of the disclosure, an emission abatement assembly includes a fuel-fired burner having a combustion chamber and a particulate filter positioned downstream of the fuel-fired burner. The assembly also includes a mixing baffle having a collector plate with a hole defined therein, a perforated ring secured to the collector plate, and a diverter plate secured to the perforated ring. The mixing plate is positioned between the fuel-fired burner and the particulate filter such that both a flow of exhaust gas advancing through the combustion chamber and a flow of exhaust gas bypassing the combustion chamber are advanced through the hole in the collector plate.


According to yet another aspect of the disclosure, a method of operating a fuel-fired burner of an emission abatement assembly includes advancing a flow of exhaust gas into a housing of the fuel-fired burner. The method also includes separating the flow of exhaust gas into a combustion flow which is advanced through a combustion chamber of the fuel-fired burner, and a bypass flow which is bypassed around the combustion chamber of the fuel-fired burner. The method also includes directing the combustion flow and the bypass flow radially outwardly with a flow mixer located downstream of the combustion chamber.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an emission abatement assembly;



FIG. 2 is an elevational view of the end of the emission abatement assembly as viewed in the direction of the arrows of line 2-2 of FIG. 1;



FIG. 3 is a cross sectional view of the emission abatement assembly of FIG. 1 taken along the line 3-3 of FIG. 2, as viewed in the direction of the arrows, note that the filter housing and the collector housing are not shown in cross section for clarity of description;



FIG. 4 is an enlarged cross sectional view of the fuel-fired burner of the emission abatement assembly of FIG. 3; and



FIG. 5 is an enlarged cross sectional view of the mixing baffle of the fuel-fired burner of FIGS. 1-4.





DETAILED DESCRIPTION OF THE DRAWINGS

Referring now to FIG. 1, an emission abatement assembly 10 has a fuel-fired burner 12 and a particulate filter 14. The fuel-fired burner 12 is positioned upstream (relative to exhaust gas flow from the engine) of the particulate filter 14. During operation of the engine, exhaust gas flows through the particulate filter 14 thereby trapping soot in the filter. Treated exhaust gas is released into the atmosphere through an exhaust pipe coupled to the outlet of the emission abatement. From time to time during operation of the engine, the fuel-fired burner 12 is operated to regenerate the particulate filter 14.


As shown in FIGS. 3 and 4, the fuel-fired burner 12 includes a housing 16 having a combustion chamber 18 positioned therein. The housing 16 includes an exhaust gas inlet port 20. As shown in FIG. 1, the exhaust gas inlet port 20 is secured an exhaust pipe (not shown) which conducts exhaust gas from a diesel engine (not shown). As such, exhaust gas from the diesel engine enters the emission abatement assembly 10 through the exhaust gas inlet port 20.


The combustion chamber 18 has a number of gas inlet openings 22 defined therein. Engine exhaust gas is permitted to flow into the combustion chamber 18 through the inlet openings 22. In such a way, a flame present inside the combustion chamber 18 is protected from the full engine exhaust gas flow, while controlled amounts of engine exhaust gas are permitted to enter the combustion chamber 18 to provide oxygen to facilitate combustion of the fuel supplied to the burner 12. Exhaust gas not entering the combustion chamber 18 is directed through a number of openings 24 defined in a shroud 26.


The fuel-fired burner 12 includes an electrode assembly having a pair of electrodes 28, 30. When power is applied to the electrodes 28, 30, a spark is generated in the gap 32 between the electrodes 28, 30. Fuel enters the fuel-fired burner 12 through a fuel inlet nozzle 34 and is advanced through the gap 32 between the electrodes 28, 30 thereby causing the fuel to be ignited by the spark generated by the electrodes 28, 30. It should be appreciated that the fuel entering the nozzle 34 is generally in the form of a controlled air/fuel mixture.


The fuel-fired burner 12 also includes a combustion air inlet 36. An air pump, or other pressurized air source such as the vehicle's turbocharger or air brake system, generates a flow of pressurized air which is advanced to the combustion air inlet 36. During regeneration of the particulate filter 14, a flow of air is introduced into the fuel-fired burner 12 through the combustion air inlet 36 to provide oxygen (in addition to oxygen present in the exhaust gas) to sustain combustion of the fuel.


