1. Field of the Invention
This invention generally relates to emissive displays and, more particularly, to a light management system for an emissive display made using the micro-size emissive elements.
2. Description of the Related Art
A red-green-blue (RGB) display can be made with micro-sized emissive elements, such as a micro light emitting diode (μLED). Such a display might be used in a television, computer monitor, or handheld device. Micro-sized emissive elements may have a diameter or cross-section of less than 100 microns. The emissive elements are aligned in some manner into pixel arrays. Conventional processing and integration steps following the placement of emissive elements include metallization to connect the emissive elements to a matrix of control lines.
If the display is fabricated using a fluidic fabrication process, the display substrate is formed with an array of wells to capture the emissive elements. Typically, the display substrate is made of a transparent material such as glass. As a result, light can leak propagate through the transparent substrate between adjacent wells, which degrades color quality and contrast.
It would be advantageous if the light emission from each emissive substrate well could be controlled such that light from the emissive elements in wells is only directed to the top surface of a transparent surface, and prevented from propagating into adjacent wells.
Described herein are structural features used with direct emitting emissive elements, such as micro light emitting diodes (uLEDs), which control the directionality of light emitted. An emissive display may be composed of a multitude of uLED pixels; each one addressed individually. It is important that the direction of the light emitted by each uLED is controlled to reduce light leakage between pixels to ensure color quality and contrast. The light from each uLED is emitted from all surfaces including the faces and the sides and is thus emitted in directions perpendicular and parallel to the surface of the display. Unless controlled, the light emitted along the direction nominally parallel to a transparent display substrate surface will propagate to adjacent pixels. The structure features described herein are used to reflect or absorb this light. Reflective materials may include metals already incorporated into the backplane manufacturing, including aluminum, titanium, silver, tin, indium, nickel, gold, or other reflective metals. Absorptive materials may include black polymer resin and black photoresist materials containing carbon black or graphene oxide.
Accordingly, a method is provided for fabricating an emissive display substrate with a light management system. The method provides a transparent first substrate with a top surface and forms a plurality of emissive element wells. The well sidewalls are formed from a light blocking material. In the simplest case, the wells are formed in the first substrate. As mentioned above, the light blocking material may be a light absorbing material or a light reflector material. In one aspect, a light blocking material film layer is formed overlying the first substrate top surface, and the emissive element sidewalls are formed in the light blocking material film layer.
In another aspect, a transparent second substrate is formed overlying the first substrate top surface. Then, the emissive element wells are formed in the second substrate with via surfaces, and the light blocking material is deposited overlying the well via surfaces. Additionally, the light blocking material may be formed on the bottom surface of each well. If the first substrate includes electrical interfaces formed on the top surface, the emissive element wells formed in the second substrate are etched to expose an electrical interface formed on each well bottom surface. Then, the light blocking material on the well bottom surface is patterned to avoid the electrical interface formed on the well bottom surface.
In another aspect, prior to depositing the light blocking material, a fluidic assembly process is used to populate the wells with emissive elements. Note, the wells can also be populated using a pick-and-place process, which is inherently more time consuming. The well sidewall light blocking material is then formed by conformally depositing the light absorbing blocking material overlying the second substrate top surface and filling the wells, and etching the light absorbing blocking material to expose the emissive elements.
Additional details of the above-described method and an emissive display substrate with light management system are provided below.
If an electrical interface 404 is formed on each well bottom surface 400, as shown in
As shown in
The variations presented above describe structural elements employed within a direct emitting emissive element display to control the directionality of the light emitted by the emissive element. One example of an emissive element is a micro light emitting diode (uLED). The display is comprised of a multitude of uLED pixels; each one addressed individually. It is important that the direction of the light emitted by each uLED is controlled to reduce light leakage between pixels to ensure color quality and contrast. The light from each uLED is emitted from all surfaces including the faces and the sides and is thus emitted in directions perpendicular and parallel to the surface of the display substrate. The light emitted along the direction nominally parallel to the surface would propagate to adjacent pixels without a structure to reflect or absorb this light. These structural elements are either an absorbing or reflecting type. Reflective materials that can be used include metals already incorporated into the backplane manufacturing including aluminum, titanium, silver, tin, indium, nickel, gold or other reflective metals. Absorptive materials include black polymer resin and black photoresist materials containing carbon black or graphene oxide.