As shown in FIG. 3, the particulate filter 14 is positioned downstream from the outlet 40 of the housing 16 of the fuel-fired burner 12 (relative to exhaust gas flow). The particulate filter 14 includes a filter substrate 42. As shown in FIG. 3, the substrate 42 is positioned in a housing 44. The filter housing 44 is secured to the burner housing 16. As such, gas exiting the burner housing 16 is directed into the filter housing 44 and through the substrate 42. The particulate filter 14 may be any type of commercially available particulate filter. For example, the particulate filter 14 may be embodied as any known exhaust particulate filter such as a “deep bed” or “wall flow” filter. Deep bed filters may be embodied as metallic mesh filters, metallic or ceramic foam filters, ceramic fiber mesh filters, and the like. Wall flow filters, on the other hand, may be embodied as a cordierite or silicon carbide ceramic filter with alternating channels plugged at the front and rear of the filter thereby forcing the gas advancing therethrough into one channel, through the walls, and out another channel. Moreover, the filter substrate 42 may be impregnated with a catalytic material such as, for example, a precious metal catalytic material. The catalytic material may be, for example, embodied as platinum, rhodium, palladium, including combinations thereof, along with any other similar catalytic materials. Use of a catalytic material lowers the temperature needed to ignite trapped soot particles.


The filter housing 44 is secured to a housing 46 of a collector 48. Specifically, an outlet 50 of the filter housing 44 is secured to an inlet 52 of the collector housing 46. As such, processed (i.e., filtered) exhaust gas exiting the filter substrate 42 (and hence the filter housing 44) is advanced into the collector 48. The processed exhaust gas is then advanced into the exhaust pipe (not shown) and hence released to the atmosphere through a gas outlet 54. It should be appreciated that the gas outlet 54 may be coupled to the inlet (or a pipe coupled to the inlet) of a subsequent emission abatement device (not shown) if the engine's exhaust system is equipped with such a device.


Referring back to FIGS. 3-5, a mixing baffle 56 is positioned in the burner housing 16. The mixing baffle 56 is positioned between the shroud 26 and the outlet 40 of the burner housing 16. In the illustrative embodiment described herein, the mixing baffle 56 includes a domed diverter plate 58, a perforated annular ring 60, and a collector plate 62. As shown in FIGS. 3 and 4, the collector plate 62 is welded or otherwise secured to the inner surface of the burner housing 16. The collector plate 62 has a hole 64 in the center thereof. The perforated annular ring 60 is welded or otherwise secured to the collector plate 62. The inner diameter of the annular ring 60 is larger than the diameter of the hole 64. As such, the annular ring 60 surrounds the hole 64 of the collector plate 62. The diverter plate 58 is welded or otherwise secured to the end of the annular ring 60 opposite to the end that is secured to the collector plate 62. The diverter plate 58 is solid (i.e., it does not have holes or openings formed therein), and, as such, functions to block the flow of exhaust gas linearly through the mixing baffle 56. Instead, the diverter plate 58 diverts the flow of exhaust gas radially outwardly.


The mixing baffle 56 functions to mix the hot flow of exhaust gas directed through the combustion chamber and cold flow of exhaust gas that bypasses the combustion chamber during filter regeneration thereby introducing a mixed flow of exhaust gas into the particulate filter 14. In particular, as described above, the flow of exhaust gas entering the emission abatement assembly 10 is split into two flows—(i) a cold bypass flow which bypasses the combustion chamber 18 and is advanced through the openings 24 of the shroud 26 and, (ii) a hot combustion flow which is advanced into the combustion chamber 18 where it is significantly heated by the flame present therein. The mixer baffle 56 forces both flows together through a narrow area and then causes such a concentrated flow to then flow radially outwardly thereby mixing the two flows together. To do so, the cold flow of exhaust gas advances through the openings 24 in the shroud 26 and thereafter is directed into contact with the upstream face 66 of the collector plate 62. The shape of the collector plate 62 directs the cold flow toward its hole 64.


Likewise, the hot flow of exhaust gas is directed toward the hole of the collector plate 62. In particular, the hot flow of exhaust gas is prevented from axially exiting the combustion chamber 18 by a domed flame catch 68. The flame catch 68 forces the hot flow of exhaust gas radially outwardly through a number of openings 70 defined in a perforated annular ring 72 which is similar to the perforated annular ring 62 of the mixing baffle 56. The hot flow of exhaust gas is then directed toward the upstream face 66 of the collector plate 62 by a combination of surfaces including the downstream face 74 of the shroud 26 and the inner surface of the burner housing 16. The hot flow of exhaust gas then contacts the upstream face 66 of the collector plate where the shape of the plate 62 causes the hot flow of exhaust gas to be directed toward the hole 64. This begins the mixing of the hot flow of exhaust gas with the cold flow of exhaust gas.