Step 1102 provides a transparent first substrate with a top surface. Step 1104 forms a plurality of emissive element wells, and Step 1106 forms well sidewalls from a light blocking material. As noted above, the blocking material may be a light absorbing material such as a black polymer resin, a black photoresist, a material comprising carbon black, or a material comprising graphene oxide. Otherwise, the light blocking material is a light reflector material such as aluminum, titanium, silver, tin, indium, nickel, and gold. In one aspect, the wells are formed directly in the first substrate. In another aspect, forming the emissive element wells in Step 1104 includes forming wells with sloped via surfaces, and forming well sidewalls in Step 1106 includes forming sloped well sidewalls.
In one aspect, Step 1103a forms a light blocking material film layer overlying the first substrate top surface. Then, forming well sidewalls in Step 1106 includes forming the emissive element sidewalls in the light blocking material film layer. In this aspect, Step 1108 may use a fluidic assembly process to populate the emissive element wells with emissive elements. Alternatively, a pick-and-place process can be used to populate the wells.
In another aspect, Step 1103b forms a transparent second substrate overlying the first substrate top surface. Then, forming the emissive element wells in Step 1104 includes forming the emissive element wells in the second substrate with via surfaces, and forming the well sidewalls in Step 1106 includes depositing the light blocking material overlying the well via surfaces. Optionally, Step 1106 may form the light blocking material on a bottom surface of each well. If Step 1102 provides the first substrate with electrical interfaces formed on the first substrate top surface, then forming the emissive element wells in Step 1104 includes etching the second substrate to expose an electrical interface formed on each well bottom surface. Similarly, forming the light blocking material on the bottom surface of each well in Step 1106 would then include patterning the light blocking material to avoid the electrical interface formed on the well bottom surface. In this aspect, Step 1108 uses a fluidic assembly process to populate the emissive element wells with emissive elements. Alternatively, a pick-and-place process can be used to populate the wells.
In another aspect using the transparent second substrate, Step 1105 uses a fluidic assembly process to populate the wells with emissive elements prior to depositing the light blocking material. Then, forming well sidewalls from a light blocking material includes substeps. Step 1106a conformally deposits a light absorbing blocking material overlying the second substrate top surface and filling the wells, and Step 1106b etches the light absorbing blocking material to expose the emissive elements.
An emissive display light management system has been provided. Examples of particular material, circuit layouts, and process steps have been presented to illustrate the invention. However, the invention is not limited to merely these examples. Other variations and embodiments of the invention will occur to those skilled in the art.
This application is a Continuation-in-part of application Ser. No. 15/410,001, invented by Schuele et al., entitled DISPLAY WITH SURFACE MOUNT EMISSIVE ELEMENTS, filed on Jan. 19, 2017. Ser. No. 15/410,001 is a Continuation-in-part of application Ser. No. 14/749,569, invented by Sasaki et al., entitled LIGHT EMITTING DEVICE AND FLUIDIC MANUFACTURE THEREOF, filed on Jun. 24, 2015. Ser. No. 15/410,001 is a Continuation-in-part of application Ser. No. 15/221,571, invented by Crowder et al., entitled SUBSTRATE WITH TOPOLOGICAL FEATURES FOR STEERING FLUIDIC ASSEMBLY LCD DISKS, filed on Jul. 27, 2016. Ser. No. 15/410,001 is a Continuation-in-part of application Ser. No. 15/197,226, invented by Kurt Ulmer, entitled LAMINATED PRINTED COLOR CONVERSION PHOSPHOR SHEETS, filed on Jun. 26, 2016. Ser. No. 15/410,001 is a Continuation-in-part of application Ser. No. 15/190,813, invented by Schuele et al., entitled DIODES OFFERING ASYMMETRIC STABILITY DURING FLUIDIC ASSEMBLY, filed on Jun. 23, 2016. Ser. No. 15/410,001 is a Continuation-in-part of application Ser. No. 15/158,556, invented by Zhan et al., entitled FORMATION AND STRUCTURE OF POST ENHANCED DIODES FOR ORIENTATION CONTROL, filed on May 18, 2016. Ser. No. 15/410,001 is a Continuation-in-part of application Ser. No. 15/266,796, invented by Heine et al., entitled SUBSTRATE FEATURES FOR ENHANCED FLUIDIC ASSEMBLY OF ELECTRONIC DEVICES, filed on Sep. 15, 2016. Ser. No. 15/410,001 is a Continuation-in-part of application Ser. No. 14/680,618, invented by Zhan et al., entitled FLUIDIC ASSEMBLY TOP-CONTACT DISK, filed on Apr. 7, 2015: which is a Continuation-in-part of application Ser. No. 14/540,230, invented by Zhan et al., entitled COUNTERBORE POCKET STRUCTURE FOR FLUIDIC ASSEMBLY, filed on Oct. 31, 2014. All the above-listed applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5545291 | Smith et al. | Aug 1996 | A |
5594463 | Sakamoto | Jan 1997 | A |
5824186 | Smith et al. | Oct 1998 | A |
5904545 | Smith et al. | May 1999 | A |
6274508 | Jacobsen et al. | Aug 2001 | B1 |
6281038 | Jacobsen et al. | Aug 2001 | B1 |
6316278 | Jacobsen et al. | Nov 2001 | B1 |
6417025 | Gengel | Jul 2002 | B1 |
6420266 | Smith et al. | Jul 2002 | B1 |
6468638 | Jacobsen et al. | Oct 2002 | B2 |
6479395 | Smith et al. | Nov 2002 | B1 |
6527964 | Smith et al. | Mar 2003 | B1 |
6555408 | Jacobsen et al. | Apr 2003 | B1 |
6566744 | Gengel | May 2003 | B2 |
6586338 | Smith et al. | Jul 2003 | B2 |
6590346 | Hadley et al. | Jul 2003 | B1 |
6606247 | Credelle et al. | Aug 2003 | B2 |
6613610 | Iwafuchi et al. | Sep 2003 | B2 |
6618030 | Kane et al. | Sep 2003 | B2 |
6623579 | Smith et al. | Sep 2003 | B1 |
6657289 | Craig et al. | Dec 2003 | B1 |
6665044 | Jacobsen et al. | Dec 2003 | B1 |
6683663 | Hadley et al. | Jan 2004 | B1 |
6687987 | Mayer et al. | Feb 2004 | B2 |
6723576 | Nozawa et al. | Apr 2004 | B2 |
6731353 | Credelle et al. | May 2004 | B1 |
6780696 | Schatz | Aug 2004 | B1 |
6816380 | Credelle et al. | Nov 2004 | B2 |
6825499 | Nakajima et al. | Nov 2004 | B2 |
6835960 | Lin | Dec 2004 | B2 |
6850312 | Jacobsen et al. | Feb 2005 | B2 |
6863219 | Jacobsen et al. | Mar 2005 | B1 |