Mixing is continued as the cold and hot flows of exhaust gas enter the hole 64 of the collector plate 62. The partially mixed flow of gases are directed into contact with the diverter plate 58. The diverter plate 58 blocks the linear flow of gases and directs them outwardly in radial directions away from the diverter plate 58. The flow of exhaust gases is then directed through a number of openings 76 formed in the perforated annular ring 62 of the mixing baffle 56. This radial outward flow of exhaust gases impinges on the inner surface of the burner housing 16 and is directed through the outlet 40 of the burner housing 16 and into the inlet of the filter housing 44 where the mixed flow of exhaust gas is utilized to regenerated the filter substrate 42.


Hence, as described above, the mixing baffle 56 forces the mixing of the non-homogeneous exhaust gas flow through a narrow area, and then causes the mixed flow to expand outwardly. This prevents the formation of a center flow or center jet of hot gas from being impinged on the filter substrate 42. In short, a more homogeneous mixture of the hot and cold flows is created prior to introduction of the combined flow onto the face of the filter substrate thereby increasing filter regeneration efficiency and reducing the potential for filter damage due to hot spots.


While the disclosure is susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and has herein be described in detail. It should be understood, however, that there is no intent to limit the disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


There are a plurality of advantages of the present disclosure arising from the various features of the apparatus, systems, and methods described herein. It will be noted that alternative embodiments of the apparatus, systems, and methods of the present disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of apparatus, systems, and methods that incorporate one or more of the features of the present disclosure and fall within the spirit and scope of the present disclosure.


For example, the mixing baffle 56 finds application outside of a particulate filter that is regenerated by a fuel-fired burner. For example, the mixing baffle 56 may be used to mix urea with exhaust gas prior to introduction into a urea-SCR catalyst.

Claims
  • 1. An emission abatement assembly comprising: a particulate filter, anda fuel-fired burner positioned upstream of the particulate filter, the fuel fired burner comprising: (i) a housing having an exhaust gas inlet port,(ii) a combustion chamber having a shroud secured thereto, the combustion chamber and the shroud cooperate to separate a flow of exhaust gas entering the housing through the exhaust gas inlet port into (a) a combustion flow which is advanced through the combustion chamber of the fuel-fired burner, and (b) a bypass flow which is bypassed around the combustion chamber of the fuel-fired burner, and(iii) a mixing baffle including a collector plate and diverter plate positioned downstream of the combustion chamber and upstream of the particulate filter, the mixing baffle being configured to mix the combustion flow and the bypass flow.
  • 2. The emission abatement assembly of claim 1, wherein: the collector plate has a hole defined therein, andthe diverter plate is positioned downstream of the hole.
  • 3. The emission abatement assembly of claim 2, wherein: the mixing baffle further comprises a perforated ring surrounding the hole,a first end of the perforated ring is secured to the collector plate, anda second end of the perforated ring is secured to the diverter plate.
  • 4. The emission abatement assembly of claim 3, wherein the mixing baffle is configured such that the combustion flow and bypass flow are at least partially mixed when said flows are directed radially outwardly through the perforated ring by contact with the diverter plate.
  • 5. The emission abatement assembly of claim 4, wherein the diverter plate is domed.
  • 6. An emission abatement assembly, a fuel-fired burner having a combustion chamber,a particulate filter positioned downstream of the fuel-fired burner, anda mixing baffle comprising (i) a collector plate having a hole defined therein, (ii) a perforated ring secured to the collector plate, and (iii) a diverter plate secured to the perforated ring, wherein the mixing baffle is positioned between the fuel fired burner and the particulate filter such that both a flow of exhaust gas advancing through the combustion chamber and a flow of exhaust gas bypassing the combustion chamber are advanced through the hole in the collector plate.
  • 7. The emission abatement assembly of claim 6, wherein the perforated ring surrounds the hole of the collector plate.
  • 8. The emission abatement assembly of claim 6, wherein: the fuel-fired burner comprises a combustion chamber, andthe mixing baffle is positioned to mix gas exiting the combustion chamber with gas bypassing the combustion chamber.
  • 9. A method of operating a fuel-fired burner of an emission abatement assembly, the method comprising the steps of: advancing a flow of exhaust gas into a housing of the fuel-fired burner,separating the flow of exhaust gas into (i) a combustion flow which is advanced through a combustion chamber of the fuel-fired burner, and (ii) a bypass flow which is bypassed around the combustion chamber of the fuel-fired burner, anddirecting the combustion flow and the bypass flow radially outwardly with a flow mixer located downstream of the combustion chamber.
  • 10. The method of claim 9, wherein the directing step comprises advancing the combustion flow and the bypass flow through a hole defined in a collector plate.
  • 11. The method of claim 9, wherein the directing step comprises advancing the combustion flow and the bypass flow through a hole defined in a collector plate and into contact with a diverter plate.
  • 12. The method of claim 11, wherein the directing step comprises advancing the combustion flow and the bypass flow through a hole defined in a collector plate, into contact with a diverter plate, and radially outwardly from the diverter plate through a perforated ring.
  • 13. The method of claim 9, including advancing a portion of the exhaust gas through a plurality of inlet openings in the combustion chamber to provide a hot combustion flow, bypassing a remaining portion of the exhaust gas around the combustion chamber and through a plurality of openings formed in a shroud to provide a cold bypass flow, and advancing the combustion flow and bypass flow toward the flow mixer, wherein the flow mixer comprises a collector plate attached to the housing of the fuel-fired burner, a perforated annular ring having an upstream end secured to the collector plate, and a diverter plate secured to a downstream end of the perforated annular ring.
  • 14. The method of claim 13, wherein the collector plate includes a central opening that is surrounded by the perforated annular ring, and including advancing the hot combustion flow and the cold bypass flow toward an upstream face of the collector plate which then directs the hot combustion flow and the cold bypass flow through the central opening to produce a partially mixed flow,advancing the partially mixed flow into contact with the diverter plate, anddirecting the partially mixed flow radially outward through perforated openings in the perforated annular ring to contact an inner surface of the housing of the fuel-fired burner to produce a fully mixed flow that is directed to an outlet of the housing.
  • 15. The method of claim 13, including advancing the hot combustion flow into contact with a flame catch located upstream of the collector plate, and directing the hot combustion flow radially outwardly through a plurality of openings in an upstream annular ring positioned within the shroud.
  • 16. The emission abatement assembly of claim 1, wherein the combustion chamber includes a plurality of inlet openings through which a portion of the exhaust gas enters the combustion chamber to provide a hot combustion flow, and wherein the shroud includes a plurality of openings through which a remaining portion of the exhaust gas is bypassed around the combustion chamber to provide a cold bypass flow, and wherein the mixing baffle includes a perforated annular ring having an upstream end attached to the collector plate and a downstream end attached to the diverter plate such that the hot combustion flow and cold bypass flow are advanced toward the collector plate upon exiting the shroud and the combustion chamber.