6870190 | Okuyama et al. | Mar 2005 | B2 |
6919225 | Craig et al. | Jul 2005 | B2 |
6927085 | Hadley et al. | Aug 2005 | B2 |
6980184 | Stewart et al. | Dec 2005 | B1 |
6984927 | Tomoda et al. | Jan 2006 | B2 |
6985361 | Credelle et al. | Jan 2006 | B2 |
7046328 | Jacobsen et al. | May 2006 | B2 |
7049207 | Tomoda | May 2006 | B2 |
7049227 | Tomoda et al. | May 2006 | B2 |
7060542 | Nakajima et al. | Jun 2006 | B2 |
7070851 | Jacobsen et al. | Jul 2006 | B2 |
7080444 | Craig et al. | Jul 2006 | B1 |
7087934 | Oohata et al. | Aug 2006 | B2 |
7101502 | Smith et al. | Sep 2006 | B2 |
7113250 | Jacobsen et al. | Sep 2006 | B2 |
7122826 | Okuyama et al. | Oct 2006 | B2 |
7129514 | Okuyama et al. | Oct 2006 | B2 |
7141176 | Smith et al. | Nov 2006 | B1 |
7172789 | Smith et al. | Feb 2007 | B2 |
7179210 | Soukeras | Feb 2007 | B2 |
7199527 | Holman | Apr 2007 | B2 |
7244326 | Craig et al. | Jul 2007 | B2 |
7250314 | Nakajima et al. | Jul 2007 | B2 |
7250320 | Okuyama et al. | Jul 2007 | B2 |
7260882 | Credelle et al. | Aug 2007 | B2 |
7288432 | Jacobsen et al. | Oct 2007 | B2 |
7317211 | Watanabe et al. | Jan 2008 | B2 |
7317435 | Hsueh | Jan 2008 | B2 |
7321159 | Schatz | Jan 2008 | B2 |
7353598 | Craig et al. | Apr 2008 | B2 |
7417306 | Jacobsen et al. | Aug 2008 | B1 |
7425467 | Jacobsen et al. | Sep 2008 | B2 |
7452748 | Craig et al. | Nov 2008 | B1 |
7500610 | Hadley et al. | Mar 2009 | B1 |
7531218 | Smith et al. | May 2009 | B2 |
7542301 | Liong et al. | Jun 2009 | B1 |
7561221 | Jacobsen et al. | Jul 2009 | B2 |
7564064 | Oohata et al. | Jul 2009 | B2 |
7572649 | Kanemitsu et al. | Aug 2009 | B2 |
7573194 | Doi et al. | Aug 2009 | B2 |
7576656 | Craig et al. | Aug 2009 | B2 |
7589355 | Tomoda et al. | Sep 2009 | B2 |
7615479 | Craig et al. | Nov 2009 | B1 |
7619598 | Pulvirenti et al. | Nov 2009 | B2 |
7662008 | Hillis et al. | Feb 2010 | B2 |
7750563 | Hasegawa | Jul 2010 | B2 |
7763901 | Tomoda | Jul 2010 | B2 |
7774929 | Jacobs | Aug 2010 | B2 |
7795049 | Watanabe et al. | Sep 2010 | B2 |
7795629 | Watanabe et al. | Sep 2010 | B2 |
7838410 | Hirao et al. | Nov 2010 | B2 |
7868543 | Kobayashi | Jan 2011 | B2 |
7880184 | Iwafuchi et al. | Feb 2011 | B2 |
7884543 | Doi | Feb 2011 | B2 |
7888690 | Iwafuchi et al. | Feb 2011 | B2 |
7931063 | Craig et al. | Apr 2011 | B2 |
7968474 | Martin et al. | Jun 2011 | B2 |
7977130 | Hillis et al. | Jul 2011 | B2 |
8101457 | Tomoda et al. | Jan 2012 | B2 |
8222659 | Tomoda | Jul 2012 | B2 |
8232640 | Tomoda et al. | Jul 2012 | B2 |
8252164 | Martin et al. | Aug 2012 | B2 |
8257538 | Doi et al. | Sep 2012 | B2 |
8284120 | Hillis et al. | Oct 2012 | B2 |
8300007 | Hillis et al. | Oct 2012 | B2 |
8312619 | Chow et al. | Nov 2012 | B2 |
8333860 | Bibl et al. | Dec 2012 | B1 |
8349116 | Bibl et al. | Jan 2013 | B1 |
8361268 | Mizuno et al. | Jan 2013 | B2 |
8361297 | Mayer et al. | Jan 2013 | B2 |
8379003 | Kawaguchi et al. | Feb 2013 | B2 |
8382544 | Hillis et al. | Feb 2013 | B2 |
8383506 | Golda et al. | Feb 2013 | B1 |
8384116 | Ohtorii et al. | Feb 2013 | B2 |
8390537 | Hillis et al. | Mar 2013 | B2 |
8409886 | Iwafuchi et al. | Apr 2013 | B2 |
8415767 | Golda et al. | Apr 2013 | B1 |