  • 17. The emission abatement assembly of claim 16, wherein the collector plate includes a central opening that is surrounded by the perforated annular ring, and wherein the hot combustion flow and the cold bypass flow contact an upstream face of the collector plate which then directs the hot combustion flow and the cold bypass flow through the central opening to produce a partially mixed flow that contacts the diverter plate, and wherein the perforated annular ring includes a plurality of perforated openings through which the partially mixed flow is directed radially outwardly to contact an inner surface of the housing of the fuel-fired burner to produce a fully mixed flow that is directed to an outlet of the housing.
  • 18. The emission abatement assembly of claim 17, including a flame catch located upstream of the collector plate and an upstream annular ring positioned within the shroud, and wherein the flame catch directs the hot combustion flow exiting the combustion chamber radially outwardly through a plurality of openings in the upstream annular ring.
  • 19. The emission abatement assembly of claim 6, wherein the combustion chamber includes a plurality of inlet openings through which a portion of the exhaust gas enters the combustion chamber to provide a hot combustion flow, and including a shroud with a plurality of openings through which a remaining portion of the exhaust gas is bypassed around the combustion chamber to provide a cold bypass flow, and wherein the collector plate is positioned downstream of the shroud such that the hot combustion flow and cold bypass flow are advanced toward the collector plate upon exiting the shroud and the combustion chamber.
  • 20. The emission abatement assembly of claim 19, including a flame catch located upstream of the collector plate and an upstream annular ring positioned within the shroud, and wherein the flame catch directs the hot combustion flow exiting the combustion chamber radially outwardly through a plurality of openings in the upstream annular ring, and wherein the collector plate includes a central opening that is surrounded by the perforated ring, and wherein the hot combustion flow and the cold bypass flow contact an upstream face of the collector plate which then directs the hot combustion flow and the cold bypass flow through the central opening to produce a partially mixed flow that contacts the diverter plate, andwherein the perforated annular ring includes a plurality of perforated openings through which the partially mixed flow is directed radially outwardly to contact an inner surface of the housing of the fuel-fired burner to produce a fully mixed flow that is directed to an outlet of the housing.
US Referenced Citations (69)
Number Name Date Kind
3864072 Abernathy et al. Feb 1975 A
3955538 Noguchi et al. May 1976 A
3993449 Childs Nov 1976 A
4036180 Noguchi et al. Jul 1977 A
4066043 Noguchi et al. Jan 1978 A
4334855 Nelson Jun 1982 A
4335574 Sato et al. Jun 1982 A
4349330 Obinata et al. Sep 1982 A
4362500 Eriksson et al. Dec 1982 A
4404795 Oishi et al. Sep 1983 A
4449362 Frankenberg et al. May 1984 A
4477245 Giachino et al. Oct 1984 A
4557108 Torimoto Dec 1985 A
4561524 Mizumukai et al. Dec 1985 A
4571938 Sakurai Feb 1986 A
4574589 Hasegawa et al. Mar 1986 A
4589254 Kume et al. May 1986 A
4603550 Shinzawa Aug 1986 A
4622811 Distel et al. Nov 1986 A
4677823 Hardy Jul 1987 A
4912920 Hirabayashi Apr 1990 A
4953354 Erber et al. Sep 1990 A
4983362 Obermuller Jan 1991 A
4987738 Lopez-Crevillen et al. Jan 1991 A
5001899 Santiago et al. Mar 1991 A
5003778 Erber et al. Apr 1991 A
5041268 Inovius Aug 1991 A
5044158 Goerlich Sep 1991 A
5063736 Hough et al. Nov 1991 A
5079917 Henkel Jan 1992 A
5085049 Rim et al. Feb 1992 A
5140814 Kreutmair et al. Aug 1992 A
5189392 Kass et al. Feb 1993 A
5207185 Greiner et al. May 1993 A
5211009 Houben et al. May 1993 A
5339630 Pettit Aug 1994 A
5417059 Hartel et al. May 1995 A
5458664 Ishii et al. Oct 1995 A
5522326 Vollhardt Jun 1996 A
5771683 Webb Jun 1998 A
5807098 Deng Sep 1998 A
5853459 Kuwamoto et al. Dec 1998 A
5865618 Hiebert Feb 1999 A
5910097 Boegner et al. Jun 1999 A
5919035 Iwama et al. Jul 1999 A
5974791 Hirota et al. Nov 1999 A
6090187 Kumagai Jul 2000 A
6105365 Deeba et al. Aug 2000 A
6170259 Boegner et al. Jan 2001 B1
6176078 Balko et al. Jan 2001 B1
6397587 van Nieuwstadt et al. Jun 2002 B1
6422006 Ohmori et al. Jul 2002 B2
6446430 Roth et al. Sep 2002 B1
6464744 Cutler et al. Oct 2002 B2
6471918 Sherwood Oct 2002 B1
6634170 Hiranuma et al. Oct 2003 B2
6679051 van Nieustadt et al. Jan 2004 B1
6729128 Shiratani et al. May 2004 B2
6783882 Schmidt Aug 2004 B2
6901751 Bunting et al. Jun 2005 B2
7032376 Webb et al. Apr 2006 B1
20030066287 Hirota et al. Apr 2003 A1
20030074893 Webb et al. Apr 2003 A1
20030091950 Pijper May 2003 A1
20030188518 Itoyama et al. Oct 2003 A1
20040006977 Nakatani et al. Jan 2004 A1
20040173005 Martone et al. Sep 2004 A1
20050150211 Crawley et al. Jul 2005 A1
20050150217 Crawley et al. Jul 2005 A1
Foreign Referenced Citations (24)
Number Date Country
24 19 126 Oct 1975 DE
25 35 002 Feb 1977 DE
31 25 305 Jan 1983 DE
35 32 777 Mar 1987 DE
35 32 779 Mar 1987 DE
36 14 812 Nov 1987 DE
36 36 787 May 1988 DE
37 40 047 Jun 1989 DE
38 44 554 Sep 1989 DE
38 18 158 Dec 1989 DE
38 30 687 Mar 1990 DE
4012411 Oct 1991 DE
196 04 318 Aug 1997 DE
0 027 549 Apr 1981 EP
0 196 421 Oct 1986 EP
0 212 230 Mar 1987 EP
0 218 047 Apr 1987 EP
0 268 026 May 1988 EP
0 470 361 Feb 1992 EP
0 503 263 Sep 1992 EP
0 505 696 Sep 1992 EP
0 520 170 Dec 1992 EP
9104394 Apr 1991 WO
2005070175 Aug 2005 WO
Non-Patent Literature Citations (2)
Entry
PCT Search Report for PCT Application No. PCT/US05/00939, Dec. 2, 2005, 14 pgs.
“Nox Emission Control for Light-Duty CIDI Vehicles,” Department of Energy (Apr. 2001).
Related Publications (1)
Number Date Country
20080307780 A1 Dec 2008 US