8415768 | Golda et al. | Apr 2013 | B1 |
8415771 | Golda et al. | Apr 2013 | B1 |
8415879 | Lowenthal et al. | Apr 2013 | B2 |
8426227 | Bibl et al. | Apr 2013 | B1 |
8476826 | Oohata et al. | Jul 2013 | B2 |
8518204 | Hu et al. | Aug 2013 | B2 |
8552436 | Bibl et al. | Oct 2013 | B2 |
8558243 | Bibl et al. | Oct 2013 | B2 |
8569115 | Golda et al. | Oct 2013 | B1 |
8570482 | Hillis et al. | Oct 2013 | B2 |
8573469 | Hu et al. | Nov 2013 | B2 |
8628994 | Tomoda | Jan 2014 | B2 |
8646505 | Bibl et al. | Feb 2014 | B2 |
8648328 | Crowder et al. | Feb 2014 | B2 |
8669703 | Hillis et al. | Mar 2014 | B2 |
8683416 | Trivedi et al. | Mar 2014 | B1 |
8685774 | Crowder et al. | Apr 2014 | B2 |
8686447 | Tomoda et al. | Apr 2014 | B2 |
8686542 | Golda et al. | Apr 2014 | B2 |
8711063 | Hillis et al. | Apr 2014 | B2 |
8789573 | Bibl et al. | Jul 2014 | B2 |
8809126 | Lowenthal et al. | Aug 2014 | B2 |
8846457 | Lowenthal et al. | Sep 2014 | B2 |
8906713 | Rettke | Dec 2014 | B2 |
9159892 | Fukushima | Oct 2015 | B2 |
9178123 | Sakariya | Nov 2015 | B2 |
9240397 | Bibl et al. | Jan 2016 | B2 |
9252375 | Bibl et al. | Feb 2016 | B2 |
9269322 | Nathan et al. | Feb 2016 | B2 |
9293476 | Bedell et al. | Mar 2016 | B2 |
9305807 | Whiting et al. | Apr 2016 | B2 |
9318475 | Bibl et al. | Apr 2016 | B2 |
9343448 | Sakariya et al. | May 2016 | B2 |
20020153606 | Gengel | Oct 2002 | A1 |
20050206585 | Stewart et al. | Sep 2005 | A1 |
20050233504 | Doi et al. | Oct 2005 | A1 |
20100186883 | Tomoda | Jul 2010 | A1 |
20110266039 | Tomoda | Nov 2011 | A1 |
20110273410 | Park et al. | Nov 2011 | A1 |
20120169786 | Okuyama et al. | Jul 2012 | A1 |
20120218318 | Hirao et al. | Aug 2012 | A1 |
20130126098 | Bibl et al. | May 2013 | A1 |
20130126827 | Bibl et al. | May 2013 | A1 |
20130128585 | Bibl et al. | May 2013 | A1 |
20130210194 | Bibl et al. | Aug 2013 | A1 |
20140008691 | Tomoda et al. | Jan 2014 | A1 |
20140048909 | Golda et al. | Feb 2014 | A1 |
20140084482 | Hu et al. | Mar 2014 | A1 |
20150179877 | Hu et al. | Jun 2015 | A1 |
20150263066 | Hu et al. | Sep 2015 | A1 |
20160086534 | Seo et al. | Mar 2016 | A1 |
Entry |
---|
US 8,093,720, 01/10/2012, Sony (withdrawn). |
U.S. Appl. No. 14/305,295, pending, LED Display Driving Circuits. |
Bui, Thanh Son, et al. “High optical density and low dielectric constant black matrix containing graphene oxide and carbon black . . . ” Displays 34.3 (2013): 192-199. |
Den Boer, Willem. Active matrix liquid crystal displays: fundamentals and applications. Elsevier, 2011. |
Number | Date | Country | |
---|---|---|---|
20170133564 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15410001 | Jan 2017 | US |
Child | 15410195 | US | |
Parent | 14749569 | Jun 2015 | US |
Child | 15410001 | US | |
Parent | 15221571 | Jul 2016 | US |
Child | 14749569 | US | |
Parent | 15197266 | Jun 2016 | US |
Child | 15221571 | US | |
Parent | 15190813 | Jun 2016 | US |
Child | 15197266 | US | |
Parent | 15158556 | May 2016 | US |
Child | 15190813 | US | |
Parent | 15266796 | Sep 2016 | US |
Child | 15158556 | US | |
Parent | 14680618 | Apr 2015 | US |
Child | 15266796 | US | |
Parent | 14530230 | Oct 2014 | US |
Child | 14680618 | US |